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Preface

Solum certum nihil esse certi
Plinius, Naturalis Historia

A central issue in many engineering design endeavors is the presence of uncer-
tainty in the problem description. Different application fields employ different
characterizations of the uncertainty (for instance, deterministic unknown-but-
bounded description vs stochastic description) and correspondingly adopt dif-
ferent techniques to devise ‘designs’ that are in some way insensitive, or robust,
with respect to uncertainty.

The classes of problems considered in this book refer to uncertain control
systems, as well as to generic decision or optimization problems in which the
data are not exactly known.

In the area of robust control, the approach relying on a purely deterministic
unknown-but-bounded description of the uncertainty spawned researches that
yielded significant results in the last thirty years. However, this deterministic,
or worst-case, approach also showed some inherent limitations that can be
resumed in the fundamental tradeoff between computational complexity and
‘conservatism’.

From a more philosophical perspective, a worst-case design, even if it could
come at a cheap computational cost, may not be a desirable design in practice,
since it contemplates all possible uncertainty scenarios, including those that
are extremely unlikely to happen. On the other hand, one might think that
a worst-case approach is necessary in situations where even rare events may
lead to disastrous consequences. It should nevertheless be noticed that a design
based on an unknown-but-bounded description of the uncertainty may lead
to a ‘false’ belief of safety, since it provides no guarantees for uncertainty
outcomes that, for some unforeseen reason, happen to fall outside the a-priori
assumed uncertainty set. In this respect, an alternative approach based on a
stochastic description of the uncertainty makes it clear right from the outset
that, in reality, no statement can be given with absolute certainty.

In the field of optimization, the stochastic approach is indeed a classical
one, dating back to the late fifties with the work of Dantzig [96] on linear
programming under uncertainty and Charnes and Cooper [80] on chance-
constrained optimization. In the robust control area, instead, the stochas-
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tic approach still enjoys limited attention, since this area has been domi-
nated lately by the worst-case deterministic viewpoint; early exceptions in-
clude [192, 195, 342] and later [207, 290, 347, 402]. From an historical point
of view, we notice that the two areas of optimization and control followed
two different routes: the optimization area has always been dominated by
the stochastic paradigm, and only recently the works of El Ghaoui and Le-
bret [121] and Ben-Tal and Nemirovski [35] brought the worst-case approach
into this area. Conversely, since the early eighties robust control has been
mainly based on the worst-case paradigm; see the seminal works of Zames [407]
on H∞ control, of Kharitonov [183] on parametric uncertainty, and the struc-
tured singular value theory of Doyle [114] and Safonov [316]. Lately, however,
the probabilistic paradigm gained new interest among control researchers, see,
e.g., [24, 74,252,359,381] and the many references therein.

Book Scope and Structure

This book brings together leading researchers from both the optimization and
control areas, with the intent of highlighting the interactions between the two
fields, and with a focus on randomized and probabilistic techniques for solving
design problems in the presence of stochastic uncertainty.

The book is divided into three parts. The first part presents three con-
tributions dealing with the general theory and solution methodologies for
probability-constrained and stochastic optimization problems and a contribu-
tion on the theory of risk measures. The second part of the book contains
five chapters devoted to explicit robust design methods based on uncertainty
randomization and sampling. The first chapter of the third part of the book
presents a novel statistical learning theory framework for system identification,
whereas the other six chapters in this part focus on applications of randomized
methods for analysis and design of robust control systems.
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1

Scenario Approximations of Chance
Constraints

Arkadi Nemirovski1 and Alexander Shapiro2

1 Technion – Israel Institute of Technology, Haifa 32000, Israel,
nemirovs@ie.technion.ac.il

2 Georgia Institute of Technology, Atlanta, Georgia 30332-0205, USA,
ashapiro@isye.gatech.edu

Summary. We consider an optimization problem of minimization of a linear func-
tion subject to the chance constraint P{G(x, ξ) ∈ C} ≥ 1−ε, where C is a convex set,
G(x, ξ) is bi-affine mapping and ξ is a vector of random perturbations with known
distribution. When C is multi-dimensional and ε is small, like 10−6 or 10−10, this
problem is, generically, a problem of minimizing under a nonconvex and difficult to
compute constraint and as such is computationally intractable. We investigate the
potential of conceptually simple scenario approximation of the chance constraint.
That is, approximation of the form G(x, ηj) ∈ C, j = 1, ..., N , where {ηj}N

j=1 is
a sample drawn from a properly chosen trial distribution. The emphasis is on the
situation where the solution to the approximation should, with probability at least
1 − δ, be feasible for the problem of interest, while the sample size N should be
polynomial in the size of this problem and in ln(1/ε), ln(1/δ).

1.1 Introduction

Consider the following optimization problem

min
x∈Rn

f(x) subject to G(x, ξ) ∈ C, (1.1)

where C ⊂ R
m is a closed convex set and f(x) is a real valued function. We

assume that the constraint mapping G : R
n ×R

d → R
m depends on uncertain

parameters represented by vector ξ which can vary in a set Ξ ⊂ R
d. Of course,

for a fixed ξ ∈ Ξ, the constraint G(x, ξ) ∈ C means existence of z ∈ C such
that G(x, ξ) = z. In particular, suppose that the set C is given in the form

C
.
=
{
z : z = Wy − w, y ∈ R

�, w ∈ R
m
+

}
, (1.2)

where W is a given matrix. Then the constraint G(x, ξ) ∈ C means that the
system Wy ≥ G(x, ξ) has a feasible solution y = y(ξ). Given x and ξ, we refer
to the problem of finding y ∈ R

� satisfying Wy ≥ G(x, ξ) as the second stage
feasibility problem.
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We didn’t specify yet for what values of the uncertain parameters the cor-
responding constraints should be satisfied. One way of dealing with this is to
require the constraints to hold for every possible realization ξ ∈ Ξ. If we view
ξ as a random vector with a (known) probability distribution having support3

Ξ, this requires the second stage feasibility problem to be solvable (feasible)
with probability one. In many situations this may be too conservative, and a
more realistic requirement is to ensure feasibility of the second stage problem
with probability close to one, say at least with probability 1 − ε. When ε is
really small, like ε = 10−6 or ε = 10−12, for all practical purposes confidence
1−ε is as good as confidence 1. At the same time, it is well known that passing
from ε = 0 to a positive ε, even as small as 10−12, may improve significantly
the optimal value in the corresponding two-stage problem.

The chance constraints version of problem (1.1) involves constraints of the
form

P
{
G(x, ξ) ∈ C

}
≥ 1 − ε. (1.3)

Chance constrained problems were studied extensively in the stochastic pro-
gramming literature (see, e.g., [281] and references therein). We call ε > 0 the
confidence parameter of chance constraint (1.3), and every x satisfying (1.3)
as an (1 − ε)-confident solution to (1.1). Our goal is to describe the set Xε

of (1 − ε)-confident solutions in a ‘computationally meaningful’ way allowing
for subsequent optimization of a given objective over this set. Unless stated
otherwise we assume that the constraint mapping is linear in ξ and has the
form

G(x, ξ)
.
= A0(x) + σ

d∑
i=1

ξiAi(x), (1.4)

where σ ≥ 0 is a coefficient, representing the perturbation level of the problem,
and Ai : R

n → R
m, i = 0, ..., d, are given affine mappings. Of course, the

coefficient σ can be absorbed into the perturbation vector ξ. However, in the
sequel we use techniques which involve change of the perturbation level of the
data. Sometimes we use notation Gσ(x, ξ) for the right hand side of (1.4) in
order to emphasize its dependence on the perturbation level of the problem.

Example 1. Suppose that we want to design a communication network with
p terminal nodes and n arcs. The topology of the network is given, and all
we need to specify is vector x of capacities of the arcs; cTx is the cost of
the network to be minimized. The load d in the would-be network (that is,
the amounts of data drs, r, s = 1, ..., p, to be transmitted from terminal node
r to terminal node s per unit time) is uncertain and is modelled as drs =
d∗rs +ξrs, where d∗ is the nominal demand and ξ = {ξrs} is a vector of random
perturbations which is supposed to vary in a given set Ξ. The network can
carry load d if the associated multicommodity flow problem (to assign arcs γ
with flows yγ

rs ≥ 0 – amounts of data with origin at r and destination at s

3The support of the probability distribution of random vector ξ is the smallest
closed set Ξ ⊂ R

d such that the probability of the event {ξ ∈ Ξ} is equal to one.
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passing through γ – obeying the standard flow conservation constraints with
‘boundary conditions’ d and the capacity bounds

∑
r,s y

γ
rs ≤ xγ) is solvable.

This requirement can be formulated as existence of vector y such that Wy ≥
G(x, d), where W is a matrix and G(x, d) is an affine function of x and the
load d, associated with the considered network. When the design specifications
require ‘absolute reliability’ of the network, i.e., it should be capable to carry
every realization of random load, the network design problem can be modelled
as problem (1.1) with the requirement that the corresponding constraints
G(x, ξ) ∈ C should be satisfied for every ξ ∈ Ξ. This, however, can lead to a
decision which is too conservative for practical purposes.

As an illustration, consider the simplest case of the network design prob-
lem, where p ‘customer nodes’ are linked by arcs of infinite capacity with a
central node (‘server’) c, which, in turn is linked by an arc (with capacity x to
be specified) with ‘ground node’ g, and all data to be transmitted are those
from the customer nodes to the ground one; in fact, we are speaking about
p jobs sharing a common server with performance x. Suppose that the loads
dr created by jobs r, r = 1, ..., p, are independent random variables with, say,
uniform distributions in the respective segments [d∗r(1 − σ), d∗r(1 + σ)], where
σ ∈ (0, 1) is a given parameter. Then the ‘absolutely reliable’ optimal solution
clearly is

x∗ =
p∑

r=1
d∗r(1 + σ).

At the same time, it can be shown4 that for τ ≥ 0,

P

{∑
r
dr >

∑
r
d∗r + τσ

√∑
r

(d∗r)2
}

≤ e−τ2/2.

It follows that whenever ε ∈ (0, 1) and for D
.
=

p∑
r=1

d∗r , the solution

x(ε) = D + σ
√

2 ln(1/ε)
√∑

r
(d∗r)2

is (1 − ε)-confident. The cost of this solution is by the factor

κ = 1+σ

1+σ
√

2 ln(1/ε)

(∑
r

(d∗
r)2

)1/2

D−1

less than the cost of the absolutely reliable solution. For example, with ε =
10−9, p = 1000 and all d∗r , r = 1, ..., p, equal to each other, we get κ as large
as 1.66; reducing ε to 10−12, we still get κ = 1.62.

4This follows from the following inequality due to Hoeffding: if X1, ..., Xn are
independent random variables such that ai ≤ Xi ≤ bi, i = 1, ..., n, then for t ≥ 0,

P

{
n∑

i=1

(Xi − E[Xi]) > t

}
≤ exp

⎧⎨⎩ −2t2

n∑
i=1

(bi−ai)2

⎫⎬⎭ .
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The difference between the absolutely reliable and (1 − ε)-confident solu-
tions will be even more dramatic if we assume that dr are normally distributed
independent random variables. Then the corresponding random vector d is
supported on the whole space and hence the demand cannot be satisfied with
probability one for any value of x, while for any ε > 0, there exists a finite
(1 − ε)-confident solution.

It is important to point out that ‘computationally meaningful’ precise
description of the solution set Xε of (1.3) seems to be intractable, except for
few simple particular cases. Indeed, clearly a necessary condition for existence
of a ‘computationally meaningful’ description of the set Xε is the possibility to
solve efficiently the associated problem for a fixed first stage decision vector:
‘given x, check whether x ∈ Xε’. To the best of our knowledge, the only
generic case where the function

φ(x)
.
= P

{
G(x, ξ) ∈ C

}
can be efficiently computed analytically is the case where ξ has a normal
distribution and C is a segment in R, which is pretty restrictive. Computing
φ(x) is known to be NP-hard already in the situation as simple as the one
where ξ is uniformly distributed in a box and C is a polytope.

Of course, there is always a possibility to evaluate φ(x) by Monte Carlo
simulation, provided that C is computationally tractable which basically
means that we can check efficiently whether a given point belongs to C.
Straightforward simulation, however, requires sample sizes of order ε−1 and
becomes therefore impractical for ε like 10−8 or 10−12. We are not aware of
generic cases where this difficulty5 can be avoided.

Aside from difficulties with efficient computation of φ(x), there is another
severe problem: the set Xε typically is nonconvex. The only generic exception
we know of is again the case of randomly perturbed linear constraint, where C
is a segment, with ξ having a normal distribution. Nonconvexity of Xε makes
our ultimate goal (to optimize efficiently over Xε) highly problematic.

In view of the outlined difficulties, we pass from the announced goal to
its relaxed version, where we are looking for ‘tractable approximations’ of
chance constraint (1.3). Specifically, we are looking for sufficient conditions
for the validity of (1.3), conditions which should be both efficiently verifiable
and define a convex set in the space of design variables. The corresponding
rationale is clear; we want to stay at the safe side, this is why we are looking
for sufficient conditions for the validity of (1.3), and we want to be able to
optimize efficiently objectives (at least simple ones) under these conditions.

5It should be stressed that the difficulties with Monte Carlo estimation of
P {ξ ∈ Qx}, where Qx

.
= {ξ : G(x, ξ) �∈ C}, come from nonconvexity of Qx rather

than from the fact that we are interested in rare events. Indeed, at least for uni-
formly distributed ξ, advanced Monte Carlo techniques allow for polynomial time
estimation of the quantity P{ξ ∈ Q} with every fixed relative accuracy, provided
that Q is convex, [115,179].
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This is why the conditions should be efficiently verifiable and define convex
feasible sets.

There are two major avenues for building tractable approximations of
chance constraints. The first is to consider one by one interesting generic ran-
domly perturbed constraints (linear, conic quadratic, semidefinite, etc.) and
to look for specific tractable approximations of their chance counterparts. This
approach is easy to implement for linear constraints with m = 1 and C

.
= R+.

Then the constraint G(x, ξ) ∈ C is equivalent to aTx+ξTA(x) ≤ b, with A(x)
being affine in x. Assuming that we know an upper bound V on the covariance
matrix of ξ, so that E{(hT ξ)2} ≤ hTV h for every vector h, a natural ‘safe
version’ of the random constraint in question is

aTx+ γ
√
AT (x)V A(x) ≤ b, (1.5)

where γ = γ(ε) is a ‘safety parameter’ which should satisfy the condition

P
{
ξ : hT ξ > γ

√
hTV h

}
≤ ε for any h ∈ R

d.

An appropriate value of γ can be derived from the standard results on prob-
abilities of large deviations for scalar random variables. For example, for the
case when ξ has ‘light6 tail’, it suffices to take γ(ε) = 2

√
1 + ln(ε−1).

Results of the outlined type can be obtained for randomly perturbed conic
quadratic7 constraints ‖Ax−b‖ ≤ τ (here C

.
= {(y, t) : t ≥ ‖y‖} is the Lorentz

cone), as well as for randomly perturbed semidefinite constraints (C is the
semidefinite cone in the space of matrices), see [240]. However, the outlined
approach has severe limitations: it hardly could handle the case when C pos-
sesses complicated geometry. For example, using ‘safe version’ (1.5) of a single
randomly perturbed linear inequality, one can easily build an approximation
of the chance constraint corresponding to the case when C is a polyhedral set
given by a list of linear inequalities. At the same time, it seems hopeless to
implement the approach in question in the case of a simple two-stage stochas-
tic program, where we need a safe version of the constraint G(x, ξ) ∈ C with
the set C given in the form (1.2). Here the set C, although polyhedral, is not
given by an explicit list of linear inequalities (such a list can be exponentially
long), which makes the aforementioned tools completely inapplicable.

The second avenue of building tractable approximations of chance con-
straints is the scenario approach based on Monte Carlo simulation. Specifi-
cally, given the probability distribution P of random data vector ξ and level
of perturbations σ, we choose somehow a ‘trial’ distribution F (which does
not need to be the same as P). Consequently, we generate a sample η1, ..., ηN

of N realizations, called scenarios, of ξ drawn from the distribution F, and
treat the system of constraints

6Specifically, E

[
exp

{
(hT ξ)2

4hT V h

}]
≤ exp{1} for every h ∈ R

d, as in the case where

ξ has normal distribution with zero mean and covariance matrix V .
7Unless stated otherwise, ‖z‖

.
= (zT z)1/2 denotes the Euclidean norm.
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G(x, ηj) ∈ C, j = 1, ..., N, (1.6)

as an approximation of chance constraint (1.3). This is the approach we in-
vestigate in this chapter.

The rationale behind this scenario based approach is as follows. First of
all, (1.6) is of the same level of ‘computational tractability’ as the unperturbed
constraint, so that (1.6) is computationally tractable, provided that C is so
and that the number of scenarios N is reasonable. Thus, all we should un-
derstand is what can be achieved with a reasonable N . For the time being,
let us forget about optimization with respect to x, fix x = x̄ and let us ask
ourselves what are the relations between the predicates ‘x̄ satisfies (1.3)’ and
‘x̄ satisfies (1.6)’. Recall that the random sample {ηj}N

j=1 is drawn from the
trial distribution F. We assume in the remainder of this section the following.

The trial distribution F is the distribution of sξ, where s ≥ 1 is fixed
and P is the probability distribution of random vector ξ.

Because of (1.4) we have that Gσ(x̄, ξ) ∈ C if and only if ξ ∈ Qx̄,σ, where

Qx̄,σ
.
=

{
z ∈ R

d : σ
d∑

i=1

ziAi(x̄) ∈ C −A0(x̄)

}
. (1.7)

Note that the set Qx̄,σ is closed and convex along with C, and for any s > 0,

s−1Qx̄,σ = {ξ : Gsσ(x̄, ξ) ∈ C} .

Now, in ‘good cases’ P possesses the following ‘concentration’ property.

(!) For every closed convex set Q ⊂ R
d with P(Q) not too small, e.g., P(Q) ≥

0.9, the mass P(sQ) of s-fold enlargement of Q rapidly approaches 1 as
s grows. That is, if Q is closed and convex and P(Q) ≥ 0.9, then there
exists κ > 0 such that for s ≥ 1 it holds that

P
(
{ξ �∈ sQ}

)
≤ e−κs2

. (1.8)

(we shall see that, for example, in the case of normal distribution, estimate
(1.8) holds true with κ = 0.82).

Assuming that the above property (!) holds, and given small ε > 0, let us set8

s
.
=
√
κ−1 ln(ε−1) and N

.
= 	ln(δ)/ ln(0.9)
 , (1.9)

where δ > 0 is a small reliability parameter, say, δ = ε. Now, if x̄ satisfies the
constraint

P
(
{ξ : Gsσ(x̄, ξ) �∈ C}

)
≤ ε,

8Notation �a� stands for the smallest integer which is greater than or equal to
a ∈ R.



1 Scenario Approximations of Chance Constraints 9

that is, x̄ satisfies the strengthened version of (1.3) obtained by replacing the
original level of perturbations σ with sσ, then the probability to get a sample
{ηj}N

j=1 such that x̄ does not satisfy (1.6) is at most

N∑
j=1

P
(
{G(x̄, ηj) �∈ C}

)
≤ εN = O(1)ε ln(δ−1),

where the constant O(1) is slightly bigger than [ln(0.9−1)]−1 = 9.5. For δ = ε,
say, this probability is nearly of order ε.

Let Q
.
= s−1Qx̄,σ, and hence

P({ξ ∈ Q}) = P({sξ ∈ Qx̄,σ}) = P
(
{G(x̄, ηj) ∈ C}

)
.

Consequently, if P({ξ ∈ Q}) < 0.9, then the probability p of getting a sample
{ηj}N

j=1 for which x̄ satisfies (1.6), is the probability to get N successes in N
Bernoulli trials with success probability for a single experiment less than 0.9.
That is, p ≤ 0.9N , and by (1.9) we obtain p ≤ δ. For small δ = ε, such an
event is highly unlikely. And if P({ξ ∈ Q}) ≥ 0.9, then by using (1.8) and
because of (1.9) we have

P({ξ �∈ Qx̄,σ}) = P({ξ �∈ sQ}) ≤ e−κs2

= ε.

That is, x̄ satisfies the chance constraint (1.3).
We can summarize the above discussion as follows.

(!!) If x̄ satisfies the chance constraint (1.3) with a moderately increased
level of perturbations (by factor s =

√
O(ln(ε−1))), then it is highly un-

likely that x̄ does not satisfy (1.6) (probability of that event is less than
O(1)ε ln(ε−1)).
If x̄ does satisfy (1.6), then it is highly unlikely that x̄ is infeasible for (1.3)
at the original level of perturbations (probability of that event is then less
than δ = ε). Note that the sample size which ensures this conclusion is
just of order O(1) ln(ε−1).

The approach we follow is closely related the importance sampling method,
where one samples from a properly chosen artificial distribution rather than
from the actual one in order to make the rare event in question ‘more frequent’.
The difference with the traditional importance sampling scheme is that the
latter is aimed at estimating the expected value of a given functional and uses
change of the probability measure in order to reduce the variance of the esti-
mator. In contrast to this, we do not try to estimate the quantity of interest
(which in our context is P{ξ �∈ Q}, where Q is a given convex set) because
of evident hopeless of the estimation problem. Indeed, we are interested in
multidimensional case and dimension independent constructions and results,
while the traditional importance sampling is heavily affected by the ‘curse of
dimensionality’. For example, the distributions of two proportional to each
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other with coefficient 2 normally distributed vectors ξ and η of dimension 200
are ‘nearly singular’ with respect to each other: one can find two nonintersect-
ing sets U, V in R

200 such that P{ξ �∈ U} = P{η �∈ V } < 1.2 × 10−11. Given
this fact, it seems ridiculous to estimate a quantity related to one of these dis-
tributions via a sample drawn from the other one. What could be done (and
what we intend to do) is to use the sample of realizations of the larger random
vector η to make conclusions of the type ‘if all elements of a random sample
of size N = 10, 000 of η belong to a given convex set Q, then, up to chance
of ‘bad sampling’ as small as 10−6, the probability for the smaller vector ξ
to take value outside Q is at most 4.6 × 10−9’. Another difference between
what we are doing and the usual results on importance sampling is in the fact
that in our context the convexity of Q is crucial for the statements (and the
proofs), while in the traditional importance sampling it plays no significant
role.

Scenario approach is widely used in Stochastic Optimization. We may refer
to [332], and references therein, for a discussion of the Monte Carlo sampling
approach to solving two-stage stochastic programming problems of the generic
form

min
x∈X

E [F (x, ξ)] , (1.10)

where F (x, ξ) is the optimal value of the corresponding second stage problem.
That theory presents moderate upper bounds on the number of scenarios
required to solve the problem within a given accuracy and confidence. How-
ever, all results of this type known to us postulate from the very beginning
that F (x, ξ) is finite valued with probability one, i.e., that the problem has a
relatively complete recourse.

As far as problems with chance constraints of the form (1.3) are concerned,
seemingly the only possibility to convert such a problem into one with simple
(relatively complete) recourse is to penalize violations of constraints. That is,
to approximate the problem of minimization of f(x)

.
= cTx subject to Ax ≥ b

and chance constraint (1.3), by the problem

min
x

cTx+ γE
[
infy,t

{
t ≥ 0 : Wy + t ≥ G(x, ξ)

}]
s.t. Ax ≥ b, (1.11)

where γ > 0 is a penalty parameter. The difficulty, however, is that in order
to solve (1.10) within a fixed absolute accuracy in terms of the objective,
the number of scenarios N should be of order of the maximal, over x ∈ X,
variance of F (x, ξ). For problem (1.11), that means N should be of order of
γ2; in turn, the penalty parameter γ should be inverse proportional to the
required confidence parameter ε, and we arrive at the same difficulty as in
the case of straightforward Monte Carlo simulation: the necessity to work
with prohibitively large samples of scenarios when high level of confidence is
required.

To the best of our knowledge, the most recent and advanced results on
chance versions of randomly perturbed convex programs are those of Calafiore
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and Campi [70,71]. These elegant and general results state that whatever are
the distributions of random perturbations (perhaps entering nonlinearly into
the objective and the constraints) affecting a convex program with n decision
variables, O(1)nε−1 ln(1/δ)-scenario sample is sufficient to solve the problem
within confidence 1 − ε with reliability 1− δ (that is, with probability of bad
sampling at most δ), see also Chapter 5 of this book. Here again everything
is fine except for the fact that the sample size is proportional to ε−1, which
makes the approach impractical when high level of confidence is required.

The rest of the chapter is organized as follows. In Section 1.2, we develop
our techniques as applied to the analysis problem, as in the motivating discus-
sion above. Note that validity of our scheme for the analysis problem does not
yield automatically its validity for the synthesis one, where one optimizes a
given objective over the feasible set9 of (1.6). Applications of the methodology
in the synthesis context form the subject of Section 1.3. Technical proofs are
relegated to Appendix.

We use the following notation: EP{·} stands for the expectation with re-
spect to a probability distribution P on R

n (we skip index P, when the dis-
tribution is clear from the context). By default, all probability distributions
are Borel ones with finite first moments. For λ ∈ R, a distribution P on R

n

and ξ ∼ P, we denote by P(λ) the distribution of random vector λξ. Finally,
in the sequel, ‘symmetric’ for sets and distributions always means ‘symmetric
with respect to the origin’. Unless stated otherwise all considered norms on
R

d are Euclidean norms.

1.2 The Analysis Problem

In this section, the assumption that the mappings Ai(·), i = 1, ..., d, are affine
plays no role and is discarded. Recall that the Analysis version of (1.3) is to
check, given x̄, σ, ε > 0, and (perhaps, partial) information on the distribution
P of ξ, whether P

(
{ξ : Gσ(x̄, ξ) �∈ C}

)
≤ ε. Consider the set Q

.
= Qx̄,σ, where

Qx̄,σ is defined in (1.7). Recall that Q is closed and convex. The Analysis
problem can be formulated as to check whether the relation

P
(
{ξ : ξ �∈ Q}

)
≤ ε (1.12)

holds true. The scenario approach, presented in Section 1.1, results in the
following generic test:

9Indeed, our motivating discussion implies only that every fixed point x̄ which
does not satisfy (1.3) is highly unlikely to be feasible for (1.6) – the probability of
the corresponding ‘pathological’ sample {ηj} is as small as δ. This, however, does
not exclude the possibility that a point x which depends on the sample, e.g., the
point which optimizes a given objective over the feasible set of (1.6) – is not that
unlikely to violate (1.3).
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(T) Given confidence parameter ε ∈ (0, 1), reliability parameter δ ∈ (0, 1),
and information on (zero mean) distribution P on R

d, we act as follows:
(i) We specify a trial distribution F on R

d along with integers N > 0
(sample size) and K ≥ 0 (acceptance level), where K < N .
(ii) We generate a sample {ηj}N

j=1, drawn from trial distribution F, and

check whether at most K of the N sample elements violate the condition10

ηj ∈ Q.

If it is the case, we claim that (1.12) is satisfied (‘acceptance conclusion’),
otherwise we make no conclusion at all.

We are about to analyze this test, with emphasis on the following major
questions:

A. How to specify the ‘parameters’ of the test, that is, trial distribution F,
sample size N and acceptance level K, in a way which ensures the validity
of the acceptance with reliability at least 1 − δ, so that the probability
of false acceptance (i.e., generating a sample {ηj} which results in the
acceptance conclusion in the case when (1.12) is false) is less than δ.

B. What is the ‘resolution’ of the test (for specified parameters)? Here
‘resolution’ is defined as a factor r = r(ε, δ) ≥ 1 such that whenever
P({ξ ∈ Qx̄,rσ}) ≤ ε (that is, x̄ satisfies (1.3) with the level of perturba-
tions increased by factor r), the probability of not getting the acceptance
conclusion is at most δ.

1.2.1 Majorization

In Section 1.1 we focused on scenario approach in the case when the scenario
perturbations are multiples of the ‘true’ ones. In fact we can avoid this re-
striction; all we need is the assumption that the trial distribution majorizes
the actual distribution of perturbations in the following sense.

Definition 1. Let F, P be probability distributions on R
d. It is said that

F majorizes11 P (written F � P) if for every convex lower semicontinuous
function f : R

d → R ∪ {+∞} one has EF[f ] ≥ EP[f ], provided that these
expectations are well defined.

It is well known that the above majorization is a partial order (see, e.g.,
[237]). Some other basic properties of majorization are summarized in the
following proposition.

10Recall that ηj ∈ Q is equivalent to G(x̄, ηj) ∈ C.
11In the literature on stochastic orderings the relation ‘ 	′ is called the convex

order, [237].
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Proposition 1. The following statements hold.
(i) F � P if and only if EF[f ] ≥ EP[f ] for every convex function f with linear
growth (that is, a real valued convex function f such that |f(x)| ≤ O(‖x‖) as
‖x‖ → ∞).
(ii) The distribution of the sum ξ + η of two independent random vectors
ξ, η ∈ R

d majorizes the distribution of ξ, provided that E[η] = 0.
(iii) If F � P and F′ � P′, then λF + (1 − λ)F′ � λP + (1 − λ)P′ whenever
λ ∈ [0, 1].
(iv) Let F � P be distributions on R

p×R
q, and F̃, P̃ be the associated marginal

distributions on R
p. Then F̃ � P̃.

(v) If F,P are distributions on R
p and F′,P′ are distributions on R

q, then
the distribution F×F′ on R

p+q majorizes the distribution P×P′ if and only
if both F � P and F′ � P′.
(vi) Let ξ, η be random vectors in R

d and A be an m×d matrix. If the distri-
bution of ξ majorizes the one of η, then the distribution of Aξ majorizes the
one of Aη.
(vii) For symmetric distributions F,P, it holds that F � P if and only if
EF{f} ≥ EP{f} for all even convex functions f with linear growth such that
f(0) = 0.
(viii) For α ≥ 1 and symmetrically distributed random vector ξ, the distribu-
tion of αξ majorizes the distribution of ξ.

Proof. (i) This is evident, since every lower semicontinous convex function
on R

d is pointwise limit of a nondecreasing sequence of finite convex functions
with linear growth.

(ii) For a real valued convex f we have

Eξ+η[f(η + ξ)] = Eξ{Eη[f(η + ξ)]} ≥ Eξ{f(Eη[η + ξ])} = Eξ[f(ξ)],

where the inequality follows by the Jensen inequality.
(iii), (iv), (vi) and (vii) are evident, and (viii) is readily given by (vii).
(v) Assuming F � P and F′ � P′, for a convex function f(u, u′) with

linear growth (u ∈ R
p, u′ ∈ R

q) we have∫
f(u, u′)F(du)F′(du′) =

∫ {∫
f(u, u′)F′(du′)

}
F(du) ≥∫ {∫

f(u, u′)P′(du′)
}

F(du) ≥
∫ {∫

f(u, u′)P′(du′)
}

P(du) =∫
f(u, u′)P(du)P′(du′)

(we have used the fact that
∫
f(u, u′)P′(du′) is a convex function of u with

linear growth). We see that F×F′ � P×P′. The inverse implication F×F′ �
P × P′ ⇒ {F � P & F′ � P′} is readily given by (iv). �

Let us also make the following simple observation:
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Proposition 2. Let F and P be symmetric distributions on R such that P is
supported on [−a, a] and the first absolute moment of F is ≥ a. Then F � P.
In particular, we have:

(i) The distribution of the random variable taking values ±1 with probabilities
1/2 majorizes every symmetric distribution supported in [−1, 1];

(ii)The normal distribution N (0, π/2) majorizes every symmetric distribution
supported in [−1, 1].

Proof. Given symmetric probability distribution P supported on [−a, a] and
a symmetric distribution F with the first absolute moment ≥ a, we should
prove that for every convex function f with linear growth on R it holds that
EP[f ] ≤ EF[f ]. Replacing f(x) with (f(x) + f(−x))/2 + c, which does not
affect the quantities to be compared, we reduce the situation to the one where
f is even convex function with f(0) = 0. The left hand side of the inequality
to be proven is linear in P, thus, it suffices to prove the inequality for a
weakly dense subset of the set of extreme points in the space of symmetric
probability distributions on [−a, a], e.g., for distributions assigning masses 1/2
to points ±α with α ∈ (0, a]. Thus, we should prove that if f is nondecreasing
finite convex function on the ray R+

.
= {x : x ≥ 0} such that f(0) = 0

and α ∈ (0, a], then f(α) ≤ 2
∫∞
0

f(x)F(dx). When proving this fact, we can
assume without loss of generality that F possesses continuous density p(x).
Since f is convex, nondecreasing and non-negative on R+ and f(0) = 0, for
x ≥ 0 we have f(x) ≥ g(x)

.
= max[0, f(α) + f ′(α)(x − α)], and g(0) = 0, so

that g(x) = c(x−β)+ for certain c ≥ 0 and β ∈ [0, α]. Replacing f with g, we
do not affect the left hand side of the inequality to be proven and can only
decrease the right hand side of it. Thus, it suffices to consider the case when
f(x) = (x− β)+ for certain β ∈ [0, α]. The difference

h(β) = f(α) − 2
∞∫
0

f(x)F(dx) = α− β − 2
∞∫
β

(x− β)p(x)dx,

which we should prove is nonpositive for β ∈ [0, α], is nonincreasing in β.
Indeed, h′(β) = −1 + 2

∫∞
β

p(x)dx ≤ 0. Consequently,

h(β) ≤ h(0) = α− 2
∞∫
0

xp(x)dx = α−
∫
|x|F(dx) ≤ 0

due to α ≤ a ≤
∫
|x|F(dx). �

Corollary 1. Let P be a probability distribution on d-dimensional unit12 cube
{z ∈ R

d : ‖z‖∞ ≤ 1} which is ‘sign-symmetric’, that is, if ξ ∼ P and E is a
diagonal matrix with diagonal entries ±1, then Eξ ∼ P. Let, further, U be the
uniform distributions on the vertices of the unit cube, and13 let F ∼ N (0, π

2 Id).
Then P � U � F.

12The norm ‖z‖∞ is the max-norm, i.e., ‖z‖∞
.
= max{|z1|, ..., |zd|}.

13By N (µ, Σ) we denote normal distribution with mean µ and covariance matrix
Σ, and by Id we denote the d × d unit matrix.
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Proof. Without loss of generality we can assume that P has density. The
restriction of P on the non-negative orthant is a weak limit of convex com-
binations of masses P(Rd

+) = 2−d sitting at points from the intersection of
the unit cube and R

d
+, Consequently, P itself is a weak limit of uniform dis-

tributions on the vertices of boxes of the form {x : |xi| ≤ ai ≤ 1, i = 1, ..., d},
that is, limit of direct products Ua of uniform distributions sitting at the
points ±ai. By Proposition 1(iii), in order to prove that P � U it suffices to
verify that U � Ua for all a with 0 ≤ ai ≤ 1. By Proposition 1(v), to prove
the latter fact it suffices to verify that the uniform distribution on {−1; 1}
majorizes uniform distribution on {−a; a} for every a ∈ [0, 1], which indeed is
the case by Proposition 2. To prove that F � U, by Proposition 1(v) it suf-
fices to verify that the N (0, π

2 )-distribution on the axis majorizes the uniform
distribution on {−1; 1}, which again is stated by Proposition 2. �

Another observation of the same type as in Proposition 2 is as follows.

Proposition 3. The uniform distribution on [−a, a] majorizes every symmet-
ric unimodal distribution P on the segment (that is, distribution with density
which is nonincreasing function of |x| and vanishes for |x| > a) and is ma-

jorized by normal distribution N (0, σ2) with σ =
√

2π
4 ≈ 0.6267.

Proof. The first statement is evident. To prove the second statement is the
same as to prove that the uniform distribution on [−a, a] with a = 4/

√
2π is

majorized by the standard normal distribution N (0, 1). To this end, same as
in the proof of Proposition 2, it suffices to verify that

a∫
0

a−1f(x)dx ≤ 2√
2π

∞∫
0

f(x) exp{−x2/2}dx

for every real valued nondecreasing convex function f(x) on [0,∞] such that
f(0) = 0. Functions of this type clearly can be approximated by linear combi-
nations, with non-negative coefficients, of functions of the form (x−β)+, with
β ≥ 0. Thus, it suffices to prove the inequality in question for f(x) = (x−β)+,
which is straightforward. �

1.2.2 Concentration

Let us consider the following ‘concentration’ property.

Definition 2. Let θ̄ ∈ [ 1
2
, 1) and ψ(θ, γ) be a function of θ ∈ (θ̄, 1] and γ ≥ 1

which is convex, nondecreasing and nonconstant as a function of γ ∈ [1,∞).
We say that a probability distribution F on R

d possesses (θ̄, ψ)-concentration
property (notation: F ∈ C(θ̄, ψ)), if for every closed convex set Q ⊂ R

d one
has

F(Q) ≥ θ > θ̄ and γ ≥ 1 ⇒ F({x �∈ γQ}) ≤ exp{−ψ(θ, γ)}.
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If the above implication is valid under additional assumption that Q is sym-
metric, we say that F possesses symmetric (θ̄, ψ)-concentration property (no-
tation: F ∈ SC(θ̄, ψ)).

Distributions with such concentration properties admit a certain calculus
summarized in the following proposition.

Proposition 4. The following statements hold.
(i) A symmetric distribution which possesses a symmetric concentration prop-
erty possesses concentration property as well: if F ∈ SC(θ̄, ψ) is symmetric,

then F ∈ C(θ̂, ψ̂) with θ̂
.
= (1 + θ̄)/2 and ψ̂(θ, γ)

.
= ψ(2θ − 1, γ).

(ii) Let ξ ∼ F be a random vector in R
d, A be an m × d matrix and F(A) be

the distribution of Aξ. Then F ∈ C(θ̄, ψ) implies that F(A) ∈ C(θ̄, ψ).
(iii) Let F ∈ C(θ̄, ψ) be a distribution on R

p × R
q, and F̃ be the associated

marginal distribution on R
p. Then F̃ ∈ C(θ̄, ψ).

(iv) Let ξi, i = 1, ..., p, be independent random vectors in R
d with symmetric

distributions F1, ...,Fp, such that Fi ∈ C(θ̄, ψ), i = 1, ..., p. Then the distribu-

tion F of η = ξ1 + ...+ ξp belongs to C(θ̂, ψ̂) with θ̂
.
= 2θ̄− 1 and ψ̂(θ, ·) given

by the convex hull14 of the function

ϕ(γ)
.
=

⎧⎨⎩ ln
(

1
1−θ

)
, 1 ≤ γ < p,

max
{

ln
(

1
1−θ

)
, ψ(2θ − 1, γ/p) − ln p

}
, γ ≥ p,

where γ ∈ [1,∞) and θ > θ̂.
(v) Let Fi ∈ C(θ̄, ψ) be distributions on R

mi , i = 1, ..., p, and assume that all

Fi are symmetric. Then F1 × ... × Fp ∈ C(θ̂, ψ̂) with θ̂ and ψ̂ exactly as in
(iv).

Moreover, statements (ii) – (v) remain valid if the class C(θ̄, ψ) in the
premises and in the conclusions is replaced with SC(θ̄, ψ).

Proof. (i) Let F satisfy the premise of (i), and let Q be a closed convex set

such that F(Q) ≥ θ > θ̂. By symmetry of F, we have F(Q∩(−Q)) ≥ 2θ−1 > θ̄,
and hence

F({ξ �∈ γQ}) ≤ F({ξ �∈ γ(Q ∩ (−Q))}) ≤ exp{−ψ(2θ − 1, γ)}.

The statements (ii) and (iii) are evident.

(iv) Let Q be a closed convex set such that θ
.
= F(Q) > θ̂. We claim that

then
Fi(Q) ≥ 2θ − 1 > θ̄, i = 1, ..., p. (1.13)

Indeed, let us fix i, and let ζ be the sum of all ξj except for ξi, so that
η = ζ + ξi, ζ and ξi are independent and ζ is symmetrically distributed.
Observe that conditional, given the value u of ξi, probability for ζ to be

14The convex hull of a function ϕ is the largest convex function majorized by ϕ.
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outside Q is at least 1/2, provided that u �∈ Q. Indeed, when u �∈ Q, there
exists a closed half-space Πu containing u which does not intersect Q (recall
that Q is closed and convex); since ζ is symmetrically distributed, u+ ζ ∈ Πu

with probability at least 1/2, as claimed. From our observation it follows that
if ξi �∈ Q with probability s, then η �∈ Q with probability at least s/2; the
latter probability is at most 1 − θ, whence s ≤ 2 − 2θ, and (1.13) follows.

Assuming γ ≥ p and P{ξ1 + ...+ ξp ∈ Q} ≥ θ > θ̂, we have

P{ξ1 + ...+ ξp �∈ γQ} ≤
p∑

i=1

P{ξi �∈ (γ/p)Q} ≤ p exp{−ψ(2θ − 1, γ/p)},

where the concluding inequality is given by (1.13) and the inclusions Fi ∈
C(θ̄, ψ). Now, the distribution of η is symmetric, so that F({η ∈ Q}) > θ̂ ≥ 1/2
implies that Q intersect −Q, that is, that 0 ∈ Q. Due to the latter inclusion,
for γ ≥ 1 one has F({η ∈ γQ}) ≥ F({η ∈ Q}) ≥ θ. Thus,

F({η �∈ γQ}) ≤
{

1 − θ, 1 ≤ γ ≤ p,
p exp{−ψ(2θ − 1, γ/p}, γ ≥ p,

and (iv) follows.
(v) Let ξi ∼ Fi be independent, i = 1, ..., p, and let F̄i be the distribution

of the (m1 + ...+mp)-dimensional random vector

ζi = (0m1+...+mi−1
, ξi, 0mi+1+...+mp

).

Clearly, F̄i ∈ C(θ̄, ψ) due to similar inclusion for Fi. It remains to note that∑
i

ζi ∼ F1 × ...× Fp and to use (iv). �

We intend now to present a number of concrete distributions possessing
the concentration property.

Example 2 (Normal distribution). Consider the cumulative distribution func-

tion Φ(t) = 1√
2π

∫ t

−∞ exp{−z2/2}dz of the standard normal distribution and

let15 φ(θ)
.
= Φ−1(θ) for θ ∈ (0, 1).

Theorem 1. Let B be a closed convex set in R
d. Then the following holds.

(i) If η ∼ N(0, Id) and P{η ∈ B} ≥ θ > 1
2
, then for α ∈ (0, 1):

P{αη ∈ B} ≥ 1 − exp

{
−φ2(θ)

2α2

}
.

(ii) If ζ ∼ N(0, Σ) and P {ζ �∈ B} ≡ 1 − θ < 1
2
, then for γ ≥ 1:

P {ζ �∈ γB} ≤ min
{
1 − θ, exp

(
− 1

2
φ2(θ)γ2

)}
.

In other words, a zero mean normal distribution on R
d belongs to C( 1

2
, ψ) with

ψ(θ, γ)
.
= max

{
ln[(1 − θ)−1], 1

2
φ2(θ)γ2

}
.

15The inverse function φ(θ)
.
= Φ−1(θ) is defined by the equation Φ(φ(θ)) = θ.
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Proof. Our proof of this result is based on the following result due to Borell
[52]:

(!!!) For η ∼ N (0, Id), every γ > 0, ε ≥ 0 and every closed set X ⊂ R
d such

that P{η ∈ X} ≥ γ, one has

P {dist(η,X) > ε} ≤ 1 − Φ(φ(γ) + ε), (1.14)

where dist(a,X)
.
= infx∈X ‖a− x‖.

Now let η, ζ be independent N (0, Id) random vectors, and let

p(α) = P{αη �∈ B}.

We have that αη +
√

1 − α2 ζ ∼ N(0, Id), and hence

P{dist(αη +
√

1 − α2ζ,B) > t} ≤ 1 − Φ(φ(θ) + t)

by (1.14). On the other hand, let αη �∈ B, and let e = e(η) be a vector such
that ‖e‖ = 1 and eT [αη] > max

x∈B
eTx. If ζ is such that

√
1 − α2eT ζ > t, then

dist(αη +
√

1 − α2ζ,B) > t, and hence if αη �∈ B, then

P

{
ζ : dist(αη +

√
1 − α2ζ,B) > t

}
≥ 1 − Φ(t/

√
1 − α2).

Whence for all t ≥ 0 such that δ(t)
.
= φ(θ) + t− t/

√
1 − α2 ≥ 0 one has

p(α)[1 − Φ(t/
√

1 − α2)] ≤ P
{
dist(αη +

√
1 − α2ζ,B) > t

}
≤ 1 − Φ(φ(θ) + t).

It follows that

p(α) ≤ 1−Φ(φ(θ)+t)

1−Φ(t/
√

1−α2)
=

∞∫
t/
√

1−α2

exp{−(s+δ(t))2/2}ds

∞∫
t/
√

1−α2

exp{−s2/2}ds

=

∞∫
t/
√

1−α2

exp{−s2/2−sδ(t)−δ2(t)/2}ds

∞∫
t/
√

1−α2

exp{−s2/2}ds
≤ exp{−tδ(t)/

√
1 − α2 − δ2(t)/2}.

Setting in the resulting inequality t = φ(θ)(1−α2)
α2 , we get

p(α) ≤ exp

{
−φ2(θ)

2α2

}
. �

Example 3 (Uniform distribution on the vertices of a cube). We start with the
following known fact (which is the Talagrand Inequality in its extended form
given in [172]).
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Theorem 2. Let (Et, ‖·‖Et
) be finite-dimensional normed spaces, t = 1, ..., d,

F be the direct product of E1, ..., Ed equipped with the norm ‖(x1, ..., xd)‖F
.
=√

d∑
t=1

‖xt‖2
Et

, Ft be Borel probability distributions on the unit balls of Et and

F be the product of these distributions. Given a closed convex set A ⊂ F , let
dist(x,A) = miny∈A ‖x− y‖F . Then

EF

[
exp

{
1
16dist2(x,A)

}]
≤ 1

F(A) .

This result immediately implies the following.

Theorem 3. Let P be the uniform distribution on the vertices of the unit cube{
x ∈ R

d : ‖x‖∞ ≤ 1
}
. Then P ∈ SC(θ̄, ψ) with the parameters given by

θ̄ = 1+exp{−π2/8}
2 ≈ 0.6456,

ρ(θ) = sup
ω∈(0,π/2]

{
ω−1 arccos

(
1+exp{−ω2/2}−θ

θ

)
: 1 + exp{−ω2/2} < 2θ

}
,

ψ(θ, γ) = max
{

ln 1
1−θ , ln

θ
1−θ2 + ρ2(θ)(γ−1)2

16

}
.

(1.15)

In order to prove this result we need the following lemma.

Lemma 1. Let ξj be independent random variables taking values ±1 with

probabilities 1/2 and let ζ
.
=

d∑
j=1

ajξj with ‖a‖ = 1. Then for every ρ ∈ [0, 1]

and every ω ∈ [0, π/2] one has

P {|ζ| ≤ ρ} cos(ρω) − P {|ζ| > ρ} ≤ cosd( ω√
d
) ≤ exp{−ω2/2}.

In particular, if

θ
.
= P {|ζ| ≤ ρ} > θ̄

.
=

1 + exp{−π2/8}
2

,

then ρ ≥ ρ(θ), where ρ(θ) is defined in (1.15).

Proof. For ω ∈ [0, π/2] we have

E{exp{iζω}} =
∏
j

E{exp{iajξjω}} =
∏
j

cos(ajω).

Observe that the function f(s) = ln cos(
√
s) is concave on [0, (π/2)2]. Indeed,

f ′(s) = − tan(
√
s) 1

2
√

s
and

f ′(s) = − 1
cos2(

√
s)

1
4s + tan(

√
s) 1

4s
√

s
= − 1

4s2 cos2(s) [
√
s− sin(

√
s) cos(

√
s)] ≤ 0.

Consequently, for 0 ≤ ω ≤ π/2 we have
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j

ln(cos(ajω)) =
∑
j

f(a2
jω

2) ≤ max
0≤sj≤(π/2)2∑

j
sj=ω2

∑
j

f(sj) = df(ω2/d) ≤ exp{−ω2/2},

and we see that

0 ≤ ω ≤ π
2 ⇒ E{exp{ıζω}} ≤ cosd( ω√

d
) ≤ exp{−ω2/2}.

On the other hand, ζ is symmetrically distributed, and therefore for 0 ≤ ρ ≤ 1
and ω ∈ [0, π/2] we have, setting µ

.
= P{|ζ| ≤ ρ}:

E {exp{iωζ}} ≥ µ cos(ρω) − (1 − µ),

and we arrive at the announced result. �

Proof of Theorem 3. Let Q be a symmetric closed convex set in R
d such

that
P{ξ ∈ Q} ≥ θ > θ̄.

We claim that then Q contains the centered at the origin Euclidean ball of
the radius ρ(θ). Indeed, otherwise Q would be contained in the strip Π = {x :
|aTx| ≤ c} with c < ρ(θ) and ‖a‖ = 1. Setting ζ = aT ξ, we get

P{|ζ| ≤ c} = P{ξ ∈ Π} ≥ P{ξ ∈ Q} ≥ θ,

whence by Lemma 1, c ≥ ρ(θ), which is a contradiction.
For s ≥ 1 from x �∈ sQ it follows that the set x+(s−1)Q does not intersect

Q; since this set contains the ‖ · ‖-ball centered at x of the radius (s− 1)ρ(θ),
the Euclidean distance dQ(x)

.
= dist(x,Q), from x to Q, is at least (s−1)ρ(θ).

At the same time, by Talagrand Inequality we have

E

[
exp

{d2
Q(ξ)

16

}]
≤ 1

P{ξ∈Q} ≤ 1
θ .

On the other hand, when γ ≥ 1 we have, by the above arguments,

E

[
exp

{d2
Q(ξ)

16

}]
≥ P {ξ ∈ Q} + exp

{
(γ−1)2ρ2(θ)

16

}
P {ξ �∈ γQ} ,

whence if γ ≥ 1, then

P {ξ �∈ γQ} ≤ 1−θ2

θ exp
{
− (γ−1)2ρ2(θ)

16

}
,

and of course
γ ≥ 1 ⇒ P {ξ �∈ γQ} ≤ 1 − θ,

and the result follows. �

Example 4 (Uniform distribution on the cube). This example is similar to the
previous one.



1 Scenario Approximations of Chance Constraints 21

Theorem 4. Let P be the uniform distribution on the unit cube {x ∈ R
d :

‖x‖∞ ≤ 1}. Then P ∈ SC(θ̄, ψ) with the parameters given by

θ̄ = 1+exp{−π2/24}
2 ≈ 0.8314,

ρ(θ) = sup
ω∈(0,π/2]

{
ω−1 arccos

(
1+exp{−ω2/6}−θ

θ

)
: 1 + exp{−ω2/6} < 2θ

}
,

ψ(θ, γ) = max
{

ln
(

1
1−θ

)
, ln

(
θ

1−θ2

)
+ ρ2(θ)(γ−1)2

16

}
.

(1.16)

We have the following analog of Lemma 1.

Lemma 2. Let ξj be independent random variables uniformly distributed in

[−1, 1] and ζ =
d∑

j=1

ajξj with ‖a‖ = 1. Then for every ρ ∈ [0, 1] and every

ω ∈ [0, π/2] one has

P {|ζ| ≤ ρ} cos(ρω)−P {|ζ| > ρ} ≤
(

sin(ωd−1/2)

ωd−1/2

)d

≤ exp
{
−ω2/6

}
. (1.17)

In particular, if

θ
.
= P {|ζ| ≤ ρ} > θ̄

.
=

1 + exp{−π2/24}
2

,

then ρ ≥ ρ(θ), where ρ(θ) is defined in (1.16).

Proof. For ω ∈ [0, π/2] we have

E{exp{iζω}} =
∏
j

E{exp{iajξjω}} =
∏
j

sin(ajω)
ajω .

Observe that the function f(s) = ln(sin(
√
s))− 1

2 ln s is concave on [0, (π/2)2].
Indeed, f ′(s) = cot(

√
s) 1

2
√

s
− 1

2s and

f ′(s) = − 1
sin2(

√
s)

1
4s − cot(

√
s) 1

4s
√

s
+ 1

2s2 = h(
√

s)
4s2 sin2(

√
s)
,

where

h(r) = 2 sin2(r) − r sin(r) cos(r) − r2 = 1 − cos(2r) − (r/2) sin(2r) − r2.

We have h(0) = 0, h′(r) = (3/2) sin(2r) − r cos(2r) − 2r, so that h′(0) = 0,
h′(r) = 2 cos(2r) + 2r sin(2r) − 2, so that h′(0) = 0, and finally h′′(r) =
−2 sin(2r) + 4r cos(2r), so that h′′(0) = 0 and h′′(r) ≤ 0, 0 ≤ r ≤ π/2, due to
tan(u) ≥ u for 0 ≤ u < π/2. It follows that h(·) ≤ 0 on [0, π/2], as claimed.

From log-concavity of f on [0, (π/2)2], same as in the proof of Lemma 1,
we get the first inequality in (1.17); the second is straightforward. �

The remaining steps in the proof of Theorem 4 are completely similar to
those for Example 3.
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Remark 1. Examples 3 and 4 admit natural extensions. Specifically, let ξ be
a random vector in R

d with independent symmetrically distributed on [−1, 1]
coordinates ξi, and let the distributions Pi of ξi be ‘not too concentrated at the
origin’, e.g., be such that: (i) E{ξ2i } ≥ α2 > 0, i = 1, ..., d, or (ii) Pi possesses
density which is bounded by 1/α, i = 1, ..., d. Let P be the distribution of ξ.
Then ξ ∈ C(θ̄, a(θ) + b(θ)γ2) with θ̄ and a(·), b(·) > 0 depending solely on α.
The proof is completely similar to those in Examples 2 and 3.

Remark 2. We have proven that the uniform distributions on the vertices of
the unit cube {‖x‖∞ ≤ 1} and on the entire cube possess symmetric con-
centration property. In fact they possess as well the general concentration
property with slightly ‘spoiled’ θ̄, ψ(·, ·) due to Proposition 4(i).

1.2.3 Main Result

Proposition 5. Let F, P be probability distributions on R
d such that P � F,

F is symmetric and F ∈ C(θ̄, ψ). Let, further, Q be a closed convex set in R
d

such that
F(Q) ≥ θ > θ̄

and let pQ(x) be the Minkowski function16 of Q. Then for every convex con-
tinuous and nondecreasing function Ψ : R+ → R one has

EP [Ψ(pQ(ξ))] ≤
(
θ + e−ψ(θ,1)

)
Ψ(1) +

∞∫
1

Ψ ′(γ)e−ψ(θ,γ)dγ. (1.18)

If the assumption F ∈ C(θ̄, ψ) is weakened to F ∈ SC(θ̄, ψ), then the conclusion
remains valid under the additional assumption that Q is symmetric.

Proof. Let f(x)
.
= Ψ(pQ(x)), so that f is a convex lower semicontinuous

function on R
d, and let

P (γ)
.
= F({x �∈ γQ}) = F({x : pQ(x) > γ}),

so that
γ ≥ 1 ⇒ P (γ) ≤ S(γ)

.
= exp{−ψ(θ, γ)}.

We have that EP{f} ≤ EF{f}, since P � F, and

EF{f} ≤ Ψ(1)F(Q) −
∞∫
1

Ψ(γ)dP (γ) ≤ θΨ(1) + Ψ(1)P (1) +
∞∫
1

Ψ ′(γ)P (γ)dγ

≤ (θ + S(1))Ψ(1) +
∞∫
1

Ψ ′(γ)S(γ)dγ,

as claimed. �

16Minkowski function is defined as pQ(x)
.
= inf{t : t−1x ∈ Q, t > 0}. Under our

premise, 0 ∈ Q due to symmetry of F and F(Q) > θ̄ > 1/2. Consequently, pQ(·) is
a lower semicontinous convex function with values in R ∪ {+∞}.
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Theorem 5. Let F, P be probability distributions on R
d such that P � F, F

is symmetric and F ∈ C(θ̄, ψ). Let, further, Q be a closed convex set in R
d

such that
F(Q) ≥ θ > θ̄

and let pQ(x) be the Minkowski function of Q. Then for every s > 1 one has

P({x : x �∈ sQ}) ≤ Err(s, θ)
.
= inf

1≤β<s

1
s−β

∞∫
β

exp{−ψ(θ, γ)}dγ. (1.19)

In particular, if ψ(θ, γ) ≥ a(θ) + b(θ)γ2/2 with b(θ) > 0, then

Err(s, θ) ≤ 4 exp{−a(θ) − b(θ)(s+ 1)2/8}
b(θ)(s2 − 1)

. (1.20)

If the assumption F ∈ C(θ̄, ψ) is weakened to F ∈ SC(θ̄, ψ), then the conclusion
remains valid under the additional assumption that Q is symmetric.

Proof. Let β ∈ [1, s), and let Ψ(γ) = (γ−β)+
s−β . Applying (1.18), we get

P({x : x �∈ sQ}) = P({x : x �∈ sQ})Ψ(s) ≤ EP{Ψ ◦ pQ}
≤ 1

s−β

∞∫
β

exp{−ψ(θ, γ)}dγ.

Since this relation holds true for every β ∈ [1, s), (1.19) follows.
Now let θ be such that ψ(θ, γ) ≥ a + bγ2/2 for all γ ≥ 1, where b > 0.

Then (1.19) implies that

P({x : x �∈ sQ}) ≤
[

1
s−β

∞∫
β

exp{−a− bγ2/2}dγ
] ∣∣∣∣

β= 1+s
2

= 2 exp{−a}
s−1

∞∫
1+s
2

exp{−bγ2/2}dγ ≤ 2 exp{−a}
s−1

∞∫
1+s
2

γ
1+s
2

exp{−bγ2/2}dγ

= 4 exp{−a−b(s+1)2/8}
b(s2−1) .

�

1.2.4 Putting Blocks Together

Now we are ready to address the questions A and B posed at the beginning
of this Section.

Setup for the test

Theorem 5 suggests the following Basic Setup for test (T):
Input. Closed convex set Q ⊂ R

d, zero mean distribution P on R
d, confidence
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parameter ε ∈ (0, 1), reliability parameter δ ∈ (0, 1). The goal is to justify the
hypothesis

P({ξ �∈ Q}) ≤ ε.

Choosing ‘pre-trial’ distribution. We choose a symmetric ‘pre-trial’ distribu-
tion F̄ on R

d in such a way that

I(1) F̄ � P;
I(2) F̄ possesses the concentration property: F̄ ∈ C(θ̄, ψ) with known θ̄ and ψ.

After F̄ is chosen, we compute the associated ‘error function’ (cf. (1.19))

Err(s, θ) = inf
1≤β<s

1

s− β

∞∫
β

exp{−ψ(θ, γ)}dγ. (1.21)

Choosing trial distribution, sample size and acceptance level. We choose some-
how design parameters θ ∈ (θ̄, 1) and s > 1 (‘amplification’) such that

Err(s, θ) ≤ ε

and specify the trial distribution F as F̄(s). We further specify sample size
N and acceptance level K in such a way that the probability to get at least
N −K successes in N Bernoulli experiments with probability θ of success in
a single experiment is at most δ:

K∑
r=0

(
N
r

)
θN−r(1 − θ)r ≤ δ. (1.22)

For example, one can set

K
.
= 0, N

.
=

⌈
ln(δ)

ln(θ)

⌉
. (1.23)

Theorem 6. With the outlined setup, the probability of false acceptance for
the resulting test (T) is ≤ δ.

Proof. Let B = s−1Q. Assume first that F̄(B) ≥ θ. Applying (1.19), we get

P({ξ �∈ Q}) = P({ξ �∈ sB}) ≤ Err(s, θ) ≤ ε,

that is, in the case in question false acceptance is impossible. Now consider
the case of F̄(B) < θ, or, which is the same, F(Q) < θ. In this case, by (1.22),
the probability to make acceptance conclusion is at most δ. �

Remark 3. The outlined reasoning demonstrates that when Q is symmetric,
Theorem 6 remains valid when the requirement F̄ ∈ C(θ̄, ψ) is weakened to
F̄ ∈ SC(θ̄, ψ). The same is true for Theorem 8 below.
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Resolution

Let us try to understand how conservative is our test. The answer is easy
when the trial distribution coincides with the actual one.

Theorem 7. Let P be symmetric and possess the concentration property: P ∈
C(θ̄, ψ), so that the choice F̄ = P satisfies I(1) and I(2) (from the Basic Setup),
and let N,K, θ, s be the parameters given by the Basic Setup for this choice
of pre-trial distribution. Let θ∗

.
= P(s−1Q).

Then the probability for (T) not to make the acceptance conclusion is at
most

δ∗ = 1 −
K∑

r=0

θN−r
∗ (1 − θ∗)r.

When Q is symmetric, the conclusion remains valid when the assumption
P ∈ C(θ̄, ψ) is weakened to P ∈ SC(θ̄, ψ).

Proof. The statement is essentially a tautology: since F = F̄(s) = P(s), we
have F(Q) = P(s−1Q) = θ∗, and the probability for (T) not to make the
acceptance conclusion is exactly δ∗. �

In terms of Question B, Theorem 7 states that the resolution of (T) is not
worse than s, provided that

1 −
K∑

r=0

(1 − ε)N−rεr ≤ δ. (1.24)

When the setup parameters N,K are chosen according to (1.23), that is,

K = 0, N =
⌈

ln(δ)
ln(θ)

⌉
, condition (1.24) becomes 1 − (1 − ε)N ≤ δ, which is for

sure true when 2ε ln(1/δ) ≤ δ ln(1/θ).
Situation with resolution in the case when the trial distribution is not

a scaling P(s) of the actual one is much more complicated, and its detailed
investigation goes beyond the scope of this chapter. Here we restrict ourselves
to demonstration of a phenomenon which can occur in the general case. Let
P be the uniform distribution on the vertices of the unit d-dimensional cube
Q, and F be normal distribution N (0, π

2 Id), so that F � P by Proposition
2. We have P(Q) = 1, while a typical realization of F is outside the box
1
2
πκ

√
2 ln dQ, κ < 1 with probability tending to 1 as d → ∞, provided that

κ < 1. It follows that in the situation in question the resolution of (T) is
dimension-dependent and deteriorates, although pretty slow, as dimension
grows.

Homogenization

We next present a slight modification of test (T) – the homogenized analysis
test (HT) which is better suited for many applications.
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Input. Closed convex set Q ⊂ R
d, zero mean distribution P on R

d, scale
parameter σ̄ > 0, reliability parameter δ ∈ (0, 1). The goal is to get upper
bounds for the probabilities

P({s−1σ̄ξ �∈ Q}), for s > 1.

Setup.
Trial distribution. We choose a symmetric distribution F on R

d such that
F � P and F ∈ C(θ̄, ψ) with known θ̄ and ψ, and compute the corresponding
function Err(·, ·) according to (1.21).

Sample size and acceptance level. We choose somehow θ ∈ (θ̄, 1), sample
size N and acceptance level K satisfying (1.22).
Execution. We generate N -element sample {ηj}N

j=1 from the trial distribution
and check whether

card({j ≤ N : σ̄ηj �∈ Q}) ≤ K.

If it is the case, we say that (HT) is successful, and claim that

P({s−1σ̄ξ �∈ Q}) ≤ Err(s, θ), for all s > 1, (1.25)

otherwise we say that (HT) is unsuccessful.
The analogy of Theorem 6 for (HT) is as follows.

Theorem 8. With the outlined setup, bounds (1.25), if yielded by (HT), are
valid with reliability at least 1 − δ. Equivalently: in the case when not all of
the bounds are valid, the probability for (HT) to be successful is at most δ.

Indeed, in the case when F({η : σ̄−1η ∈ Q}) ≥ θ, bounds (1.25) are valid
by (1.19), and in the case when F({η : σ̄−1η ∈ Q}) < θ, the probability of
successful termination is ≤ δ by (1.22).

The difference between (T) and (HT) is clear. The goal of (T) is to justify
the hypothesis that ξ ∼ P takes its value outside a given convex set Q with
probability at most ε. The goal of (HT) is to bound from above the probability
for ξ to take value outside of set sσ̄−1Q as a function of s > 1. This second
goal is slightly easier than the first one, in the sense that now a single sample
allows to build bounds for the indicated probabilities simultaneously for all
s > 1.
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1.2.5 Numerical Illustration

Here we illustrate our constructions, by a numerical example.

The situation

We consider a discrete time linear dynamical system

z(t+ 1) = Az(t), A =
1

203

⎡⎢⎢⎢⎢⎢⎢⎣
39 69 41 −11 69 84
56 −38 −92 82 28 57

−85 −40 −98 −41 72 −78
61 86 −83 −43 −31 38
−5 −96 51 −96 66 −77
54 2 21 27 34 57

⎤⎥⎥⎥⎥⎥⎥⎦ (S)

Recall that a necessary and sufficient stability condition ‘all trajectories con-
verge to 0 as t → ∞’ for a system of the form (S) is the existence of a
Lyapunov stability certificate – a matrix X � 0 and γ ∈ [0, 1) satisfying the
relation [

γ2X ATX
XA X

]
� 0. (1.26)

System (S) is stable; as the corresponding certificate, one can take

X = X̄ =

⎡⎢⎢⎢⎢⎢⎢⎣

1954 199 170 136 35 191
199 1861 −30 −136 222 137
170 −30 1656 17 −370 −35
136 −136 17 1779 296 112
35 222 −370 296 1416 25

191 137 −35 112 25 2179

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and γ = γ̄ = 0.95. The question we are interested in is: assume that entries
in A are subject to random perturbations

Aij �→ Aij(1 + σξij), (1.27)

where ξij are independent random perturbations uniformly distributed on
[−1, 1]. How large could be the level of perturbations σ in order for (X̄, γ =
0.9999) to remain the Lyapunov stability certificate for the perturbed matrix
with probability at least 1 − ε, with ε like 10−8 or 10−12?

For fixed X and γ, (1.26) is a Linear Matrix Inequality in A, so that the
question we have posed can be reformulated as the question of how large could
be σ under the restriction that

P(σ−1Q) ≥ 1 − ε,
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where P is the distribution of random 6 × 6 matrix with independent entries
uniformly distributed in [−1, 1] and Q is the closed convex set17

Q =

{
ξ ∈ R

6×6 :

[
0 −[A · ξ]T X̄

−X̄[A · ξ] 0

]
�
[
γ2X̄ AT X̄
X̄A X̄

]}
.

In order to answer this question, we use the (HT) test and act as follows.
(a) As the trial distribution F, we use the zero mean normal distribution

with covariance matrix π
8 I36 which, by Proposition 3, majorizes the uniform

distribution P.
At first glance, the choice of normal distribution in the role of F seems

strange – the actual distribution itself possesses the concentration property,
so that it would be natural to choose F̄ = P. Unfortunately, function ψ for
the uniform distribution (see Theorem 4 and Remark 2), although of the same
type as its normal-distribution counterpart (see Theorem 1), leads to more
conservative estimates because of worse constant factors; this explains our
choice of the trial distribution.

(b) We run a ‘pilot’ 1000-element simulation in order to get a rough safe
guess σ̄ of what is the level of perturbations in question. Specifically, we gen-
erate a 1000-element sample drawn from F, for every element η of the sample
compute the largest σ such that η ∈ σ−1Q, and then take the minimum,
over all elements of the sample, of the resulting quantities, thus obtaining the
largest level of perturbations which is compatible with our sample. This level
is slightly larger than 0.064, and we set σ̄ = 0.064.

(c) Finally, we run test (HT) itself. First, we specify the sample size N
as 1000 and the acceptance level K as 0. Then we compute the largest θ

satisfying (1.23) with reliability parameter δ = 10−6, that is, θ = exp{ ln(δ)
N } =

10−0.006 ≈ 0.9863. Second, we build 1000-element sample, drawn from F, and
check whether all elements η of the sample satisfy the inclusion σ̄η ∈ Q, which
indeed is the case. According to Theorem 8, the latter fact allows to claim,
with reliability at least 1− δ (that is, with chances to make a wrong claim at
most δ = 10−6), that for every s > 1 one has

P(s−1σ̄ξ �∈ Q) ≤ Err(s, θ) = Err(s, 0.9863)

with Err(·, ·) given by (1.21) (where ψ is as in Theorem 1). In other words,
up to probability of bad sampling as small as 10−6, we can be sure that for
every s > 1, at the level of perturbations s−1σ̄ = 0.064s−1 the probability for

17By A ·B we denote the componentwise product of two matrices, i.e., [A ·B]ij =
AijBij . This is called Hadamard product by some authors. The notation ‘�’ stands
for the standard partial order in the space Sm of symmetric m×m matrices: A 	 B
(A  B) if and only if A − B is positive semidefinite (positive definite). Thus, ‘	’
(‘�’) stand for two different relations, namely majorization as defined in Definition
1, and the partial order induced by the semidefinite cone. What indeed ‘ 	′ means,
will be clear from the context.
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(X̄, 0.9999) to remain Lyapunov stability certificate for the perturbed matrix
is at least 1−Err(s, θ). From the data in Table 1.1 we see that moderate reduc-
tion in level of perturbations ρ ensures dramatic decrease in the probability ε
of ‘large deviations,’ cf. (1.20).

A natural question is how conservative are our bounds? The experiment
says that as far as the levels of perturbations are concerned, the bounds are
accurate up to moderate constant factor. Indeed, according to our table, per-
turbation level σ = 0.0128 corresponds to confidence as high as 1 − ε with
ε = 5.9 × 10−15; simulation demonstrates that ten times larger perturbations
result in confidence as low as 1 − ε with ε = 1.6 × 10−2.

Table 1.1. p(σ): probability of a perturbation (1.27) for which (X̄, 0.9999) fails to
be a Lyapunov stability certificate

σ 0.0580 0.0456 0.0355 0.0290 0.0246 0.0228 0.0206

p(σ) ≤ 0.3560 0.0890 0.0331 0.0039 2.9e-4 6.9e-5 6.3e-6

σ 0.0188 0.0177 0.0168 0.0156 0.0148 0.0136 0.0128

p(σ) ≤ 4.6e-7 6.9e-9 9.4e-9 3.8e-10 4.0e-11 3.0e-13 5.9e-15

1.3 The Synthesis Problem

We now address the problem of optimizing under chance constraints

min
x∈X

cTx subject to P {Gσ(x, ξ) ∈ C} ≥ 1 − ε,

with Gσ(x, ξ) defined in (1.4) and ξ ∼ P. We assume that C ⊂ R
m is a closed

convex set and X is a compact convex set. As about the distribution P of
perturbations, we assume in the sequel that it is symmetric. In this case, our
chance constraint is essentially the same as the symmeterized constraint

P {Gσ(x, ξ) ∈ C and Gσ(x,−ξ) ∈ C} ≥ 1 − ε.

Indeed, the validity of the symmeterized constraint implies the validity of the
original one, and the validity of the original constraint, with ε replaced by ε/2,
implies the validity of the symmeterized one. In our context of really small ε
the difference between confidence 1 − ε and confidence 1 − ε/2 plays no role,
and by reasons to be explained later we prefer to switch from the original
form of the chance constraint to its symmeterized form. Thus, from now on
our problem of interest is

min
x∈X

cTx subject to P {Gσ(x,±ξ) ∈ C} ≥ 1 − ε. (1.28)

We denote by Opt(σ, ε) the optimal value of the above problem (1.28).
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Finally, we assume that the corresponding ‘scenario counterpart’ problems
of the form

min
x∈X

cTx subject to Gσ(x,±ηj) ∈ C, j = 1, ..., N,

can be processed efficiently, which definitely is the case when the set C is
computationally tractable (recall that the mappings Ai(·) are affine).

As it was mentioned in the Introduction section, we focus on the case when
problem of interest (1.28), as it is, is too difficult for numerical processing. Our
goal is to use scenario counterpart of (1.28) with randomly chosen scenarios
ηj , j = 1, ..., N , in order to get a suboptimal solution x̂ to the problem of
interest, in a way which ensures that:

1) [Reliability] The resulting solution, if any, should be feasible for (1.28)
with reliability at least 1 − δ: the probability to generate a ‘bad’ scenario
sample – such that x̂ is well defined and is not feasible for (1.28) – should be
≤ δ for a given δ ∈ (0, 1);

2) [Polynomiality] The sample size N should be ‘moderate’ – polynomial
in the sizes of the data describing (1.28) and in ln(ε−1), ln(δ−1).
Under these sine qua non requirements, we are interested in tight scenario
approximations. In our context, it is natural to quantify tightness as follows
(cf. the definition of resolution):

A scenario-based approximation scheme is tight within factor κ =
κ(ε, δ) ≥ 1, if whenever (1.28) possesses a solution x̄ which remains
feasible after the uncertainty level is increased by factor κ, the scheme,
with probability at least 1 − δ, is productive (x̂ is well-defined) and
ensures that cT x̂ ≤ cT x̄.

Informally speaking, a reliable κ-tight scenario approximation with probabil-
ity at least 1 − 2δ is ‘in-between’ the problem of interest (1.28) and similar
problem with κ times larger uncertainty level: up to probability of bad sam-
pling ≤ 2δ, the scheme yields an approximate solution which is feasible for the
problem of interest and results in the value of the objective not worse than
Opt(κσ, ε).

We are about to present several approximation schemes aimed at achieving
the outlined goals.

1.3.1 Naive Approximation

The conceptually simplest way to build a scenario-based approximation
scheme for (1.28) is to apply the Analysis test (T) as developed in Section 1.2,
with setup as stated in Section 1.2.4. It is convenient to make two conventions
as follows:

– From now on, we allow for the pre-trial distribution F̄ to possess the
symmetric concentration property. By Remark 3, this extension of the family
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of trial distributions we can use18 keeps intact the conclusion of Theorem 6,
provided that the Analysis test is applied to a closed convex and symmetric
set Q, which will always be the case in the sequel.

– The parameters N,K of the test are those given by (1.23), that is, K = 0

and N =
⌈

ln(δ)
ln(θ)

⌉
.

Observe that setup of (T) – the pre-trial distribution F̄ and the quantities
θ, s, N as defined in Section 1.2.4 – depends solely on the distribution P of
perturbations and required reliability and confidence parameters δ, ε and is
completely independent of the (symmetric) convex set Q the test is applied
to. It follows, in particular, that a single setup fits all sets from the family

Qx,σ
.
=
{
ξ ∈ R

d : Gσ(x,±ξ) ∈ C
}
, x ∈ X, σ > 0.

Note that all sets from this family are convex, closed and symmetric.
A straightforward approximation scheme for (1.28) based on the Analysis

test as applied to the sets Qx,σ would be as follows.

Naive approximation scheme: With setup parameters F̄, θ, s,N as de-
scribed above, we build a sample {ηj}N

j=1 from distribution F = F̄(s) and
approximate problem (1.28) by its scenario counterpart

min
x∈X

cTx subject to Gσ(x,±ηj) ∈ C, j = 1, ..., N. (1.29)

If problem (1.29) is feasible and therefore solvable (X was assumed to be
compact), we take, as x̂, an optimal solution to the problem, otherwise x̂ is
undefined (the sample is non-productive).

By Theorem 6 and Remark 3, every fixed in advance point x̄ which happens
to be feasible for (1.29), with reliability at least 1 − δ is feasible for (1.28).
Moreover, in view of Theorem 7 and subsequent discussion, our approximation
scheme is tight within factor s, provided that F̄ = P and

2ε ln(1/δ) ≤ δ ln(1/θ). (1.30)

Unfortunately, these good news about the naive scheme cannot overweight
is crucial drawback: we have no reasons to believe that the scheme satisfies
the crucial for us Reliability requirement. Indeed, the resulting approximate
solution x̂ depends on the sample, which makes Theorem 6 inapplicable to x̂.

The outlined severe drawback of the naive approximation scheme is not

just a theoretical possibility. Indeed, assume that X
.
= {x ∈ R

d : ‖x‖ ≤

100d1/2}, vector c in (1.28) has unit length and the chance constraint in

question is P{−1 ≤ ξT x ≤ 1} ≥ 1−ε, where ξ ∼ P = N (0, Id). Note that all

our constructions and bounds are not explicitly affected by the dimension of

18The desire to allow for this extension is the reason for requiring the symmetry
of P and passing to the symmeterized form of the chance constraint.
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ξ or by the size of X. In particular, when applied to the normal distribution

P = F̄ and given ε and δ, they yield sample size N which is independent of

d = dim ξ. For large d, therefore, we will get 2N < d. In this situation, as it is

immediately seen, with probability approaching 1 as d → ∞ there will exist

a unit vector x (depending on sample {ηj}) orthogonal to all elements of the

sample and such that eT x ≤ −0.1d−1/2. For such an x, the vector 100d1/2x

will clearly be feasible for (1.29), whence the optimal value in this problem

is ≤ −10. But then every optimal solution to (1.29), in particular, x̂, is of

norm at least 10. Thus, the typical absolute values of ξT x̂ ∼ N (0, ‖x̂‖2)

are significantly larger than 1, and x̂, with probability approaching 1 as d

grows, will be very far from satisfying the chance constraint...

There is an easy way to cure, to some extent, the naive scheme. Specifically,
when x̂ is well defined, we generate a new N -element sample from the trial
distribution and subject x̂ to our Analysis test. In the case of acceptance
conclusion, we treat x̂ as the approximate solution to (1.28) yielded by the
modified approximation scheme, otherwise no approximate solution is yielded.
This modification makes the naive scheme (1−δ)-reliable, however, at the price
of losing tightness. Specifically, let F̄ = P and (1.30) hold true. In this case,
as we have seen, the naive scheme is tight within factor s, while there are no
reasons for the modified scheme to share this property.

Numerical illustration

To illustrate the modified naive scheme, consider dynamical system (S) from
Section 1.2.5 and pose the following question: what is the largest level of
perturbations σ̄ for which all, up to probability ε << 1, perturbations of A
admit a common Lyapunov stability certificate (X, γ) with γ = 0.9999 and
the condition number of X not exceeding 105? Mathematically speaking, we
are interested to solve the optimization problem

max
σ,X

σ subject to I � X � αI and

P

{
ξ : ±σ

[
0 (A · ξ)TX

X(A · ξ) 0

]
�
[
γ2X ATX
XA X

]}
≥ 1 − ε,

(1.31)

where γ = 0.9999, α = 105 and ξ is a 6 × 6 random matrix with independent
entries uniformly distributed in [−1, 1], and A · ξ denotes the Hadamard (i.e.,
componentwise) product of matrices A and ξ.

Note that this problem is not exactly in the form of (1.28) – in the latter
setting, the level of perturbations σ is fixed, and in (1.31) it becomes the
variable to be optimized. Of course, we could apply bisection in σ in order to
reduce (1.31) to a small series of feasibility problems of the form (1.28), but
on a closest inspection these troubles are completely redundant. Indeed, when
applying our methodology to the feasibility problem with a given σ, we were
supposed to draw a sample of perturbations {sηj}N

j=1, with ηj being drawn

from pre-trial distribution F̄, with amplification s determined by θ, σ and ε,
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and then check whether the resulting scenario counterpart of our feasibility
problem, that is, the program

Find X such that I � X � αI and

±sσ
[

0 (A · ηj)TX
X(A · ηj) 0

]
�
[
γ2X ATX
XA X

]
, j = 1, ..., N,

is or is not feasible. But the answer to this question, given {ηj}, depends solely
on the product of sσ, so that in fact the outlined bisection is equivalent to
solving a single problem

max
σ,X

σ subject to I � X � αI and

±σ
[

0 (A · ηj)TX
X(A · ηj) 0

]
�
[
γ2X ATX
XA X

]
, j = 1, ..., N,

(1.32)

with ηj drawn from the pre-trial distribution. The latter problem is quasicon-
vex and therefore can be efficiently solved. After its solution σ∗, X∗ is found,
we can apply Analysis test to check whether indeed (X∗, γ = 0.9999) remains,
with probability at least 1 − ε, a Lyapunov stability certificate for random
perturbations of A at the perturbation level σ∗.

In our experiment, we followed the outlined approach, with the only dif-
ference that at the concluding step we used the homogenized Analysis test
rather than the basic one. Specifically, we acted as follows:

( a) As in Section 1.2.5, we chose N (0, π
8 I36) as our pre-trial distribution

F̄ and set the sample size N to 1000, which is the size given by (1.23) for
δ = 10−6 and θ = 0.9863.

(b) We drew N = 1000-element sample from F̄ and solved resulting prob-
lem (1.32), thus getting σ∗ ≈ 0.0909 and certain X∗.

(c) Our concluding step was to bound from below, for small values of ε, the
perturbation levels for which (X = X∗, γ = 0.9999) is, with probability ≥ 1−ε,
a stability certificate for a perturbation of A. This task is completely similar
to the one considered in Section 1.2.5, and we acted exactly as explained
there. The numerical results are presented in Table 1.2. Comparing the data
in Tables 1.1 and 1.1, we see that optimization in X results, for every value
of ε, in ‘safe’ perturbation levels twice as large as those before optimization.
To feel the difference, note that at the perturbation level 0.0290 Table 1.1
guarantees preserving (certificate for) stability with confidence as poor as
1 − 0.0039; Table 1.2 states that even at bit larger perturbation level 0.0297,
stability is preserved with confidence as high as 1 − 4 · 10−11, reliability of
both claims being at least 0.999999.

1.3.2 Iterative Approximation

As we have seen, the naive approximation scheme has severe drawbacks: with-
out modification, the scheme possesses certain tightness properties, but can
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Table 1.2. p(σ): probability of a perturbation (1.27) for which (X∗, 0.9999) fails to
be a Lyapunov stability certificate

σ 0.116 0.0912 0.0709 0.0580 0.0491 0.0456 0.0412

p(σ) ≤ 0.3560 0.0890 0.0331 0.0039 2.9e-4 6.9e-5 6.3e-6

σ 0.0412 0.0375 0.0355 0.0336 0.0297 0.0272 0.0255

p(σ) ≤ 4.6e-7 6.9e-9 9.4e-9 3.8e-10 4.0e-11 3.0e-13 5.9e-15

be unreliable; modification recovers reliability, but ‘kills’ tightness. We are
about to present an iterative approximation scheme which is reliable and has
reasonable tightness properties. In the sequel, we sketch the scheme, skipping
straightforward and boring details.

Preliminaries: polynomial time black-box convex optimization

Consider a situation as follows. We are given:

(a) A convex compact set X ⊂ R
n with non-empty interior, which is contained

in the centered at the origin Euclidean ball of a known radius R and is
equipped with Separation Oracle SQ – a routine which, given an input
point x ∈ R

n, reports whether x ∈ X, and if it is not the case, returns a
separator – a linear inequality which is satisfied everywhere on X and is
violated at x.

(b) A linear objective cTx to be minimized.
(c) Access to a ‘wizard’ working as follows. The wizard has in its disposal

a once for ever fixed set L of linear inequalities with n variables; when
invoked, it picks an inequality from this set and returns it to us. For the
time being, we make absolutely no assumptions on how this inequality is
chosen: wizard’s choice can be randomized, can depend on past choices,
etc.

(d) Positive parameters r (‘feasibility margin’) and ω (desired accuracy).

In Convex Programming, there are methods (e.g., the Ellipsoid algorithm)
capable to optimize (what precisely, it will become clear in a moment) in the
outlined environment, specifically, as follows. The method generates, one after
another, a predetermined number M of search points xt ∈ R

n, t = 1, ...,M .
At step t ≥ 1, the method already has in its disposal point xt−1 (x0 = 0) and
builds a vector et and the next search point xt, namely, as follows:

• [generating et] We call the Separation oracle, xt−1 being the input. If
the oracle reports that xt−1 �∈ X, we call xt−1 non-productive and specify
et as the gradient of the separator returned by the oracle. If xt−1 ∈ X, we
make a predetermined number N of calls to the wizard and add the N linear
inequalities returned by the wizard at step t to the collection of inequalities
returned at the previous steps, thus getting a list of Nt linear inequalities.
We then check whether xt−1 satisfies all these Nt inequalities. If there is
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an inequality in the list which is violated at xt−1, we qualify xt−1 as non-
productive and specify et as the gradient of the violated inequality. Finally,
if xt−1 ∈ X satisfies all inequalities returned so far by the wizard, we qualify
xt−1 as productive and set et = c.

• [generating xt] Given xt−1, et and information coming from the previous
steps (for the Ellipsoid method, the latter is summarized in a single n × n
matrix Bt−1), we build xt. How xt is built, it depends on the method in
question; the only issue which matters in our context is that the arithmetic
cost of generating xt should be polynomial in n (for the Ellipsoid method, the
cost of building xt and updating Bt−1 �→ Bt is just O(1)n2 operations).

After all M search points are built, we treat the best (with the smallest
value of cTx) of the productive search points as the resulting approximate so-
lution x̂; if no productive search points were generated, the result is undefined.

Now, upon termination, we have in our disposal a list I of NM linear
inequalities �(x) ≤ 0 which came from the wizard; these inequalities define
the convex compact set

XI = {x ∈ X : �(x) ≤ 0, � ∈ I}.

The convex optimization algorithms we are speaking about ensure the follow-
ing property:

(P): With properly chosen and polynomial in n and ln
(

nR
r · R‖c‖

ω

)
number of steps M = M(n,R, r, ω) (for the Ellipsoid method, M =

2n2 ln
(

nR2‖c‖
rω + 2

)
), the following is true: whenever the set XI con-

tains Euclidean ball of radius r, x̂ is well defined and

cT x̂ ≤ min
x∈XI

cTx+ ω.

Now we can finally explain what is the optimization problem we were solving:
this is the problem min

x∈XI
cTx defined in course of the solution process19.

Iterative approximation scheme

We are ready to present an iterative approximation scheme for solving (1.28).
Assume that the domain X of (1.28) is contained in the centered at the
origin ball of known radius R and that both X and C are equipped with

19In standard applications, this situation, of course, is not that strange: the prob-
lem we are solving is known in advance and is min

x

{
cT x : x ∈ X, g(x) ≤ 0

}
, where

g is a convex function. The set L of linear inequalities is comprised of inequalities
of the form �y(x) ≡ g(y) + (x − y)T g′(y) ≤ 0, y ∈ R

n, and the inequality returned
by the wizard invoked at point xt−1 is �xt−1(x) ≤ 0. In this case, x̂, if defined, is a
feasible solution to the problem of interest, and if the feasible set of the latter prob-
lem contains a ball of radius r, then x̂ is well-defined and is an ω-optimal solution
to the problem of interest, provided that the number of steps M is as in (P).
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Separation Oracles. Given required confidence and reliability parameters ε,
δ, let us choose trial distribution F, θ, s and sample size N exactly in the
same fashion as for naive scheme. Besides this, let us choose an optimization
algorithm possessing property (P); for the sake of definiteness, let it be the
Ellipsoid method. Finally, let us choose a small positive r and specify the
number M of steps of the method according to (P), that is,

M = O(1)n2 ln

(
nR

r
· R‖c‖

ω
+ 2

)
,

where ω is the accuracy within which we want to solve (1.28). Now let us run
the Ellipsoid method, mimicking the wizard as follows:

The linear inequalities returned by the wizard at step t are uniquely
defined by the search point xt−1 and a realization ητ of a random
vector η ∼ F; here τ counts the calls to the wizard, and η1, η2, ... are
independent of each other. Given xt−1 and ητ , the wizard computes
the points y± = Gσ(xt−1,±ητ ) and calls the Separation Oracle for C
to check whether both these points belong to C. If it is the case, the
wizard returns a trivial – identically true – inequality �(x) ≡ 0Tx ≤ 0.
If at least one of the points, say, y+, does not belong to C, the wizard
acts as follows. Let e(u) ≤ 0 be the linear inequality returned by the
Separation oracle; this inequality holds true for u ∈ C and is violated
at y+. The wizard converts this inequality into the linear inequality

�(x) ≡ e

(
A0(x) + σ

d∑
i=1

ητ
i Ai(x)

)
≤ 0

and this is the inequality the wizard returns. Since Ai(·) are affine,
this indeed is a linear inequality in variables x, and since e(y+) > 0,
this inequality is violated at xt−1.

We have specified the wizard and thus a (randomized) optimization process; a
realization of this process and the corresponding result x̂, if any, are uniquely
defined by a realization of MN -element sample with independent elements
drawn from the trial distribution. The resulting approximation scheme for
(1.28) is successful if and only if x̂ is well defined, and in this case x̂ is the
resulting approximate solution to (1.28).

Let us investigate the properties of our new approximation scheme. Our
first observation is that the scheme is reliable.

Theorem 9. The reliability of the iterative approximation is at least 1−Mδ,
that is, the probability to generate a sample such that x̂ is well defined and is
not feasible for (1.28) is at most Mδ.

Proof. If x̂ is well defined, it is one of the productive points xt−1, 1 ≤ t ≤ M .
Observe that for a given t the probability of ‘bad sampling’ at step t, that
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is, probability of the event Et that xt−1 is declared productive and at the
same time F({η : Gσ(xt−1,±ξ) ∈ C}) < θ, is at most δ. Indeed, by wizard’s
construction, the conditional, given what happened before step t, probability
of this event is at most the probability to get N successes in N independent
Bernoulli experiments ‘check whether Gσ(xt−1,±ζp) ∈ C’ with ζp ∼ F, p =
1, ..., N , where the probability of success in a single experiment is < θ; by
(1.23), this probability is at most δ. Since the conditional, given the past,
probability of Et is ≤ δ, so is the unconditional probability of Et, whence
the probability of the event E = E1 ∪ ... ∪ EM is at most Mδ. If the event
E does not take place and x̂ is well-defined, then x̂ satisfies the requirement
F({η : Gσ(x̂,±η) ∈ C}) ≥ θ, whence, by properties of our analysis test,
P({ξ : Gσ(x̂,±ξ) ∈ C}) ≥ 1 − ε. By construction, x̂, if well defined, belongs
to X. Thus, x̂ indeed is feasible for (1.28) ‘modulo event E of probability
≤ Mδ’. �

Our next observation is that when P = F̄, the iterative scheme is nearly
tight up to factor s. The precise statement is as follows.

Theorem 10. Let F̄ = P, and let there exist an Euclidean ball Ur ⊂ X of
radius nr such that all points x ∈ Ur are feasible for (1.28), the uncertainty
level being increased by factor s:

P({ξ : Gsσ(x,±ξ) ∈ C}) ≥ 1 − ε, for all x ∈ Ur.

Then, with reliability at least 1 − (n+ 2)MNε, x̂ is well defined and satisfies
the relation

cT x̂ ≤ Opt(sσ, ε) + ω, (1.33)

where s is the amplification parameter of the scheme. In other words, the
probability to generate a sample η1, ..., ηMN such that x̂ is undefined or is well
defined but fails to satisfy (1.33) is at most (n+ 2)MNε.

Proof. Let κ > 0, and let x̄κ ∈ X be such that

cT x̄κ ≤ Opt(sσ, ε) + κ and P({ξ : Gsσ(x̄κ,±ξ) ∈ C}) ≥ 1 − ε.

Now, let ∆ be a perfect simplex with vertices z0, ..., zn on the boundary of Ur;
since the radius of Ur is nr, ∆ contains a ball V of radius r. We now claim
that up to probability of bad sampling p = (n + 2)MNε, the n + 2 points
z0, ..., zn, x̄κ belong to XI . Indeed, let z ∈ X be a fixed point satisfying the
chance constraint

P({ξ : Gsσ(z,±ξ) ∈ C}) ≥ 1 − ε

(as it is the case for z0, ..., zn, x̄κ). Due to z ∈ X and the construction of our
wizard, the event z �∈ XI takes place if and only if the underlying sample
η1, ..., ηMN of MN independent realizations of random vector η ∼ F = P(s)

contains an element ηt such that either e (Gσ(z, ηt)) > 0 or e (Gσ(z,−ηt)) > 0,
or both, where e is an affine function (depending on the sample) such that
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e(y) ≤ 0 for all y ∈ C. Thus, at least one of the two points Gσ(z,±ηt) fails to
belong to C. It follows that the event z �∈ XI is contained in the union, over
t = 1, ...,MN , of the complements to the events Ft = {η : Gσ(z,±ηt) ∈ C}.
Due to F = P(s), the F-probability of Ft is nothing but the P-probability of
the event {ξ : Gsσ(z,±ξ) ∈ C}, that is, F(Ft) ≥ 1 − ε. It follows that the
probability of the event z �∈ XI is at most MNε. Applying this result to every
one of the points z0, ..., zn, x̄κ, we conclude that the probability for at least
one of these points to be outside of XI is at most (n+ 2)MNε, as claimed.

We are nearly done. Indeed, let E be the event

{η1, ..., ηMN : z0, ..., zn, x̄κ ∈ XI}.

As we just have seen, the probability of this event is at least 1− (n+2)MNε.
Since XI is convex, in the case of E the set XI contains the entire simplex ∆
with the vertices z0, ..., zn and thus contains the ball Vr of radius r. Invoking
(P), we see that in this case x̂ is well defined and

cT x̂ ≤ ω + min
x∈XI

cTx ≤ ω + cT x̄κ ≤ ω + κ+ Opt(sσ, ε),

where the second inequality is given by the fact that in the case of E we have
x̄κ ∈ XI . Thus, the probability of the event ‘x̂ is well defined and satisfies
cT x̂ ≤ Opt(sσ, ε)+ω+κ’ is at least the one of E, that is, it is ≥ 1−(n+2)MNε.
Since κ > 0 is arbitrary, (1.33) follows. �

Discussion

With the Ellipsoid method as the working horse, the number M of steps in the

iterative approximation scheme is about 2n2 ln
(

nR2‖c‖
rω

)
. It follows that the

unreliability level guaranteed by Theorem 9 does not exceed 2n2 ln
(

nR2‖c‖
rω

)
δ;

in order to make this unreliability at most a given χ << 1, it suffices to take

δ = 1
2χn

−2 ln−1
(

nR2‖c‖
rω

)
. Since relation (1.23) requires ‘per step’ sample size

N =
⌈

ln(δ)
ln(θ)

⌉
, with our δ the total sample size MN is polynomial in n

1−θ and in

logarithms of all remaining parameters (R, r, ω, χ). Thus, our approximation
scheme is polynomial, which are good news. Further, with the outlined setup
the unreliability level χ̄ = (n + 2)MNε indicated in Theorem 10 is linear in
ε and polynomial in n

1−θ and logarithms of the remaining parameters, which
again are good news. A not so good news is that the scheme requires an
ad hoc choice of r. This, however, seems not that disastrous, since the only
element of the construction which is affected by this choice (and affected just
logarithmically) is the number of steps M . In reality, we can choose M as
large as is allowed by side considerations like restrictions on execution time,
thus making r as small as possible under these restrictions (or, equivalently,
arriving at approximation as tight as possible, since the less is r, the more
likely becomes the premise in Theorem 10).
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As far as practicality of the iterative approximation scheme is concerned,
the factor of primary importance is the design dimension n, since the reliability
characteristics and the computational complexity of the scheme are much
more sensitive to n than to parameters like R, r, ω, ... Let us look at this
phenomenon in more details. With (nR/r) · (R‖c‖/ω) bounded from above
by 1012 (which seems to be sufficient for real life applications), we have M =
55n2. Bounding the total number of scenarios MN by 106 and setting the
reliability parameter χ to 10−6, we get N = 106M−1 = 1.82 · 104 · n−2 and
δ = M−1χ = 1.82 · 10−8 · n−2. Via (1.23), the resulting N and δ correspond
to

θ = θ(n)
.
= exp{− ln(1/δ)/N} = exp

{
−n2 17.8 − 2 ln(n)

1.82 · 104

}
.

Let the pre-trial distribution be normal. Then θ(n) should be > θ̄ = 0.5, which
is the case for n ≤ 34 only. For n ≤ 34 and θ = θ(n), the associated confidence
parameter ε = Err(s, θ(n)) depends solely on the amplification parameter
s; the tradeoff between s and ε is presented in Table 1.3. As we see, the
required amplification level rapidly grows (i.e., tightness rapidly deteriorates)
as n grows. This is exactly what should be expected, given that the per step
number of scenarios N under our assumptions is inverse proportional to n2.
The influence of n can be moderated by replacing our working horse, the
Ellipsoid method, with more advanced convex optimization algorithms; this
issue, however, goes beyond the scope of this contribution.

Table 1.3. Tradeoff between amplification s and confidence parameter ε for iterative
approximation scheme (total sample size 106, normal trial distribution)

n 2 6 10 14 18 22 26 30

θ(n) 0.9964 0.9723 0.9301 0.8738 0.8074 0.7432 0.6576 0.5805

N 4450 506 182 93 57 38 27 21

ε s

1.0e-3 1.17 1.88 2.54 3.39 4.63 6.68 10.80 23.07

1.0e-4 1.50 2.19 2.93 3.88 5.25 7.51 12.02 25.38

1.0e-5 1.70 2.46 3.27 4.31 5.80 8.26 13.14 27.49

1.0e-6 1.88 2.71 3.58 4.70 6.31 8.95 14.16 29.45

1.0e-7 2.05 2.93 3.86 5.06 6.78 9.58 15.12 31.30

1.0e-8 2.20 3.14 4.13 5.40 7.21 10.18 16.02 33.03

1.0e-9 2.34 3.33 4.38 5.71 7.63 10.75 16.87 34.67

1.0e-10 2.47 3.52 4.61 6.02 8.02 11.28 17.68 36.25

1.0e-11 2.60 3.69 4.84 6.30 8.39 11.79 18.45 37.76

1.0e-12 2.72 3.86 5.05 6.57 8.75 12.28 19.20 39.22

1.0e-13 2.83 4.02 5.26 6.84 9.09 12.75 19.91 40.63

1.0e-14 2.94 4.17 5.45 7.09 9.42 13.21 20.61 41.98
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1.3.3 The Case of Chance Semidefinite Constraint

In this section, we focus on the case of ‘relatively simple’ geometry of C,
specifically, assume that C can be represented as the intersection of the cone
Sm

+ of positive semidefinite symmetric m × m matrices and an affine plane,
or, equivalently, that the randomly perturbed constraint in question is Linear
Matrix Inequality (LMI)

x ∈ X and Aξ(x)
.
=

d∑
i=1

ξiAi(x) � A0(x), (1.34)

where X ⊂ R
n is the domain of our constraint (we assume the domain to

be convex and compact), Ai(x), i = 0, ..., d, are symmetric matrices affinely
depending on x ∈ R

n, ξi ∈ R are random perturbations. Without loss of
generality we have set the level of perturbations σ to 1, so that σ is not present
in (1.34) at all. Note that the family of cross-sections of the semidefinite cone
is very rich, which allows to reformulate in the form of (1.34) a wide spectrum
of systems of convex constraints, e.g., (finite) systems of linear and conic
quadratic inequalities. Besides this, LMI constraints arise naturally in many
applications, especially in Control [59].

The question we address is as follows. Let P be the distribution of the
perturbation ξ = (ξ1, ..., ξd), and let Xε be the solution set of the chance
constraint associated with (1.34):

Xε = {x ∈ X : P({ξ : Aξ(x) � A0(x)}) ≥ 1 − ε}.

Now suppose that we choose somehow a symmetric pre-trial distribution F̄,
draw an N -element sample η[N ] = {ηj}N

j=1 from the trial distribution F =

F̄(s) (s is the amplification level) and thus obtain the ‘scenario approximation’
of Xε – the set

X(η[N ]) =
{
x ∈ X : Aηj (x) � A0(x), j = 1, ..., N

}
.

The question we are interested in is: Under which circumstances the random
scenario approximation X(η[N ]) is, with reliability at least 1 − δ, a subset of
Xε, that is,

P {η[N ] : X(η[N ]) ⊂ Xε} ≥ 1 − δ. (1.35)

Note the difference between this question and the one addressed in Section
1.2. The results of Section 1.2, when translated into our present situation,
explain under which circumstances, given in advance a point x and having
observed that x ∈ X(η[N ]), we may be pretty sure that x ∈ Xε. Now we
require much more: having observed η[N ] (and thus X(η[N ])), we want to be
pretty sure that all points from X(η[N ]) belong to Xε. Note that in the latter
case every point of X(η[N ]), e.g., the one which minimizes a given objective
cTx over X(η[N ]), belongs to Xε. In other words, in the case of (1.35), an
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approximation scheme where one minimizes cTx over X(η[N ]) allows to find,
with reliability 1− δ, feasible suboptimal solution to the problem min

x∈Xε

cTx of

minimization under the chance constraint.

Preprocessing the situation

For the moment, let us restrict ourselves to the case where P = P1 × ...×Pd,
where Pi, i = 1, ..., d, is the distribution of ξi assumed to be symmetric. Note
that if ai > 0 are deterministic scalars, we can replace the perturbations ξi
with aiξi, and mappings Ai(x) with the mappings a−1

i Ai without affecting
the feasible set of the chance constraint. In other words, we lose nothing when
assuming that ‘typical values’ of ξi are at least of order of 1, specifically, that
Pi({|ξi| ≥ 1}) ≥ 0.2, i = 1, ..., d. With this normalization, we immediately
arrive at a rough necessary condition for the inclusion x ∈ Xε, namely,

±Ai(x) � A0(x), i = 1, ..., d. (1.36)

Indeed, let x ∈ Xε with ε < 0.45. Given p ≤ d and setting

Aξ(x)
.
= ξpAp(x) + Sp

ξ (x),

observe that ξp and Sp
ξ (x) are independent and symmetrically distributed,

which combines with x ∈ Xε to imply that

P({ξ : ξpAp(x) ± Sp
ξ (x) � A0(x)}) ≥ 1 − 2ε.

By our normalization and due to the symmetry of Pp, we have that P({ξ :
ξp ≥ 1}) ≥ 0.1. It follows that

P({ξ : ξp ≥ 1 & ξpAp(x) ± Sp
ξ (x) � A0(x)}) ≥ 0.9 − 2ε > 0,

that is, the set {ξ : ξp ≥ 1 & ξpAp(x) ± Sp
ξ (x) � A0(x)} is non-empty,

which is possible only when t+Ap(x) � A0(x) for certain t+ ≥ 1. Similar

reasoning proves that −t−Ap(x) � A0(x) for certain t− ≥ 1; due to these

observations, ±Ai(x) � A0(x).

Note that (1.36) is a nice deterministic convex constraint, and it makes
sense to include it into the definition of X; with this modification of X, we
have A0(x) � 0 everywhere on X (since (1.36) implies A0(x) � 0). In order
to simplify our subsequent analysis, let us strengthen the latter inequality to
A0(x) � 0 (which can be ensured by slight shrinkage of X to a point x̄ such
that A0(x̄) � 0, provided that such a point exists). Thus, from now on we
make the following assumption:

A.I. X is a closed and convex compact set such that relations (1.36)
and A0(x) � 0 take place everywhere on X.

Now we formulate our assumptions on the actual and the pre-trial distribu-
tions. We discard temporary assumptions on P made at the beginning of this
subsection (their only goal was to motivate A.I); what we actually need are
similar in spirit assumptions on the pre-trial distribution. Here is what we
assume from now on:



42 A. Nemirovski, A. Shapiro

A.II. The actual distribution P is with zero mean and is majorized
by symmetric pre-trial distribution F̄ ∈ C(θ̄, ψ) with known θ̄, ψ(·, ·).
In addition,
1) For certain θ̂ ∈ (θ̄, 1) and all γ ≥ 1 one has

ψ(θ̂, γ) ≥ a+ bγ2/2

with b > 0;
2) For certain c, random vector η ∼ F̄ satisfies the bound

E{‖η‖2} ≤ c2d.

The result we are about to establish (for the case of normal distributions,
it was announced in [240]) is as follows.

Theorem 11. Let A.I-II hold true. Given confidence and reliability parame-
ters ε, δ ∈ (0, 1/2), let us set, for s > 1,

Err(s) = inf
1≤β<s

1
s−β

∞∫
β

exp{−ψ(θ̂, γ)}dγ

(cf. (1.19)) and specify the amplification parameter s in such a way that

Err(s) = ε;

note that

s ≤ 2 +

√
|a|+ln( 2

bε )
b

in view of (1.20).
Let, further, the sample size N be specified as

N =
⌈

κ

1−θ̂

(
ln(δ−1) + κm2d ln(Csd)

)⌉
, (1.37)

with appropriately chosen absolute constant κ and constant C depending solely
on θ̂, a, b, c. Then, with sample η[N ] drawn from the trial distribution F =
F̄(s), one has

P {X(η[N ]) ⊂ Xε} ≥ 1 − δ.

For proof, see Appendix.
Note that when treating the parameters θ̂, a, b, c involved into A.I-II as

absolute constants (which is possible, e.g., for the pre-trial distributions given
by Examples 2–4, see Section 1.2.2), the sample size N as given by (1.37) is
polynomial in the sizes m, d of the problem and in ln(1/δ), ln(ln(1/ε)).

Tightness of the approximation scheme suggested by Theorem 11 admits
the following evident quantification.
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Proposition 6. Let, in addition to Assumptions A.I-II, the pre-trial distri-
bution F̄ be identical to the actual distribution P, and let x be a fixed in
advance point of X which is feasible for the chance constraint with increased
by factor s level of perturbations:

P

(
{ξ : s

d∑
i=1

ξiAi(x) � A0(x)}
)

≥ 1 − ε, (1.38)

where s is the amplification parameter specified in Theorem 11. Then x ∈
X(η[N ]), the sample being drawn from the trial distribution as defined in
Theorem 11, with probability at least 1 −Nε, where N is given by (1.37). In
particular, optimizing a given objective cTx over X(η[N ]), we, with reliability
at least 1 − δ − Nε, get a point x̂ ∈ Xε with the value of the objective not
exceeding

min
x

{
cTx : x ∈ X satisfies (1.38)

}
Note that the amplification factor s specified in Theorem 11 is O(1)

√
ln(1/ε),

provided that we treat a, b as absolute constants; thus, under the premise of
Proposition 6 the tightness of our approximation scheme is nearly independent
of ε.

1.4 Concluding Remarks

In this chapter, our goal was to get reliable inner approximations of the fea-
sible set of optimization problem (1.28) with chance constraint; we have seen
that in good cases (e.g., when the perturbations have normal or uniform dis-
tributions, and C is the semidefinite cone), the scenario approach allows to
achieve this goal with polynomial in the sizes of the problem and logarithms
of the reliability and confidence parameters number of scenarios and level of
conservativeness as moderate as O(1)

√
ln(1/ε). A natural question is whether

something similar can be done for outer approximation of the feasible set in
question. The answer, in general, seems to be negative, as can be seen from
the following example. Assume that the chance constraint is

P
{
xT ξ ≤ 1

}
≥ 1 − ε,

where ξ ∼ N (0, In). The true feasible set Xε of the chance constraint is the
centered at the origin Euclidean ball Eε of the radius r = r(ε) given by

1√
2π

∞∫
r

exp{−γ2/2}dγ = ε, so that r = (1 + o(1))
√

2 ln(1/ε) as ε → +0. At

the same time, the radius of the largest centered at the origin ball U contained
in the feasible set {x : xT ξj ≤ 1, j = 1, ..., N} of the scenario counterpart,
where ξj are drawn from N (0, σ2In), is, with probability approaching 1 as
n → ∞, as small as σ−1n−1/2 (since typical values of ‖ξj‖ are as large as
σ
√
n). Thus, unless σ we use goes to 0 as O(n−1/2) as n grows (which would

make no much sense), the scenario approximation of Xε with high probability
is much ‘thinner’ along certain sample-depending directions than Xε itself.
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1.5 Appendix: Proof of Theorem 11

Recall that d is the dimension of the perturbation vectors, m is the row size
of the matrices Ai(x). From now on, O(1)′s stand for appropriate positive
absolute constants, and Ci are positive quantities depending solely on the
quantities θ̂, a, b, c involved into Assumption A.II.

Lemma 3. Let η ∼ F. Then for ρ ≥ 0,

F
({

η : ‖η‖ > ρs
√
d
})

≤ 2 exp
{
−C1ρ

2
}
. (1.39)

Proof. By A.II.2) and Chebychev Inequality ,

F
(
{η : ‖η‖ ≤ C1,1s

√
d}
)
≥ θ̂

for appropriately chosen C1,1. Due to the concentration property and A.II.1),
it follows that whenever γ ≥ 1, we have

F
(
{η : ‖η‖ ≥ C1,1s

√
dγ}

)
≥ exp{−a− bγ2/2},

and (1.39) follows. �

Our next technical result is as follows.

Lemma 4. Let A = {(A1, ..., Ad) : Ai ∈ Sm,−I � Ai � I}. For A =
(A1, ..., Ad) ∈ A, let

B(A) =

{
u ∈ R

d : 0.9
d∑

i=1

uiAi � I

}
.

Further, let η ∼ F, N be a positive integer, let ηj, j = 1, ..., N , be independent
realizations of η, and let FN be the distribution of η[N ] = {ηj}N

j=1. Finally,

let ∆
.
= 1−θ̂

4 and

ΞN .
=

{
η[N ] : ∀

(
A ∈ A : F(B(A)) < θ̂

)
∃t ≤ N :

d∑
i=1

ηj
iAi �� I

}
. (1.40)

Then

FN (ΞN ) ≥ 1 − exp{O(1)m2d ln(C2sd) −O(1)(1 − θ̂)N} (1.41)

with properly chosen C2.

Proof. Let us equip the space of k-tuples of m×m symmetric matrices with
the norm

‖(A1, ..., Ad)‖∞ = max
i

‖Ai‖,
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where ‖Ai‖ is the standard spectral norm of a symmetric matrix. Given ω > 0,
let Aω be a minimal ω-net in A; by the standard reasons, we have

card(Aω) ≤ exp{O(1)m2d ln(2 + ω−1)}. (1.42)

Note that if A,A′ ∈ A, then

0.9

d∑
i=1

ηiAi � 0.9

d∑
i=1

ηiA
′
i + 0.9‖η‖1‖A′ −A‖∞I,

whence{
η : 0.9

d∑
i=1

ηiAi � I

}
⊃

{
η :

d∑
i=1

ηiA
′
i � 1.1I

}⋂{
η : 0.9‖η‖1‖A

′−A‖∞ ≤ 0.01

}
,

so that

F(B(A)) ≥ F({η :

d∑
i=1

ηiA
′
i � 1.1I})︸ ︷︷ ︸

φ(A′)

−F({η : 0.9‖η‖1‖A′ −A‖∞ > 0.01})

≥ φ(A′) − 2 exp{−C2,1‖A′ −A‖−2
∞ (ds)−2}

(1.43)
for appropriately chosen C2,1, where the concluding ≥ is given by (1.39) due

to ‖η‖1 ≤
√
d‖η‖.

Now let

Bω = {A′ ∈ Aω : F({η :

d∑
i=1

ηiA
′
i � 1.1I}) ≤ θ̂ +∆}

where ∆ is given by (1.40). According to (1.39), we can find C2,2 such that

F
(
{η : ‖η‖ ≥ C2,2s

√
d}
)
≤ ∆,

so that A′ ∈ Bω implies

F

(
{η :

d∑
i=1

ηiA
′
i � 1.1I or ‖η‖1 > C2,2sd})

)
≤ θ̂ + 2∆ =

1 + θ̂

2
< 1.

Setting

ΞN
ω [A′] =

{
η[N ] : ∀(j ≤ N) : ‖ηj‖ > C2,2s

√
d or

d∑
i=1

ηt
iA

′
i � 1.1I

}
,

we have by evident reasons

A′ ∈ Bω ⇒ FN (ΞN
ω [A′]) ≤ exp{−O(1)(1 − θ̂)N},
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whence

FN

{
∪A′∈BωΞN

ω [A′]
}
≤ card(Aω) exp{−O(1)(1 − θ̂)N}
≤ exp{O(1)m2d ln(2 + ω−1) −O(1)(1 − θ̂)N}

(1.44)

(we have used (1.42)). Now let us set ω = C2,3(sd)
−1 with C2,3 chosen in such

a way that C2,2ωsd < 0.1 and (1.43) implies that

A,A′ ∈ A, ‖A′ −A‖∞ ≤ ω ⇒ φ(A′) ≤ F(B(A)) +∆. (1.45)

Let E be the complement of the set ∪A′∈BωΞN
ω [A′]; due to (1.44) and to our

choice of ω, we have

FN (E) ≥ 1 − exp{O(1)m2d ln(C2sd) −O(1)(1 − θ̂)N}.

In view of this relation, in order to prove Lemma it suffices to verify that
E ⊂ ΞN , that is,

η[N ] ∈ E ⇒
[
∀
(
A ∈ A : F(B(A)) < θ̂

)
∃j ≤ N :

d∑
i=1

ηj
iAi �� I

]
.

Indeed, given A ∈ A such that F(B(A)) < θ̂, let A′ be the ‖ · ‖∞-closest to A
point from Aω, so that ‖A−A′‖∞ ≤ ω. By (1.45),

φ(A′) .
= F

({
η :

d∑
i=1

ηiAi � 1.1I
})

≤ F(B(A)) +∆ ≤ θ̂ +∆,

whence A′ ∈ Bω. It follows that whenever η[N ] ∈ ΞN , there exists j ≤ N
such that

‖ηj‖ ≤ C2,2s
√
d and

d∑
i=1

ηj
iA

′
i �� 1.1I.

Since

d∑
i=1

ηj
iA

′
i �

d∑
i=1

ηj
iAi + ‖ηj‖1‖A−A′‖∞︸ ︷︷ ︸

≤C2,2sdω≤0.1

I �
d∑

i=1

ηj
iAi + 0.1I,

it follows that
d∑

i=1

ηj
iAi �� I, as claimed. �

We are ready to complete the proof of Theorem 11. Let ΞN be the set
from Lemma 4. For x ∈ X, let

Bx =

{
u : 0.9

d∑
i=1

uiAi(x) � A0(x)

}
= B(Ax),

Ax =
(
A

−1/2
0 (x)A1(x)A

−1/2
0 (x), ..., A

−1/2
0 (x)Ad(x)A

−1/2
0 (x)

)
∈ A,

where the concluding inclusion is given by Assumption A.I. We claim that

∀
(
η[N ] ∈ ΞN , x ∈ X(η[N ])

)
: F(Bx) ≥ θ̂. (1.46)
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Indeed, let η[N ] ∈ ΞN and x ∈ X(η[N ]), so that ηj ∈ Bx = B(Ax)

for j = 1, ..., N . Assuming on contrary to (1.46), that F(Bx) < θ̂, or,

which is the same due to Bx = B(Ax), F(B(Ax)) < θ̂, we derive from

(1.40) and the inclusion η[N ] ∈ ΞN that
d∑

i=1

ηj
i (Ax)i �� I for certain

t ≤ N ; but then ηj �∈ Bx, which is a contradiction.

Now let η[N ] ∈ ΞN and x ∈ X(η[N ]). Setting Qx = s−1Bx, by (1.46) we
have

θ̂ ≥ F(Bx) ≡ F̄(s)(Bx) ≡ F̄({ζ : sζ ∈ Bx}) = F̄(Qx),

whence P({ξ �∈ sQx ≡ Bx}) ≤ Err(s) = ε by Theorem 5. Recalling definition
of Bx, we conclude that

η[N ] ∈ ΞN ⇒ X(η[N ]) ⊂ Xε.

Invoking (1.41), we see that with N as given by (1.37), the probability of
generating a sample η[N ] with X(η[N ]) �⊂ Xε is ≤ δ, provided that C is a
properly chosen function of a, b, c and κ is a properly chosen absolute constant.

�
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Summary. This chapter presents an overview of the theory and numerical tech-
niques for optimization models involving one or more constraints on probability
functions. We focus on recent developments involving nonlinear probabilistic mod-
els. The theoretical fundament includes the theory and examples of generalized con-
cavity for functions and measures, and some specific properties of probability dis-
tributions, including discrete distributions. We analyze the structure and properties
of the constraining probabilistic functions and of the probabilistically constrained
sets. An important part of the analysis is the development of algebraic constraints
equivalent to the probabilistic ones. Optimality and duality theory for such models
is presented.

In the overview of numerical methods for solving probabilistic optimization prob-
lems the emphasis is put on recent numerical methods for nonlinear probabilistically
constrained problems based on the optimality and duality theory presented here.
The methods provide optimal solutions for convex problems. Otherwise, they solve
certain relaxations of the problem and result in suboptimal solutions and upper
and lower bounds for the optimal value. Special attention is paid to probabilistic
constraints with discrete distributions.

Some numerical approaches via statistical approximations are discussed as well.
Numerical techniques of bounding probability in higher dimensional spaces with
satisfactory precision are mentioned briefly in the context of discrete distributions.
Application of combinatorial techniques in this context is sketched.

2.1 Introduction

Deterministic optimization models are usually formulated as problems of min-
imizing or maximizing a certain objective functional f(x) over x in a feasible
set D described by a finite system of inequalities

gj(x) ≤ 0, j ∈ J,

with some functionals gj , j ∈ J .
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When the objective functional or some of the constraint functionals depend
not only on the decision vector x, but also on some random vector Z, the
formulation of the optimization problem becomes unclear, and new precise
definitions of the ‘objective’ and of the ‘feasible set’ are needed.

One way of dealing with that is to optimize the objective function and
to require the satisfaction of the constraints on average. This leads to the
following stochastic optimization problem:

min E[f(x, Z)]

subject to E[gj(x, Z)] ≤ 0, j ∈ J.

We have assumed for this formulation that the expected value functions are
well defined. More importantly, it assumes that the average performance is
representative for our decision problem. When some of the quantities gj(x, Z)
have high variability a constraint on their expected value may not be satis-
factory. When high uncertainty is involved another way to define the feasible
set may be to impose constraints on probability functions, as in the following
model:

min E[f(x, Z)]

subject to P[gj(x, Z) ≤ 0, j ∈ J ] ≥ p,
(2.1)

where p ∈ (0, 1) is a modelling parameter expressing some fixed probability
level. Constraints on probability are called probabilistic or chance constraints.
The probability function can be formally understood as the expected value of
the indicator function of the corresponding event. However, the discontinuity
of the indicator function makes such problems qualitatively different than the
expectation models.

In the following example probabilistic constraints arise in a natural way.
Suppose we consider n investment opportunities, with random returnsR1, . . . ,
Rn in the next year. We have certain initial capital K and our aim is to invest
some of it in such a way that the expected value of our investment after a year
is maximized, under the condition that the chance of losing no more than a
given fixed amount b > 0 is at least p, where p ∈ (0, 1). Such a requirement is
called the Value at Risk (VaR) constraint.

Let x1, . . . , xn be the amounts invested in the n opportunities. Our invest-
ment changes in value after a year by g(x,R) =

∑n
i=1 Rixi. We can formulate

the following stochastic optimization problem with probabilistic constraints:
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max

n∑
i=1

E[Ri]xi

s.t. P

[
n∑

i=1

Rixi ≥ −b
]
≥ p

n∑
i=1

xi ≤ K

x ≥ 0.

(2.2)

The constraint
P[gj(x, Z) ≤ 0, j ∈ J ] ≥ p

is called joint probabilistic constraint, while the constraints

P[gj(x, Z) ≤ 0] ≥ pj , j ∈ J, pj ∈ [0, 1]

are called individual probabilistic constraints. Infinitely many individual prob-
abilistic constraints appear naturally in the context of stochastic ordering
constraints.

The notion of stochastic ordering or stochastic dominance of first order has
been introduced in statistics in [203,212] and further applied and developed in
economics [125,284]. It is defined as follows. For an integrable random variable
X we consider its distribution function, FX(η) = P[X ≤ η], η ∈ R. We say
that a random variable X dominates in the first order a random variable Y
if

FX(η) ≤ FY (η) for all η ∈ R.

We denote this relation X �(1) Y . For two integrable random variables X and
Y , we say that X dominates Y in the second order if∫ η

−∞
FX(α) dα ≤

∫ η

−∞
FY (α) dα for all η ∈ R.

We denote this relation X �(2) Y . The second order dominance has been
introduced in [150]. A modern perspective on stochastic ordering is presented
in [232,237,352].

Returning to our example, we can require that the net profit on our in-
vestment dominates certain benchmark outcome Y , which may be the return
of our current portfolio or some acceptable index. Then the VaR constraint
has to be satisfied at a continuum of points. Setting P

[
Y ≤ η

]
= pη, model

(2.2) becomes:
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max

n∑
i=1

E[Ri]xi

s.t. P
[ n∑

i=1

Rixi ≤ η
]
≤ pη for all η ∈ R

n∑
i=1

xi ≤ K

x ≥ 0.

Using the stochastic dominance notation we can formulate the model as
follows:

max

n∑
i=1

E[Ri]xi

s.t.
n∑

i=1

Rixi �(1) Y

n∑
i=1

xi ≤ K

x ≥ 0.

By changing the order of integration we can express the integrated distri-
bution function as the expected shortfall: for each target value η we have

F
(2)
X (η) =

∫ η

−∞
FX(α) dα = E

[
(η −X)+

]
,

where (η−X)+ = max(η−X, 0). The integrated distribution function F
(2)
X (·)

is continuous, convex, non-negative and nondecreasing. It is well defined for
all random variables X with finite expected value. A second order dominance
constraint can be formulated as follows:

n∑
i=1

Rixi �(2) Y ⇐⇒ E
[
(η −

n∑
i=1

Rixi)+
]
≤ E

[
(η − Y )+

]
for all η ∈ R.

We can formulate the above model replacing the first order dominance con-
straint with the following constraints:

E
[
(η −

n∑
i=1

Rixi)+
]
≤ E

[
(η − Y )+

]
for all η ∈ R.

These second order dominance constraints can be viewed as a continuum of
integrated chance constraints. In financial context it can be viewed as a contin-
uum of Conditional Value-at-Risk (CVaR) constraints. For more information
on this connection we refer to [110].
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Models involving constraints on probability are introduced by Charnes et
al. [81], Miller and Wagner [230], and Prékopa [275]. Problems with integrated
chance constraints are considered in [152]. Models with stochastic dominance
constraints are introduced and analyzed by Dentcheva and Ruszczyński in
[107,109,111].

An essential contribution to the theory and solutions of problems with
chance constraints was the theory of α-concave measures and functions.
In [276, 277] the concept of logarithmic concave measures is introduced and
studied. This notion was generalized to α-concave measures and functions
in [51, 53, 63, 295], and further analyzed in [357], and [245]. Differentiabil-
ity properties of probability functions are studied in [184, 185, 372, 373]. Sta-
tistical approximations of probabilistically constrained problems were ana-
lyzed by [178, 317]. For Monte Carlo approximations of chance constrained
problems the reader is referred to [70, 71], see also Chapters 1 and 5 in
this volume. Stability of models with probabilistic constraints is addresses
in [103,155–157,303]. Nonlinear probabilistic problems are investigated in [104]
where optimality conditions and duality results are established. Generalized
concavity theory for discrete distributions and its consequences for probabilis-
tic optimization is presented in [105,106].

The formulation of the problem with probabilistic constraints is in har-
mony with the basic statistical principles used in testing statistical hypotheses
and other statistical decisions. In engineering, reliability is frequently a central
issue (e.g., in telecommunication, transportation, hydrological network design
and operation, engineering structure design, electronic manufacturing prob-
lems, etc.) and the problem with probabilistic constraints is very relevant. In
finance, the concept of Value at Risk enjoys great popularity, [113,300]. Inte-
grated chance constraints represent a more general form of this concept. The
concept of stochastic dominance is fundamental in economics and statistics
(see [14,107,111,132,232]).

2.2 Structure and Properties of Probabilistically
Constraint Sets

Fundamental questions to every optimization model concern the convexity of
the feasible set, as well as continuity and differentiability of the constraint
functions. The analysis of models with probability functions is based on spe-
cific properties of the underlying probability distributions. In particular, the
generalized concavity theory plays a central role in probabilistic optimization.
It facilitates the application of powerful tools of convex analysis.

2.2.1 Generalized Concavity of Functions and Measures

The generalized concavity discussed in this chapter is based on concavity of
certain nonlinear transformation of the functions.
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Definition 1. A non-negative function f(x) defined on a convex set D ⊂ R
s

is said to be α-concave, where α ∈ [−∞,+∞], if for all x, y ∈ D and all
λ ∈ [0, 1] the following holds:
If α = −∞ then

f(λx+ (1 − λ)y) ≥ min(f(x), f(y));

If α = 0 then
f(λx+ (1 − λ)y) ≥ fλ(x)f1−λ(y);

If α = ∞ then
f(λx+ (1 − λ)y) ≥ max(f(x), f(y));

For any other value of α

f(λx+ (1 − λ)y) ≥ [λfα(x) + (1 − λ)fα(y)]1/α.

Here we take the following conventions: ln 0 = −∞, 0(+∞) = 0, 0(−∞) =
0, 00 = 1, 0−|α| = +∞, ∞−|α| = 0, ∞0 = 1.

In the case of α = 0 the function f is called logarithmic concave, and for
α = 1 it is simply concave.

If f is α-concave, then it is β-concave for all β ≤ α. Thus all α-concave
functions are (−∞)-concave, that is, quasi-concave.

Definition 2. A probability measure P defined on the Borel subsets of a con-
vex set Ω ⊂ R

s is said to be α-concave if for any Borel measurable subsets A
and B of Ω and for all λ we have the inequality

P (λA+ (1 − λ)B) ≥
(
λ[P(A)]α + (1 − λ)[P(B)]α

)1/α

,

where λA+ (1− λ)B = {λx+ (1− λ)y : x ∈ A, y ∈ B}. All special cases of α
and of one of the probabilities equal to 0 are treated as in Definition 1.

It is clear that if a random variable Z induces an α-concave probability
measure on R

s, then its distribution function FZ(x) = P(Z ≤ x) is an α-
concave function.

As usual, concavity properties imply certain continuity. The following the-
orem is due to Borell [53].

Theorem 1. If P is a quasi-concave measure on R
s and the dimension of its

support is s, then P has a density (with respect to the Lebesgue measure).

There is a relation between α-concavity properties of measures and their
densities (see [63,280,295] and references therein).

Theorem 2. Let Ω be an open convex subset of R
s and let m be the dimension

of the smallest affine subspace L containing Ω. The probability measure P on
Ω is γ-concave with γ ∈ [−∞, 1/m], if and only if its probability density
function with respect to the Lebesgue measure on L is α-concave with
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α =

{
γ/(1 −mγ) if γ < 1/m,

+∞ if γ = 1/m.

Corollary 1. Let an integrable non-negative function f(x) be defined on a
non-degenerated convex set Ω ⊂ R

s. If f(x) is α-concave with −1/s ≤ α ≤ ∞
and positive on the interior of Ω, then the measure P on Ω defined as

P(A) =

∫
A

f(x) dx, A ⊂ Ω,

is γ-concave with

γ =

{
α/(1 + sα) if α �= −1/s,

−∞ if α = −1/s.

The corollary states in particular that if a measure P on R
s has a density

function f(x) such that f−1/s is convex, then P is quasi-concave.
For the following two results we refer the reader to [281].

Theorem 3. If the s-dimensional random vector Z has a log-concave proba-
bility distribution and A is a constant m× s matrix, then the m-dimensional
random vector Y = AZ has a log-concave probability distribution.

Lemma 1. If P is an α-concave probability distribution and A ⊂ R
s is a

convex set, then the function f(x) = P(A+ x) is α-concave.

We extend the definition of generalized concavity to make it applicable
to the case of discrete distributions. The first definition of discrete multivari-
ate distributions is introduced in [29]. We adopt here the definition of [105]
because it is more suitable to probabilistic optimization and it has essential
consequences for optimality and duality theory of probabilistic optimization
as it will become clear in Section 2.4.

Definition 3. A distribution function F is called α-concave on the set A ⊆ R
s

with α ∈ [−∞,∞], if

F (z) ≥
(
λF (x)α + (1 − λ)F (y)α

)1/α

for all z, x, y ∈ A and λ ∈ (0, 1) such that z ≥ λx+(1−λ)y. The special cases
α = 0, and α = ±∞ are treated the same way as in Definition 1.

Observe that if A = R
s this definition coincides with the usual definition

of α-concavity of a distribution function.
To illustrate the relation between Definition 1 and Definition 3 let us

consider the case of integer random vectors which are roundups of continuously
distributed random vectors. We denote the set of s-dimensional vectors with
integer components by Z

s.
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Remark 1. If the distribution function of a random vector Z is α-concave on
R

s then the distribution function of Y = 	Z
 is α-concave on Z
s.

The last property follows from the observation that at integer points both
distribution functions coincide.

Furthermore for random vectors with independent components, we can
relate the concavity of their marginal distributions to the concavity of the
joint distribution.

Theorem 4. Assume that Z = (Z1, · · · , ZL), where the sl-dimensional sub-

vectors Zl, l = 1, · · · , L, are independent (
∑L

l=1 sl = s). Furthermore, let
the marginal distribution functions Fl : R

sl → [0, 1] be αl-concave on sets
Al ⊂ Z

sl .

1. If αl > 0, l = 1, · · · , L, then FZ is α-concave on A = A1 × · · · × AL with
α = (

∑L
l=1 α

−1
l )−1;

2. If αl = 0, l = 1, · · · , L, then FZ is log-concave on A = A1 × · · · × AL.

For an integer random variable, our definition of α-concavity is related to
log-concavity of sequences.

Definition 4. A sequence pk, k ∈ Z, is called log-concave, if

p2
k ≥ pk−1pk+1 for all k ∈ Z.

We have the following property (see [280, Theorem 4.7.2]):

Theorem 5. Suppose that for an integer random variable Y the probabilities
pk = P{Y = k}, k ∈ Z form a log-concave sequence. Then the distribution
function of Y is α-concave on Z for every α ∈ [−∞, 0].

Another important property of α-concave measures is the existence of a
so-called floating body for all probability levels p ∈ [1/2, 1]. Let us recall that
the support function of a convex set C ⊂ R

s is defined as follows:

σC(h) = sup{〈h, x〉 : x ∈ C}.

Definition 5. A measure P on R
s has a floating body for a level p > 0 if there

exists a convex set Cp ⊂ R
s such that, for all vectors h ∈ R

s,

P
(
{x ∈ R

s : 〈h, x〉 ≥ σCp
(h)}

)
= p.

The set Cp is called the floating body of P at level p.

All log-concave measures have a floating body, [225].

Theorem 6. Any log-concave probability measure has a floating body Cp for
all levels p ∈ [1/2, 1].
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2.2.2 Examples of α-Concave Measures

1. The density of the non-degenerate multivariate normal distribution on R
s:

f(x) =
1√

(2π)sdetΣ
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
,

where Σ is a positive definite matrix of dimension s×s and µ ∈ R
s. Since the

function ln f(x) is concave (that is, f is 0-concave), the normal distribution
is a log-concave measure.

2. The uniform distribution on a convex set D ⊂ R
s with density

f(x) =

{
1/V (D) x ∈ D,

0 x �∈ D,

where V (D) is the Lebesgue measure of D. The function f(x) is quasi-concave
on D, hence it generates a 1/s-concave measure on D.

3. The density function of the multivariate Dirichlet’s distribution is defined
as

f(x) =

⎧⎨⎩
Γ (α1 + · · · + αs)

Γ (α1) · · ·Γ (αs)
xα1

1 xα2
2 · · ·xαs

s if xi ≥ 0,
∑

i xi = 1,

0 otherwise.

Here Γ (·) stands for the Gamma function. We define the open simplex

S =

{
x ∈ R

s :
s∑

i=1

xi = 1, xi > 0, i = 1, . . . , s

}
.

The function f(x) is (α1+· · ·+αs)
−1-concave on S, and therefore, the resulting

measure is β-concave with β = (α1+· · ·+αs+s−1)−1 on the closed simplex S.

4. The density function of the m-dimensional Student’s distribution with pa-
rameter n

f(x) =
Γ (m+n

2 )
√

detA

Γ (n
2 )
√

(2π)m

(
1 +

1

n
(x− µ)TA(x− µ)

)−(m+n)/2

,

where A is a positive definite matrix. Since f is (− 2
m+n )-concave, the corre-

sponding measure is (− 2
n−m )-concave.

5. The density function of the m-dimensional F -distribution with parameters
n0, . . . , nm, and n =

∑m
i=1 ni is defined as follows:
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f(x) = const

m∏
i=1

x
ni/2−1
i

(
n0 +

m∑
i=1

nixi

)−n/2

, xi ≥ 0, i = 1, . . . ,m.

It is [−(n0/2+m)−1]-concave and the corresponding measure is (− 2
n )-concave.

6. The probability density function of the Wishart distribution is defined by

f(X) =

⎧⎪⎪⎨⎪⎪⎩
|X|N−q−2

2 e−
1
2 tr A−1X

2
N−1

2 q π
q(q−1)

4 |A|
N−1

2

q∏
i=1

Γ
(

N−i
2

) for X � 0

0 otherwise.

Here X is assumed to be q× q matrix containing the variables and A is fixed
positive definite q× q matrix. The symbol � denotes the partial order on the
positive definite cone.

We assume that there are s = 1
2q(q + 1) independent variables and that

N ≥ q + 2. The function f is log-concave.

7. The probability density function of the beta distribution is defined by

f(X) =

⎧⎨⎩
c(s1, q)c(s2, q)

c(s1 + s2, q)
|X|

1
2 (s1−q−1) |I −X|

1
2 (s2−q−1)

for I � X � 0

0 otherwise.

Here I stands for the identity matrix and the function c(·, ·) is defined as
follows:

1

c(k, q)
= 2qk/2πq(q−1)/2

q∏
i=1

Γ

(
k − i+ 1

2

)
.

We have assumed that s1 ≥ q+1 and s2 ≥ q+1. The number of independent
variables in X is s = 1

2q(q + 1).

8. The Cauchy distribution regarded as a joint distribution of the random
variables

Yi =

√
νZi

U
i = 1, . . . , s,

where the random variables Z1, . . . , Zs have the standard normal distribution,
each of them is independent of U , and U has the χ-distribution with ν degrees
of freedom. The probability density function is

f(x) =
Γ
(

1
2 (ν + s)

)
(πν)

s
2Γ

(
1
2ν
)
|R|

1
2

(
1 +

1

ν
xTR−1x

)− 1
2 (ν+s)

for x ∈ R
s. If s = 1 and ν = 1 this reduces to the well-known univariate

Cauchy density
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f(x) =
1

π

1

1 + x2
, −∞ < x < ∞.

The s-variate Cauchy density has the property that f− 1
s is convex in R

s and
thus the distribution is quasi-concave by virtue of Corollary 1.

9. The probability density function of the Pareto distribution is

f(x) = a(a+ 1) . . . (a+ s− 1)

⎛⎝ s∏
j=1

Θj

⎞⎠−1 ⎛⎝ s∑
j=1

Θ−1
j xj − s+ 1

⎞⎠−(a+s)

for xi > Θi, i = 1, . . . , s, and f(x) = 0 otherwise. Here Θi, i = 1, . . . , s are

positive constants. Since f− 1
s is convex in R

s, Corollary 1 implies that the
Pareto distribution is quasi-concave.

10. A univariate gamma distribution is given by a probability density of the
form

f(z) =

⎧⎨⎩
λϑzϑ−1e−λz

Γ (ϑ)
for z > 0

0 otherwise.

Here λ > 0 and ϑ > 0 are constants. For λ = 1 the distribution is called
the standard gamma distribution. If a random variable Y has the gamma
distribution, then λY has the standard gamma distribution.

An s-variate gamma distribution can be defined by a certain linear trans-
formation of s independent random variables Z1, . . . , Zs that have the stan-
dard gamma distribution. Given an s ×m matrix A (1 ≤ m ≤ 2s − 1) with
0-1 elements such that no column is the zero vector, setting Z = (Z1, . . . , Zs),
we define

Y = AZ.

The random vector Y has an s-variate standard gamma distribution. The uni-
variate gamma density function is obviously log-concave. Thus, the s-variate
standard gamma distribution is log-concave by virtue of Theorem 3.

11. Every distribution function of an s-dimensional binary random vector is
α-concave on Z

s for all α ∈ [−∞,∞].
Indeed, let x, y be binary vectors, λ ∈ (0, 1) and let z ≥ λx + (1 − λ)y.
Since z is integer and x and y binary, then z ≥ x and z ≥ y. Thus F (z) ≥
max(F (x), F (y)) = max(F (x), F (y)). Consequently, F is ∞-concave.

12. The binomial, the Poisson, the geometric, and the hypergeometric one-
dimensional probability distributions satisfy the conditions of Theorem 5 (see
[280, p. 109]), and are, therefore, log-concave.
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2.2.3 Convexity of Probabilistically Constrained Sets

Let us recall that a function g is called quasi-convex, if −g is quasi-concave
in the sense of Definition 1. One of the most general results in the convexity
theory of probabilistic optimization is the following:

Theorem 7. Let gj(·, ·), j ∈ J be quasi-concave functions of the variables
x ∈ R

n and z ∈ R
s. If Z ∈ R

s is a random variable that has α-concave
probability distribution, then the function

G(x) = P[gj(x, Z) ≥ 0, j ∈ J ]

is α-concave on the set

D = {x ∈ R
n : ∃z ∈ R

s such that gj(x, z) ≥ 0, j ∈ J}.

As a consequence, under the assumptions of Theorem 7, we obtain con-
vexity statements for sets described by probabilistic constraints.

Corollary 2. Assume that gj(·, ·), j ∈ J are quasi-concave functions jointly
in both arguments, and that Z ∈ R

s is a random variable that has an α-concave
probability distribution. The the following set is convex and closed:

X0 =
{
x ∈ R

n : P[gi(x, Z) ≥ 0, i = 1, . . . ,m] ≥ p
}
.

Observe that the closure of the set follows from the continuity of all α-concave
functions.

Theorem 8. Given random variables Yi ∈ R
s, assume that gj(·, ·), j ∈ J are

quasi-concave functions jointly in both arguments, and that Zi, i = 1, . . . ,m
have αi-concave distributions. Then the set with first order stochastic domi-
nance constraint is convex and closed:

Xd =
{
x ∈ R

n : gi(x, Zi) �(1) Yi, i = 1, . . . ,m
}
.

Proof. Let us fix i and η ∈ R and consider the function

P
[
gi(x, Zi) − η ≤ 0

]
= 1 − P

[
gi(x, Zi) − η > 0

]
.

Constraint gi(x, Zi) �(1) Yi can be formulated as follows:

P
[
gi(x, Zi) − η > 0

]
≥ 1 − P

[
Yi ≤ η

]
for all η ∈ R.

Denote the set of x satisfying this inequality by Xi(η). By Theorem 7 the
function at the left hand side of the last inequality is quasi-concave. Thus the
set Xi(η) is convex and closed by Corollary 2. The set Xd is the intersection
of the sets Xi(η) for i = 1, . . . ,m and all η ∈ R, and, therefore, it is convex
and closed. �
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There is an intriguing relation between the sets constrained by first and
second order dominance relation to a benchmark random variable (see [108]).
We denote the space of integrable random variables by L1(Ω,F ,P) and set

A(1)(Y ) = {X ∈ L1(Ω,F ,P) : X �(1) Y },
A(2)(Y ) = {X ∈ L1(Ω,F ,P) : X �(2) Y }.

It is proved in [107] that the set A(2)(Y ) is convex and closed in L1(Ω,F ,P).
The set A(1)(Y ) is closed, because convergence in L1 implies convergence in
probability. It is not convex in general.

Theorem 9. Assume that Y has a continuous probability distribution func-
tion. Then

A(2)(Y ) = coA(1)(Y ),

where coA(1)(Y ) stands for the closed convex hull of A(1)(Y ).

If the underlying probability space is discrete and such that Ω = {1, . . . , N},
F is the set of all subsets of Ω and P[k] = 1/N , k = 1, . . . , N , we can remove
the closure:

A(2)(Y ) = coA(1)(Y ),

Let us consider the special case

gi(x, Z) := 〈ai(Z), x〉 + bi(Z).

These functions are not necessarily quasi-concave in both arguments. If
ai(Z) = ai, i = 1, . . . ,m we can apply Theorem 7 to conclude that the set X0

is convex.

Corollary 3. The following set is convex:

Xl =
{
x ∈ R

n : P[〈ai, x〉 ≤ bi(Z), i = 1, . . . ,m] ≥ p
}

whenever bi(·) are quasi-concave functions and Z has a quasi-concave proba-
bility distribution.

If the functions gi are not separable, we can invoke Theorem 6 (see also [202]).

Corollary 4. The following set is convex:

X1 =
{
x ∈ R

n : P[〈ai(Z), x〉 ≤ bi)] ≥ pi, i = 1, . . . ,m
}

(2.3)

whenever the vectors ai(Z) have a log-concave probability distribution.

In particular, we obtain that the set X1 is convex if ai(Z) have one of the
multivariate distributions from Section 2.2.2, e.g., the uniform, the normal,
the Gamma distribution, etc.
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2.2.4 Connectedness of Probabilistically Constrained Sets

It will be demonstrated later (Lemma 4) that the probabilistically constrained
set X is union of cones and, thus, X could be disconnected. The following
result provides a sufficient condition for X to be topologically connected.

Theorem 10. Assume that the functions gi(·, Z), i = 1, . . . ,m are quasi-
concave and that the following condition is satisfied: for all x1, x2 ∈ R

n there
exists a point x∗ ∈ R

n such that

gi(x
∗, z) ≥ min{gi(x

1, z), gi(x
2, z)} for all z ∈ R

s, for all i = 1, . . . ,m.

Then the set X0 is connected.

Proof. Let x1, x2 ∈ X0 be arbitrary given points. We construct a path joining
the two pints, which is contained entirely in X0. Let x∗ be the point that
exists according to the assumption. We set

π(t) =

{
(1 − 2t)x1 + 2tx∗ for 0 ≤ t ≤ 1/2

2(1 − t)x∗ + (2t− 1)x2 for 1/2 < t ≤ 1

We observe that quasi-concavity of gi, i = 1, . . . ,m and the assumptions of
the theorem imply for 0 ≤ t ≤ 1/2 and for every i the following inequality:

gi((1 − 2t)x1 + 2tx∗, z) ≥ min{gi(x
1, z), gi(x

∗, z)} = gi(x
1, z).

Therefore,

P[g(π(t)) ≥ 0] ≥ P[g(x1) ≥ 0] ≥ p for 0 ≤ t ≤ 1/2.

Similar argument applies for 1/2 < t ≤ 1. Consequently, π(t) ∈ X0, and this
proves the assertion. �

In [155] a slightly more general version of this result is proved in order to
deal with probabilistic constraints involving stochastic processes.

2.3 Random Right Hand Side

We pay special attention to problems with separable constraint functions.
Consider the following problem:

max f(x)

subject to P
[
g(x) ≥ Z

]
≥ p,

x ∈ D.
(2.4)

Assume that f : R
n → R and gi : R

n → R, i = 1, . . . ,m, are concave
functions. Let D ⊆ R

n be a closed convex set, and Z be an m-dimensional
random vector. We denote g = (g1, . . . , gm). For two vectors a and b the
inequality a ≤ b is understood componentwise.
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2.3.1 Continuity and Differentiability Properties of Distribution
Functions

When the probabilistic constraint involves inequalities with random variables
on the right hand site only, we can express it as a constraint on a distribution
function:

P
[
g(x) ≥ Z

]
≥ p ⇐⇒ FZ(g(x)) ≥ p

Thus, continuity and differentiability properties of distribution functions are
relevant to the numerical solution of probabilistic optimization problems.

Theorem 11. Suppose that Z has an α-concave distribution with α ∈ (−∞, 0)
and that the support of it suppPZ has non-empty interior in R

s. Then FZ is
locally Lipschitz-continuous on int suppPZ .

Proof. From the assumption that PZ is α-concave for α < 0, we infer that
the function Fα

Z (·) is convex. The assertion follows from the fact that convex
functions are locally Lipschitz on the interior of their domain and from the
Lipschitz continuity of the mapping t �−→ t1/α away from 0. Fixing a point
z ∈int suppPZ , there is a neigbourhood U of z contained in the interior of
the support and such that Fα

Z is locally Lipschitz with Lipschitz constant
L1. Decreasing U if necessary, we can find a compact set K such that U ⊂
K ⊂int suppPZ . Thus, minz∈K FZ(z) = r > 0. Let L2 be the Lipschitz
constant of t �→ t1/α on the interval [r, 1]. We obtain

|FZ(z1) − FZ(z1)| ≤ L2|Fα
Z (z1) − Fα

Z (z1)| ≤ L2L1‖z1 − z2‖.

�

Theorem 12. Suppose that all one-dimensional marginal distribution func-
tions of an s-dimensional random vector Z are locally Lipschitz continuous.
Then FZ is locally Lipschitz-continuous as well.

Proof. The statement can be proved by straightforward evaluation of the
distribution function by marginals for s = 2 and mathematical induction on
the dimension of the space. �

Assume that the measure PZ has a density. It should be emphasized that
the continuity and the essential boundedness of the density do not imply the
Lipschitz continuity of the distribution function FZ .

Theorem 13. Assume that PZ has a continuous density θ(·) and that all
one-dimensional marginal densities are continuous as well. Then FZ is con-
tinuously differentiable.

Proof. We demonstrate the statement for s = 2. The assertions then fol-
lows by induction. The existence of the partial derivatives follows from the
continuity of the density θ by virtue of the theorem of Fubini:
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∂Fx

∂z1
(z1, z2) =

∫ z2

−∞
θ(z1, t)dt and

∂Fx

∂z2
(z1, z2) =

∫ z1

−∞
θ(t, z2)dt.

First, we observe that the mapping (x1, x2) �→
x2∫
a

θ(x1, t)dt is continuous for

every a ∈ R by the uniform continuity of θ(·) on compact sets in R
2. Given

the points (x1, x2) and (y1, y2), we have:∣∣∣∣ ∂F∂x1
(x1, x2) −

∂F

∂y1
(y1, y2)

∣∣∣∣ =

∣∣∣∣∣∣
x2∫

−∞
θ(x1, t)dt−

y2∫
−∞

θ(y1, t)dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
y2∫

x2

θ(y1, t)dt

∣∣∣∣∣∣+
∣∣∣∣∣∣

x2∫
−∞

[θ(x1, t) − θ(y1, t)]dt

∣∣∣∣∣∣ ≤ ε.

The last inequality is satisfied if the points (x1, x2) and (y1, y2) are sufficiently
close by the continuity of θ(·) and the uniform continuity of the function

(x1, x2) �→
x2∫
a

θ(x1, t)dt.

The limit exists uniformly around x1 because of the continuity of the one-
dimensional marginal densities. �

2.3.2 p-Efficient Points

We concentrate on deriving an equivalent algebraic description of the feasible
set. The level set of the distribution function of Z can be described as follows:

Z =
{
z ∈ R

m : P[Z ≤ z] ≥ p
}
. (2.5)

Clearly, problem (2.4) can be compactly rewritten as

max f(x)

subject to g(x) ∈ Z,
x ∈ D.

(2.6)

Lemma 2. For every p ∈ (0, 1) the level set Z is non-empty and closed.

Proof. The assertion follows from the monotonicity and the right continuity
of the distribution function. �

Till the end of this section we denote the probability distribution function
of Z by F omitting the subscript. The marginal probability distribution func-
tion of the ith component Zi will be denoted by Fi.
We recall the concept of a p-efficient point.

Definition 6. Let p ∈ (0, 1]. A point v ∈ R
m is called a p-efficient point of

the probability distribution function F , if F (v) ≥ p and there is no z ≤ v,
z �= v such that F (z) ≥ p.
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The p-efficient points are minimal points of the level set Z with respect to the
partial order in R

m generated by the non-negative cone. This notion was first
introduced in [278]. Similar concept is used in [326]. The concept was studied
and applied in the context of discrete distributions and linear problems in the
papers [105,106,282] and in the context of general distributions in [104].

Obviously, for a scalar random variable Z and for every p ∈ (0, 1] there
is exactly one p-efficient point: the smallest v such that F (v) ≥ p. Since
F (v) ≤ Fi(vi) for every v ∈ R

m and i = 1, . . . ,m, we obtain that the set of
p-efficient points is bounded from below.

Lemma 3. Let p ∈ (0, 1] and let li be the p-efficient point of the one-
dimensional marginal distribution Fi, i = 1, . . . ,m. Then every v ∈ R

m such
that F (v) ≥ p must satisfy the inequality v ≥ l = (l1, . . . , lm).

Let p ∈ (0, 1) and let vj , j ∈ J , be all p-efficient points of Z, where J is
an arbitrary set. Denoting the positive orthant in R

m by R
m
+ , we define the

cones
Kj = vj + R

m
+ , j ∈ J.

The following result can be derived from Phelps theorem [267, Lemma
3.12] about the existence of conical support points, but an easy direct proof
is provided.

Theorem 14. Z =
⋃

j∈J Kj .

Proof. If y ∈ Z then either y is p-efficient or there exists a vector w such
that w ≤ y, w �= y, w ∈ Z. By Lemma 3, one must have l ≤ w ≤ y. The
set Z1 := {z ∈ Z : l ≤ z ≤ y} is compact because the set Z is closed.
Thus, there exists w1 ∈ Z1 with the minimal first coordinate. If w1 is a p-
efficient point, then y ∈ w1 + R

m
+ , what had to be shown. Otherwise, we

define Z2 := {z ∈ Z : l ≤ z ≤ w1}, and choose a point w2 ∈ Z2 with the
minimal second coordinate. Proceeding in the same way, we shall find the
minimal element wm in the set Z with wm ≤ wm−1 ≤ · · · ≤ y. Therefore,
y ∈ wm + R

m
+ , and this completes the proof. �

By virtue of Theorem 14 we obtain (for 0 < p < 1) the following disjunctive
semi-infinite formulation of problem (2.6):

max f(x)

subject to g(x) ∈
⋃
j∈J

Kj ,

x ∈ D.

(2.7)

Its main advantage is an insight into the nature of the non-convexity of the
feasible set. The main difficulty is the implicit character of the disjunctive
constraint.

Let S stand for the simplex in R
m+1, S = {α ∈ R

m+1 :
∑m+1

i=1 αi = 1, αi ≥
0}. We define the convex hull of the p-efficient points:
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E =
{m+1∑

i=1

αiv
ji : α ∈ S, ji ∈ J

}
.

The convex hull of Z has a semi-infinite disjunctive representation as well.

Lemma 4. coZ = E + R
m
+ .

Proof. By Theorem 14 every point y ∈ coZ can be represented as a convex
combination of points in the cones Kj . By the theorem of Caratheodory we

can write y =
∑m+1

i=1 αi(v
ji + wi), where wi ∈ R

m
+ , α ∈ S and ji ∈ J . The

vector w =
∑m+1

i=1 αiw
i belongs to R

m
+ . Therefore, y ∈

∑m+1
i=1 αiv

ji + R
m
+ . �

Theorem 15. For every p ∈ (0, 1) the set coZ is closed.

Proof. Consider a sequence {zk} of points of coZ which is convergent to a
point z̄. We have

zk =

m+1∑
i=1

αk
i y

k
i ,

with yk
i ∈ Z, αk

i ≥ 0, and
∑m+1

i=1 αk
i = 1. By passing to a subsequence, if

necessary, we can assume that the limits

ᾱi = lim
k→∞

αk
i

exist for all i = 1, . . . ,m + 1. By Lemma 3 all points yk
i are bounded below

by some vector l. For simplicity of notation we may assume that l = 0.
Let I = {i : ᾱi > 0}. Clearly,

∑
i∈I ᾱi = 1. We obtain

zk ≥
∑
i∈I

αk
i y

k
i .

We observe that 0 ≤ αk
i y

k
i ≤ zk for all i ∈ I and all k. Since {zk} is convergent

and αk
i → ᾱi > 0, each sequence {yk

i }, i ∈ I, is bounded. Therefore we can
assume that each of them is convergent to some limit ȳi, i ∈ I. By virtue
of Lemma 2 ȳi ∈ Z. Passing to the limit in the last displayed inequality we
obtain

z̄ ≥
∑
i∈I

ᾱiȳi ∈ coZ.

Due to Lemma 4, z̄ ∈ coZ. �

Theorem 16. For every p ∈ (0, 1) the set of extreme points of coZ is non-
empty and it is contained in the set of p-efficient points.

Proof. The set coZ is included in l+ R
m
+ , by virtue of Lemma 3 and Lemma

4. Therefore, it does not contain any line. Since it is closed by Theorem 15, it
has at least one extreme point.
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Let w be an extreme point of coZ. Suppose that w is not a p-efficient
point. Then Theorem 14 implies that there exists a p-efficient point v ≤ w,
v �= w. Since w + R

m
+ ⊂ coZ, the point w is a convex combination of v and

w + (w − v). Consequently, w cannot be extreme. �

For a general random vector the set of p-efficient points may be unbounded
and not closed.

The representation becomes very handy for problem (2.26) when the vec-
tor Z has a discrete distribution on Z

s. In [105] discrete distributions are
investigated, where the random vector Z takes values on a grid. Without loss
of generality we can assume that Z ∈ Z

s. Figure 2.1 illustrates the structure
of the probabilistically constrained set.
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Figure 2.1. Example of the set Z with p-efficient points v1, . . . , v4

Theorem 17. For each p ∈ (0, 1) the set of p-efficient points of an integer
random vector is non-empty and finite.

Proof. The result follows from Dickson’s Lemma [32, Corollary 4.48] and
Lemma 3. For convenience we provide a short proof here. We shall at first
show that at least one p-efficient point exists. Since p < 1, there must exist y
such that F (y) ≥ p. By Lemma 3, all v such that F (v) ≥ p are bounded below
by the vector l of p-efficient points of one-dimensional marginals. Therefore,
if y is not p-efficient, one of finitely many integer points v such that l ≤ v ≤ y
must be p-efficient.

Now we prove the finiteness of the set of p-efficient points. Suppose that
there exists an infinite sequence of different p-efficient points vj , j = 1, 2, . . .
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Since they are integer, and the first coordinate vj
1 is bounded from below by l1,

with no loss of generality we may select a subsequence which is non-decreasing
in the first coordinate. By a similar token, we can select further subsequences
which are non-decreasing in the first k coordinates (k = 1, . . . , s). Since the
dimension s is finite, we obtain a subsequence of different p-efficient points
which is non-decreasing in all coordinates. This contradicts the definition of
a p-efficient point. �

Our proof can be easily adapted to the case of non-uniform grids for which
a uniform lower bound on the distance of grid points in each coordinate exists.
In this way we obtain the following disjunctive formulation with a finite index
set J for problem (2.6):

min f(x)
subject to g(x) ∈

⋃
j∈J Kj ,

x ∈ D.
(2.8)

The concept of α-concavity on a set can be used at this moment to find
an equivalent representation of the set Z for the discrete distributions.

Theorem 18. Let Z be the set of all possible values of an integer random
vector Z. If the distribution function F of Z is α-concave on Z + Z

s
+, for

some α ∈ [−∞,∞], then for every p ∈ (0, 1) one has

Z = {y ∈ R
s : y ≥ z ≥

∑
j∈J

λjv
j ,
∑
j∈J

λj = 1, λj ≥ 0, z ∈ Z
s},

where vj, j ∈ J , are the p-efficient points of F .

Proof. By the monotonicity of F we have F (y) ≥ F (z) if y ≥ z. It is,
therefore, sufficient to show that P(Z ≤ z) ≥ p for all z ∈ Z

s such that
z ≥

∑
j∈J λjv

j with λj ≥ 0,
∑

j∈J λj = 1. We consider five cases with respect
to α.

Case 1: α = ∞. It follows from the definition of α-concavity that

F (z) ≥ max{F (vj), j ∈ J : λj �= 0} ≥ p.

Case 2: α = −∞. Since F (vj) ≥ p for each index j ∈ J such that λj �= 0, the
assertion follows as in Case 1.

Case 3: α = 0. By the definition of α-concavity,

F (z) ≥
∏
j∈J

[F (vj)]λj ≥
∏
j∈J

pλj = p.

Case 4: α ∈ (−∞, 0). By the definition of α-concavity,

[F (z)]α ≤
∑
j∈J

λj [F (vj)]α ≤
∑
j∈J

λjp
α = pα.
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Since α < 0, we obtain F (z) ≥ p.

Case 5: α ∈ (0,∞). By the definition of α-concavity,

[F (z)]α ≥
∑
j∈J

λj [F (vj)]α ≥
∑
j∈J

λjp
α = pα.

�

The consequence of this theorem is that under α-concavity assumption all
integer points contained in coZ = E+R

m
+ satisfy the probabilistic constraint.

This demonstrates the importance of the notion of α-concave distribution
function introduced in Definition 3. For example, the set Z illustrated in
Figure 2.1 does not correspond to any α-concave distribution function, because
its convex hull contains integer points which do not belong to Z. These are
the points (3,6), (4,5) and (6,2).

Under the conditions of Theorem 18, problem (2.8) can be formulated in
the following equivalent way:

max f(x)

subject to x ∈ D
g(x) ≥ z, (2.9)

z ∈ Z
m, (2.10)

z ≥
∑
j∈J

λjv
j (2.11)

∑
j∈J

λj = 1

λj ≥ 0, j ∈ J.

So, the probabilistic constraint has been replaced by algebraic equations
and inequalities, together with the integrality requirement (2.10). This condi-
tion cannot be dropped, in general. However, if other conditions of the problem
imply that g(x) is integer, we may dispose of z totally, and replace constraints
(2.9)–(2.11) with

g(x) ≥
∑
j∈J

λjv
j .

This may be the case for example, when we have an additional constraint
in the definition of D that x ∈ Z

n, and g(x) = Tx, where T is a matrix of
appropriate dimension with integer elements.

If Z takes values on a non-uniform grid, condition (2.10) should be replaced
by the requirement that z is a grid point.

2.4 Optimality Conditions and Duality Theory

Let us split variables in problem (2.6):
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max f(x)

g(x) ≥ z,

x ∈ D,
z ∈ Z.

(2.12)

We assume that p ∈ (0, 1). Associating Lagrange multipliers u ∈ R
m
+ with

constraints g(x) ≥ z, we obtain the Lagrangian function

L(x, z, u) = f(x) + 〈u, g(x) − z〉.

The dual functional has the form

Ψ(u) = sup
(x,z)∈D×Z

L(x, z, u) = h(u) − d(u),

where

h(u) = sup{f(x) + 〈u, g(x)〉 | x ∈ D}, (2.13)

d(u) = inf{〈u, z〉 | z ∈ Z}. (2.14)

For any u ∈ R
m
+ the value of Ψ(u) is an upper bound on the optimal value

F ∗ of the original problem. The best Lagrangian upper bound will be given
by the optimal value D∗ of the problem:

inf
u≥0

Ψ(u). (2.15)

We call (2.15) the dual problem to problem (2.6). For u �≥ 0 one has d(u) =
−∞, because the set Z contains a translation of R

m
+ . The function d(·) is

concave. Note that d(u) = −σZ(−u), where σZ(·) is the support function of
the set Z. By virtue of Theorem 15 and [161, Chapter V, Proposition 2.2.1],
we have

d(u) = inf{〈u, z〉 | z ∈ coZ}. (2.16)

Let us consider the convex hull problem:

max f(x)

g(x) ≥ z,

x ∈ D,
z ∈ coZ.

(2.17)

We make the following assumption.

Constraint Qualification Condition. There exist points x0 ∈ D and z0 ∈
coZ such that g(x0) > z0.

If the Constraint Qualification Condition is satisfied, from the duality the-
ory in convex programming [298, Corollary 28.2.1] we know that there exists



2 Optimization Models with Probabilistic Constraints 71

û ≥ 0 at which the minimum in (2.15) is attained, and D∗ = Ψ(û) is the
optimal value of the convex hull problem (2.17).

We now study in detail the structure of the dual functional Ψ. We shall
characterize the solution sets of the two subproblems (2.13) and (2.14), which
provide values of the dual functional. Let us define the following sets:

V (u) = {v ∈ R
m : 〈u, v〉 = d(u) and v is a p-efficient point},

C(u) = {d ∈ R
m
+ : di = 0 if ui > 0, i = 1, . . . ,m}. (2.18)

Lemma 5. For every u > 0 the solution set of (2.14) is non-empty. For every
u ≥ 0 it has the following form: Ẑ(u) = V (u) + C(u).

Proof. Let us at first consider the case u > 0. Then every recession direction
d of Z satisfies 〈u, d〉 > 0. Since Z is closed, a solution to (2.14) must exist.
Suppose that a solution z to (2.14) is not a p-efficient point. By virtue of
Theorem 14, there is a p-efficient v ∈ Z such that v ≤ z, and v �= z. Thus,
〈u, v〉 < 〈u, z〉, which is a contradiction.

In the general case u ≥ 0, the solution set of the problem to (2.14), if it is
non-empty, always contains a p-efficient point. Indeed, if a solution z is not p-
efficient, we must have a p-efficient point v dominated by z, and 〈u, v〉 ≤ 〈u, z〉
holds by the non-negativity of u. Consequently, 〈u, v〉 ≤ 〈u, z〉 for all p-efficient
v ≤ z, which is equivalent to z ∈ {v} + C(u), as required.

If the solution set of (2.14) is empty then V (u) = ∅ and the assertion is
true as well. �

The last result allows us to calculate the subdifferential of d in a closed
form.

Lemma 6. For every u ≥ 0 one has ∂d(u) = coV (u) + C(u). If u > 0 then
∂d(u) is non-empty.

Proof. From (2.14) we obtain d(u) = −σZ(u), where σZ(·) is the support
function of Z and, consequently, of coZ. Recall that σZ(u) = δ∗Z(u), where
the latter is the conjugate of the indicator function of Z. These facts follow
from the structure of Z described Theorem 14, by virtue of Corollary 16.5.1
in [298]. Thus

∂d(u) = ∂δ∗Z(−u).

Recall that coZ is closed, by Theorem 15. Using [298, Theorem 23.5], we
observe that s ∈ ∂δ∗Z(−u) if and only if δ∗Z(−u) + δcoZ(s) = −〈s, u〉, where
δcoZ(·) is the indicator function of coZ. It follows that s ∈ coZ and δ∗Z(−u) =
−〈s, u〉. Consequently,

〈s, u〉 = d(u). (2.19)

Since s ∈ coZ we can represent it as follows:

s =

m+1∑
j=1

αje
j + w,
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where ej , j = 1, . . . ,m + 1, are extreme points of coZ and w ≥ 0. Using
Theorem 16 we conclude that ej are p-efficient points. Moreover

〈s, u〉 =

m+1∑
j=1

αj〈u, ej〉 + 〈u,w〉 ≥ d(u), (2.20)

because 〈u, ej〉 ≥ d(u) and 〈u,w〉 ≥ 0. Combining (2.19) and (2.20) we con-
clude that 〈u, ej〉 = d(u) for all j, and 〈u,w〉 = 0. Thus s ∈ coV (u) + C(u).

Conversely, if s ∈ coV (u)+C(u) then (2.19) holds true. This implies that
s ∈ ∂d(u), as required.

The set ∂d(u) is non-empty for u > 0 by virtue of Lemma 5. �

Now we analyze the function h(·). Define the set of maximizers in (2.13),

X(u) = {x ∈ D : f(x) + 〈u, g(x)〉 = h(u)}.

By the convexity of the set D and by the concavity of f and g, the solution
set X(u) is convex for all u ≥ 0.

Lemma 7. Assume that the set D is compact. The subdifferential of the func-
tion h is described as follows for every u ∈ R

m:

∂h(u) = co {g(x) : x ∈ X(u)}.

Proof. The function h is convex on R
m. Since the set D is compact and f and

g are concave, the set X(u) is compact. Therefore, the subdifferential of h(u)
for every u ∈ R

m is the closure of co {g(x) : x ∈ X(u)} (see [161, Chapter
VI, Lemma 4.4.2]). By the compactness of X(u) and concavity of g, the set
{g(x) : x ∈ X(u)} is closed. Therefore, we can omit taking the closure in the
description of the subdifferential of h(u). �

This analysis provides the basis for the following necessary and sufficient
optimality conditions for problem (2.15).

Theorem 19. Assume that the Constraint Qualification Condition is satisfied
and that the set D is compact. A vector u ≥ 0 is an optimal solution of (2.15)
if and only if there exists a point x ∈ X(u), points v1, . . . , vm+1 ∈ V (u) and

scalars β1 . . . , βm+1 ≥ 0 with
∑m+1

j=1 βj = 1, such that

g(x) −
m+1∑
j=1

βjv
j ∈ C(u), (2.21)

where C(u) is given by (2.18).

Proof. Since −C(u) is the normal cone to the positive orthant at u ≥ 0, the
necessary and sufficient optimality condition for (2.15) has the form

∂Ψ(u) ∩ C(u) �= ∅ (2.22)
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(cf. [298, Theorem 27.4]). Since int dom d �= ∅ and domh = R
m we have

∂Ψ(u) = ∂h(u) − ∂d(u). Using Lemma 6 and Lemma 7, we conclude that
there exist

p-efficient points vj ∈ V (u), j = 1, . . . ,m+ 1,

βj ≥ 0, j = 1, . . . ,m+ 1,

m+1∑
j=1

βj = 1,

xj ∈ X(u), j = 1, . . . ,m+ 1,

αj ≥ 0, j = 1, . . . ,m+ 1,

m+1∑
j=1

αj = 1,

such that

m+1∑
j=1

αjg(x
j) −

m+1∑
j=1

βjv
j ∈ C(u). (2.23)

If the functions f and g were strictly concave, the set X(u) would be a single-
ton. Then all xj would be identical and the above relation would immediately
imply (2.21). Otherwise, let us define

x =

m+1∑
j=1

αjx
j .

By the convexity of X(u) we have x ∈ X(u). Consequently,

f(x) +

m∑
i=1

uigi(x) = h(u) = f(xj) +

m∑
i=1

uigi(x
j), j = 1, . . . ,m+ 1.

Multiplying the last equation by αj and adding we obtain

f(x) +

m∑
i=1

uigi(x) =

m+1∑
j=1

αj

[
f(xj) +

m∑
i=1

uigi(x
j)
]
.

Since gi(x) ≥
∑m+1

j=1 αjgi(x
j), substituting into the above equation, we obtain

f(x) ≤
m+1∑
j=1

αjf(xj).

If gi(x) >
∑m+1

j=1 αjgi(x
j) and ui > 0 for some i, the above inequality becomes

strict, in contradiction to the concavity of f . Thus, for all ui > 0 we have
gi(x) =

∑m+1
j=1 αjgi(x

j), and it follows that
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g(x) −
m+1∑
j=1

αjg(x
j) ∈ C(u).

Since C(u) is a convex cone, we can combine the last relation with (2.23) and
obtain (2.21), as required.

Now we prove the converse implication. Assume that we have x ∈ X(u),

points v1, . . . , vm+1 ∈ V (u) and scalars β1 . . . , βm+1 ≥ 0 with
∑m+1

j=1 βj = 1,
such that (2.21) holds true. By Lemma 6 and Lemma 7 we have

g(x) −
m+1∑
j=1

βjv
j ∈ ∂Ψ(u).

Thus (2.21) implies (2.22), which is a necessary and sufficient optimality con-
dition for (2.15). �

Since the set of p-efficient points is not known, we need a numerical method
for solving the convex hull problem (2.17) or its dual (2.15).

Using these optimality conditions we obtain the following duality result.

Theorem 20. Assume that the Constraint Qualification Condition for prob-
lem (2.12) is satisfied, the probability distribution of the vector Z is α−concave
for some α ∈ [−∞,∞], and the set D is compact. If a point (x̂, ẑ) is an opti-
mal solution of (2.12), then there exists a vector û ≥ 0, which is an optimal
solution of (2.15) and the optimal values of both problems are equal. If û is
an optimal solution of problem (2.15), then there exist a point x̂ , such that
(x̂, g(x̂)) is a solution of problem (2.12), and the optimal values of both prob-
lems are equal.

Proof. From the α-concavity assumption we obtain that problems (2.12)
and (2.17) coincide. If û is optimal solution of problem (2.15), we obtain the
existence of points x̂ ∈ X(û), v1, . . . , vm+1 ∈ V (u) and scalars β1 . . . , βm+1 ≥
0 with

∑m+1
j=1 βj = 1, such that the optimality conditions in Theorem 19 are

satisfied. Setting ẑ = g(x̂) we have to show that (x̂, ẑ) is an optimal solution of
problem (2.12) and that the optimal values of both problems are equal. First

we observe that this point is feasible. Set s ∈ C(û) : s = g(x̂) −
∑m+1

j=1 βjv
j .

From the definitions of X(û), V (û), and C(û) we obtain

h(û) = f(x̂) + 〈û, g(x̂)〉 = f(x̂) + 〈û,
m+1∑
j=1

βjv
j + s〉

= f(x̂) +
m+1∑
j=1

βjd(û) + 〈û, s〉 = f(x̂) + d(û).

Thus, f(x̂) = h(û) − d(û) = D∗ ≥ F ∗, which proves that (x̂, ẑ) is an optimal
solution of problem (2.12) and D∗ = F ∗.
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If (x̂, ẑ) is a solution of (2.12), then by [298, Theorem 28.4] there is a vector
û ≥ 0 such that ûi(ẑi − gi(x̂)) = 0 and ∂f(x̂) + ∂〈û, g(x̂) − ẑ〉 ∩ −∂

[
δD(x̂) +

δZ(ẑ)
]
�= ∅, where δC(·) denotes the indicator function of the set C. Thus,

there are vectors
s ∈ ∂f(x̂) + ∂〈u, g(x̂)〉 ∩ −∂δD(x̂) (2.24)

and
û ∈ ∂δZ(ẑ). (2.25)

The first inclusion (2.24) is the optimality condition for problem (2.13), and
thus x ∈ X(û). By virtue of [298, Theorem 23.5] the inclusion (2.25) is equiva-
lent to ẑ ∈ ∂δ∗Z(û). Using Lemma 6 we obtain that ẑ ∈ ∂d(û) =coV (û)+C(û).
Thus, there exists points v1, . . . , vm+1 ∈ V (u) and scalars β1 . . . , βm+1 ≥ 0

with
∑m+1

j=1 βj = 1, such that ẑ −
∑m+1

j=1 βjv
j ∈ C(û). Using the complemen-

tarity condition ûi(ẑi − gi(x̂)) = 0 we conclude that the optimality conditions
of Theorem 19 are satisfied. Thus û is an optimal solution of (2.15). �

For the special case of discrete distribution and linear constraints we can
obtain a more specific necessary and sufficient condition for the existence of
an optimal solution of (2.8).

The linear probabilistic optimization problem assumes that g(x) = Tx,
where T is an m× n matrix, f(x) = 〈c, x〉 with c ∈ R

n. Furthermore, D is a
convex closed polyhedron in R

n. It is usually formulated as follows:

min 〈c, x〉
subject to P[Tx ≥ Z] ≥ p

Ax ≥ b

x ≥ 0.

(2.26)

Here A is an s× n matrix and b ∈ R
s.

Assumption 2.1. The set Λ := {(u,w) ∈ R
m+s
+ | ATw + TTu ≤ c} is non-

empty.

Theorem 21. Assume that the feasible set of (2.26) is non-empty and that Z
has a discrete distribution. Then (2.26) has an optimal solution if and only if
Assumption 2.1 holds.

Proof. If (2.8) has an optimal solution, then for some j ∈ J the linear opti-
mization problem

min 〈c, x〉
subject to Tx ≥ vj

Ax ≥ b
x ≥ 0

(2.27)

has an optimal solution. By duality in linear programming, its dual problem
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max 〈vj , u〉 + 〈b, w〉
subject to TTu+ATw ≤ c

u, w ≥ 0
(2.28)

has an optimal solution and the optimal values of both programs are equal.
Thus, Assumption 2.1 must hold. On the other hand, if Assumption 2.1 is
satisfied, all dual programs (2.28) for j ∈ J have non-empty feasible sets, so
the objective values of all primal problems (2.27) are bounded from below.
Since one of them has a non-empty feasible set by assumption, an optimal
solution must exist. �

2.5 Methods for Solving Probabilistic Programming
Problems

When the constraint functions gi(x, Z), i = 1, . . .m are not separable the opti-
mization problem is difficult to handle. Numerical methods for these problems
are based on combinatorial techniques (see Section 2.5.8), on response surface
approximations (see Section 2.5.6), or via Monte Carlo methods (see Chap-
ter 5 in this volume).

Numerical techniques for probabilistic problems with random right hand
sides (g(x, Z) := g̃(x) − Z) are much better developed, particularly for linear
function g̃(x) = Tx. If the distribution of Z is α-concave, it follows from
Corollary 2 that the feasible set of this problem is convex. Therefore, methods
of convex programming can be applied. The specificity here is in the implicit
definition of the feasible set and in the difficulty to evaluate the constraint
function

G(x) = P[Tx ≥ Z] = FZ(Tx).

It is even more difficult to estimate its gradient if it exists. Specialized Monte
Carlo integration techniques have been developed for some classes of distri-
butions of Z, in particular for the normal distribution and for the gamma
distribution (see [223,224,349–351]).

We review some of the known methods and present in more detail two
recent methods for solving nonlinear probabilistic problems: the dual method
in Section 2.5.3 and the primal-dual method in Section 2.5.4. Both of these
methods are based on the duality analysis presented in the previous section.

2.5.1 A Cutting Plane Method

One of the first methods for probabilistic optimization is based on cutting
planes techniques for the following problem:

min f(x)

subject to P[Tx ≥ Z] ≥ p

Ax = b, x ≥ 0.

(2.29)
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It is assumed that the constraint function G(x) = P[Tx ≥ Z] is quasi-concave
and it has continuous gradients. Additionally, we assume that there exists
a bounded convex polyhedron C1 containing the set of feasible solutions of
problem (2.29).

Furthermore, the following constraint qualification condition is satisfied:
there exists a vector x0 such that

G(x0) > p , x0 ∈ {x | Ax = b , x ≥ 0} (2.30)

The algorithm works in two phases. In the first phase a feasible point x0

satisfying the constraint qualification condition is found. This can be done by
maximizing G(x) subject to the constraints Ax = b , x ≥ 0, by using any
gradient method. Of course in our case, we do not need to carry out all steps
in the gradient descent method, it is sufficient to find a point x∗ such that
G(x∗) > p.

The second phase consists of the following steps.

Step 1. Solve the problem:

minf(x)

subject to x ∈ Ck.

Let xk be an optimal solution. If xk is feasible, then stop, xk is an optimal
solution of problem (2.29).

Step 2. Let λk be the largest λ ≥ 0 such that x0 + λ(xk − x0) is feasible and
set

yk = x0 + λk(xk − x0).

If G(yk) = p, then define

Ck+1 =
{
x | x ∈ Ck , ∇G(yk)(x− yk) ≥ 0

}
.

Consider any other constraint that is active at yk and set Ck+1 to be the
intersection of Ck and the set determined by this constraint. Go to Step 1.

2.5.2 The Logarithmic Barrier Function Method

If Z has a log-concave distribution on R
n then the constraint function of

problem (2.29) is log-concave on the set {x ∈ R
n : G(x) ≥ p}. We can solve

problem (2.29) by using logarithmic penalty functions. We take a decreas-
ing sequence of positive numbers

{
sk
}

such that lim
k→∞

sk = 0 and solve the

problem

min{f(x) − sk log(G(x) − p)}
subject to Ax = b

x ≥ 0.
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We obtain a point xk as an optimal solution of this problem. The se-
quence {f(xk)} converges to the optimal value of problem (2.29) under the
assumptions that f(·) is a continuous function, G(·) is continuous and log-
concave, constraint qualification condition (2.30) is satisfied, and the set
{x ∈ R

n : Ax = b, x ≥ 0} is bounded.
A modern primal-dual interior point method using similar idea is devel-

oped in [329].

2.5.3 The Dual Method

This method has been proposed in [104] for solving nonlinear probabilistic
problems of form (2.6). The idea of the method is to solve the dual problem
(2.15) using the information about the subgradients of the dual functional Ψ to
generate convex piecewise-linear approximations of Ψ. Suppose that the values
of the functional Ψ at certain points uj , j = 1, . . . , k, are available. Moreover,
we assume that the corresponding solutions v1, . . . , vk and x1, . . . , xk of the
two problems (2.16) and (2.13) are available as well. According to Lemma 5 we
can assume that vj , j = 1, . . . , k are p-efficient points. By virtue of Lemma 7
and Lemma 6 the following function Ψk(·) is a lower bound of Ψ:

Ψk(u) := max
1≤j≤k

[
Ψ(uj) + 〈g(xj) − vj , u− uj〉

]
.

Minimizing Ψk(u) over u ≥ 0, we obtain the next iterate uk+1. For the purpose
of numerical tractability, we shall impose an upper bound b ∈ R on the dual
variables uj . We define the feasible set of the dual problem as follows:

U := {u ∈ R
m : 0 ≤ ui ≤ b, i = 1, . . . ,m}

where b is a sufficiently large number. We also use ε > 0 as a stopping test
parameter.

The algorithm works as follows:

Step 0. Select a vector u1 ∈ U . Set Ψ0(u
1) = −∞ and k = 1.

Step 1. Calculate

h(uk) = max{f(x) + 〈uk, g(x)〉 | x ∈ D}, (2.31)

d(uk) = min{〈uk, z〉 | z ∈ coZ}. (2.32)

Let xk be the solution of problem (2.31) and vk be the solution of problem
(2.32).

Step 2. Calculate Ψ(uk) = h(uk)−d(uk). If Ψ(uk) ≤ Ψk−1(u
k)+ ε then stop;

otherwise continue.
Step 3. Define

Ψk(u) = max
1≤j≤k

[
Ψ(uj) + 〈g(xj) − vj , u− uj〉

]
,
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and find a solution uk+1 of the problem

min
u∈U

Ψk(u).

Step 4. Increase k by one and go to Step 1.

Problem (2.31) is a convex nonlinear problem, and it can be solved by a suit-
able numerical method for nonlinear optimization. Problem (2.32) requires a
dedicated numerical method. In particular applications, specialized methods
may provide its efficient numerical solution. Alternatively, one can approx-
imate the random vector Y by finitely many realizations (scenarios). More
detailed discussion on this idea will follow in Section 2.5.7.

Theorem 22. Suppose that ε = 0. Then the sequences Ψ(uk) and Ψk(uk),
k = 1, 2, . . ., converge to the optimal value of problem (2.15). Moreover, every
accumulation point of the sequence {uk} is an optimal solution of (2.15).

Proof. The convergence of the method follows from a standard argument
about cutting plane methods for convex optimization (see, e.g., [161, Theorem
4.2.3]). �

Let us discuss a way of recovering a primal solution from the sequences of
points {uk}, {xk} and {vk} generated by the method.

It follows from Theorem 22 that for every ε > 0 the dual method has to
stop after finitely many iterations at some step k for which

Ψ(uk) − ε ≤ Ψk−1(u
k) ≤ min

u∈U
Ψ(u). (2.33)

Let us define the set of active cutting planes at uk:

J =
{
j ∈ {1, . . . , k − 1} : Ψ(uj) + 〈g(xj) − vj , uk − uj〉 = Ψk−1(u

k)
}
.

The subdifferential of Ψk−1(·) has the form

∂Ψk−1(u) =
{
s ∈ R

m : s =
∑
j∈J

αj

(
g(xj) − vj

)
,
∑
j∈J

αj = 1, αj ≥ 0, j ∈ J
}
.

Since uk is a minimizer of Ψk−1(·), there must exist a subgradient s such that

s ∈ C(uk).

Thus there exist non-negative αj totaling 1 such that∑
j∈J

αj

(
g(xj) − vj

)
∈ C(uk). (2.34)

By the definition of Ψ,

Ψ(uj) = f(xj) + 〈uj , g(xj)〉 − 〈uj , vj〉.
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Substituting this into the definition of the set J we obtain that

Ψk−1(u
k) = f(xj) + 〈g(xj) − vj , uk〉, j ∈ J.

Multiplying both sides by αj and summing up we conclude that

Ψk−1(u
k) =

∑
j∈J

αjf(xj) +
〈∑

j∈J

αj

(
g(xj) − vj

)
, uk

〉
.

This combined with (2.34) yields

Ψk−1(u
k) =

∑
j∈J

αjf(xj). (2.35)

Define
x̄ =

∑
j∈J

αjx
j , z̄ =

∑
j∈J

αjv
j .

Clearly, x̄ ∈ D ∩ coZ. Using the concavity of g and (2.34) we see that

g(x̄) ≥
∑
j∈J

αjg(x
j) ≥

∑
j∈J

αjv
j = z̄.

Thus the point (x̄, z̄) is feasible for the convex hull problem (2.17).
It follows from the concavity of f and (2.35) that

f(x̄) ≥
∑
j∈J

αjf(xj) = Ψk−1(u
k).

By the stopping test (2.33),

f(x̄) ≥ Ψ(uk) − ε. (2.36)

Since the value of Ψ(u) is an upper bound for the objective value at any
feasible point (x, z) of the convex hull problem, we conclude that (x̄, z̄) is an
ε-optimal solution of this problem.

The above construction can be carried out at every iteration k. In this way
we obtain a certain sequence (x̄k, v̄k), k = 1, 2, . . . Since the sequence {x̄k}
is contained in a compact set and each (x̄k, z̄k) is feasible for the convex hull
problem (2.17), the sequence {z̄k} is included in a compact set as well. Thus
the sequence {(x̄k, v̄k)} has accumulation points. It follows from Theorem 22
and from (2.36) that every accumulation point of the sequence {(x̄k, v̄k)} is a
solution of the convex hull problem (2.17). Under the assumptions of Corollary
2 the accumulation point is a solution of problem (2.6).
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2.5.4 The Primal-Dual Method

This approach was first suggested for linear probabilistic problems in [191].
Involving tools of non-smooth analysis the method was successfully developed
for nonlinear probabilistic optimization and general distributions in [104].

The algorithm presented in the previous section is based on a cutting plane
approximation of the entire dual functional. The method of the this section
involves approximations of the functional d(·) only. The method consists of
an iterative generation of p-efficient points and the solution of a restriction
of problem (2.4). The restriction is based on the disjunctive representation of
coZ by the p-efficient points generated so far.

We assume that we know a compact set B containing all p-efficient points
v such that there exists x ∈ D satisfying v ≤ g(x). It may be just a box
with the lower bound at l, the vector of p-efficient points of all marginal
distributions of Y , and with the upper bound above the maxima of gi(x) over
x ∈ D, i = 1, . . . ,m. Such a box exists by the compactness of D. We also use
a stopping test parameter ε > 0.

We denote the simplex in R
k by Sk, i.e.,

Sk := {λ ∈ R
k : λi ≥ 0,

k∑
i=1

λi = 1}.

The primal-dual method follows the steps:

Step 0. Select a p-efficient point v1 ∈ B such that there exists x̃ ∈ D satisfying
g(x̃) > v1. Set J1 = {1}, k = 1.

Step 1. Solve the master problem

max f(x) (2.37)

g(x) ≥
∑
j∈Jk

λjv
j , (2.38)

x ∈ D, λ ∈ Sk. (2.39)

Let uk be the vector of Lagrange multipliers associated with the constraint
(2.38).

Step 2. Calculate dk(uk) = minj∈Jk
〈uk, vj〉.

Step 3. Find a p-efficient solution vk+1 of the subproblem:

min
z∈Z∩B

〈uk, z〉

and calculate d(uk) = 〈vk+1, uk〉.
Step 4. If d(uk) ≥ dk(uk) − ε then stop; otherwise set Jk+1 = Jk ∪ {k + 1},

increase k by one, and go to Step 1.

The first p-efficient point v1 can be found by solving the subproblem at
Step 3 for some u ≥ 0. All master problems will be solvable, if the first
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one is solvable, which is assumed at Step 0. Moreover, all master problems
satisfy Slater’s constraint qualification condition with the point x̃ and λ̃ =
(1, 0, . . . , 0). Therefore, it is legitimate to assume at Step 1 that we obtain a
vector of Lagrange multipliers associated with (2.38). The subproblem at Step
3 is the same as (2.32) in the dual method. It requires a dedicated approach.

Theorem 23. Let ε = 0. The sequence {f(xk)}, k = 1, 2, . . . converges to the
optimal value of the convex hull problem (2.17). Every accumulation point x̂
of the sequence {xk} is an optimal solution of problem (2.17), with z = g(x̂).

Proof. We formulate the dual problem to the master problem (2.37)–(2.39).
The dual functional is defined as follows:

Φk(u) = sup
{
f(x) + 〈u, g(x) −

∑
j∈Jk

λjv
j〉 : x ∈ D, λ ∈ Sk

}
= h(u) − dk(u),

where h(u) is the same as in (2.13) and

dk(u) = inf
λ∈Sk

∑
j∈Jk

λj〈u, vj〉.

It is clear that dk(u) = minj∈Jk
〈u, vj〉 ≥ d(u), where d(u) is as in (2.14). Thus

the function Φk(u) is a lower bound of the dual functional Ψ(u), i.e.,

Φk(uk) ≤ Ψ(uk).

Since Jk ⊂ Jk+1, for every feasible point (x, λ) of problem (2.37)–(2.39) at
iteration k, the point (x, (λ, 0)) is feasible at iteration k+1. Therefore the se-
quence {f(xk)} is monotonically increasing. By duality, the sequence {Φk(uk)}
is monotonically increasing as well.

For δ > 0 consider the set Kδ of iteration numbers k for which

Φk(uk) + δ ≤ Ψ(uk).

Suppose that k ∈ Kδ. We obtain the following chain of inequalities for all
j ≤ k:

δ ≤ Ψ(uk) − Φk(uk) = −d(uk) + dk(uk) = − min
z∈Z∩B

〈uk, z〉 + min
j∈Jk

〈uk, vj〉

≤ 〈uk, vj − vk+1〉 ≤ ‖uk‖ · ‖vj − vk+1‖.

We shall show later that there exists M > 0 such that ‖uk‖ ≤ M for all k.
Therefore

‖vk+1 − vj‖ ≥ δ/M for all k ∈ Kδ and all j = 1, . . . , k.

It follows from the compactness of the set B that the set Kδ is finite for every
δ > 0. Thus, we can find a subsequence K such that
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Ψ(uk) − Φk(uk) → 0, k ∈ K.

Since for all k

Ψ(uk) ≥ min
u≥0

Ψ(u) ≥ min
u≥0

Φk(u) = Φk(uk), (2.40)

and the sequence {Φk(uk)} is nondecreasing, we conclude that

lim
k→∞

Φk(uk) = min
u≥0

Ψ(u).

We also have Φk(uk) = f(xk) and thus the sequence {f(xk)} is convergent to
the optimal value of the convex hull problem (2.17). Since {xk} is included in
D, it has accumulation points and every accumulation point x̂ is a solution of
(2.17), with z = g(x̂).

It remains to show that the multipliers uk are uniformly bounded. To this
end observe that the Lagrangian

Lk(x, λ, uk) = f(x) +
〈
uk, g(x) −

k∑
j=1

λjv
j
〉

achieves its maximum in D × Sk at xk and some λk. The optimal value is
equal to f(xk) and it is bounded above by the optimal value µ of the convex
hull problem (2.17).

The point x̃ and λ̃ = (1, 0, . . . , 0) is in D × Sk. Therefore

Lk(x̃, λ̃, uk) ≤ µ.

It follows that
〈uk, g(x̃) − v1〉 ≤ µ− f(x̃).

Recall that g(x̃) − v1 > 0. Therefore uk is an element of the compact set

U = {u ∈ R
m : 〈u, g(x̃) − v1〉 ≤ µ− f(x̃), u ≥ 0}.

If we use ε > 0 at Step 4, then relations (2.40) guarantee that the current
solution xk is ε-optimal for the convex hull problem (2.17). �

Under the assumption that the distribution function of the random vector
Y is α-concave for some α ∈ R, the suggested algorithms provide an optimal
solution of problem (2.4). Otherwise, we obtain an upper bound of the optimal
value. Moreover, the solution point x̂ determined by both algorithms satisfies
the constraint g(x) ∈ coZ, and may not satisfy the probabilistic constraint.

We now suggest an approach to determine a primal feasible solution.
Both the dual and the primal-dual method end with a collection of p-

efficient points. In the primal-dual algorithm, we consider the multipliers λj of
the master problem (2.37)–(2.39). We define C = {j ∈ J : λj > 0}. In the dual
algorithm, we consider the active cutting planes in the last approximation, and
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set C = {j ∈ J : βj > 0}, where J and βj are determined in the proof of
Theorem 22.

In both cases, if C contains only one element, the point x̂ is feasible and
therefore optimal for the disjunctive formulation (2.7). If, however, there are
more elements in C, we need to find a feasible point. A natural possibility is
to consider the restricted disjunctive formulation:

max f(x)

subject to g(x) ∈
⋃
j∈C

Kj ,

x ∈ D.

(2.41)

It can be solved by simple enumeration of all cases for j ∈ C:

max f(x)

subject to g(x) ≥ vj ,

x ∈ D.
(2.42)

An alternative strategy would be to solve the corresponding bounding problem
(2.42) every time a new p-efficient point is generated. If µj denotes the optimal
value of (2.42), the lower bound at iteration k is

µ̄k = max
0≤j≤k

µj .

A quantitative estimate of the errors and the comparison of both methods are
difficult and require new techniques.

2.5.5 Nonparametric Estimates of Distribution Functions

In this subsection we shall assume that the probabilistic constraint is formu-
lated as follows:

P(Tx ≤ Z) ≥ p.

Furthermore, we assume that the random variables Z1, . . . , Zm are indepen-
dent and each has a continuous distribution with density hi(·). Using the
marginal distribution functions Fi(z) = P(Zi ≤ z), problem (2.26) can be
written in the following equivalent form:

min〈c, x〉

subject to
m∏

i=1

(
1 − Fi(zi)

)
≥ p

Tix = zi, i = 1, . . . ,m

Ax = b

x ≥ 0.

(2.43)
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If for any feasible solution x of the this problem the probabilistic constraint
is satisfied as a strict inequality, we can take logarithm on both sides of this
constraint.

We define the auxiliary functions:

gi(t) =

{
hi(t)

1−Fi(t)
if Fi(t) < 1

0 if Fi(t) = 1
(2.44)

Assuming that the functions hi(t), i = 1, . . . ,m are log-concave implies that
the functions 1 − Fi(t) are log-concave as well. Moreover, using the log-
concavity of 1 − Fi(t), we can show that gi(t) is a decreasing function. Ma-
nipulating (2.44) we obtain

1 − Fi(yi) = e
−

yi∫
−∞

gi(t)dt

.

The functions gi(t) are estimated from samples.

Let g
(N)
i denote an original estimator of gi for a given N . We take a sample

{ZNi} from the population with distribution function Fi, and create a grid

tN,1 < tN,2 < . . . < tN,m. The original estimator g
(N)
i can then be defined as

g
(N)
i (t) =

F
(N)
i (tN,j+1) − F

(N)
i (tN, j)

(tN,j+1 − tN, j)(1 − F
(N)
i (tN,j))

, tN,j < t ≤ tN,j+1,

where F
(N)
i is the empirical distribution function corresponding to Fi, i =

1, . . . , r.
We choose a point xN,j from the interval (tN,j , tN,j+1] and a weight

w(xN,j) associated with it. Then we solve the problem

inf
Uj

m∑
j=1

(
Uj − g

(N)
i (xN,j)

)2
w(xN,j)

subject to Uj ≥ Uj+1, j = 1, . . . ,m− 1.

Let ĝ
(N)
i (xN,j) be the optimal solution of this problem. We construct ĝ

(N)
i (·) as

a nondecreasing step function assigning the optimal solution to all arguments
in the interval (tN,j , tN+1,j ]. Further, we construct the approximation to Fi(yi)
by setting

F̂i
(N)

(yi) = 1 − e
−

yi∫
−∞

ĝ
(N)
i (t)dt

.

Now let us observe that the function

log
(
1 − F̂i

(N)
(yi)

)
= −

yi∫
−∞

ĝi
(N)(t)dt,
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is piecewise linear and concave. Assume that the function consists of a finite
number Ji of linear pieces given by the following equations:

aT
ijz + bij , j = 1, . . . , Ji, i = 1, . . . ,m.

Problem (2.43) is equivalent to the following linear programming problem:

min〈c, x〉
subject to zi ≥ aT

ijz + bij , j = 1, . . . , Ji

Tix = zi, i = 1, . . . ,m

Ax = b

x ≥ 0.

The solution of the latter problem is an approximate solution of the original
problem.

2.5.6 A Response Surface Method

The method will be described for problem (2.26) under the assumption that
the random vector Z has a continuous and log-concave distribution. This
implies that the constraining function

G(x) = P (g1(x, Z) ≥ 0 , . . . , gm(x, Z) ≥ 0)

is log-concave in x. The idea of the method is to approximate G(·) by a con-
cave quadratic function Q(x) = xTTx+hTx+ q (T is negative definite), then
solve the approximate problem, take a new feasible point, improve the approx-
imation, solve the problem with the new approximation etc. One difficulty is
to develop a stopping rule in order to decide whether a solution is acceptable
as an optimal solution. Some ideas are discussed in [102]. The algorithm can
be described as follows.

Step 1. Given a collection of points Jk = {x0, . . . , xk−1} of feasible points
and their corresponding values pi = logG(xi), i = 1, . . . , k − 1, solve the
least squares problem

min

k−1∑
i=0

(pi − 〈xi, T kxi〉 + 〈hkx〉 + qk)2.

with respect to T k, hk, qk such that T k is negative semi-definite.
Step 2. We construct a quadratic function

〈xi, T kxi〉 + 〈hkx〉 + qk

and solve the approximate problem
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min〈c, x〉
subject to〈xi, T kxi〉 + 〈hkx〉 + qk ≥ p

Ax = b

x ≥ 0.

Let xk be an optimal solution.
Step 3. Check the stopping rule for xk, and accept it as optimal solution, or

return to Step 1.

2.5.7 Discrete Distribution

A straightforward way to solve problem (2.4) when Z has a discrete distribu-
tion is to find all p-efficient points and to process all corresponding problems
(2.27) (see for example [282]). Specialized bounding-pruning techniques can
be used to avoid solving all of them. For example, any feasible solution (ũ, w̃)
of the dual (2.28) can be used to generate a lower bound for (2.27). If it is
worse than the best solution found so far, we can delete the problem (2.27);
otherwise it has to be included into a list of problems to be solved exactly.

For multi-dimensional random vectors Z the number of p-efficient points
can be very large and their straightforward enumeration – very difficult. It
would be desirable, therefore, to avoid the complete enumeration and to search
for promising p-efficient points only. This is accomplished by the next method.

The cone generation method

This is a specialized method which uses the specificity of the discrete distri-
butions. It is related to column generation methods, which have been known
since the classical work [128] as extremely useful tools of large scale linear and
integer programming [30, 89]. The method is based on the same idea as the
primal-dual method for nonlinear constraints.

The algorithm works as follows:

Step 0. Select a p-efficient point v0. Set J0 = {0}, k = 0.
Step 1. Solve the master problem

min 〈c, x〉 (2.45)

Ax ≥ b,

Tx ≥
∑
j∈Jk

λjv
j , (2.46)

∑
j∈Jk

λj = 1,

x ≥ 0, λ ≥ 0. (2.47)

Let uk be the vector of simplex multipliers associated with the con-
straint (2.46).
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Step 2. Calculate an upper bound for the dual functional

d(uk) = min
j∈Jk

〈uk, vj〉.

Step 3. Find a p-efficient solution vk+1 of the subproblem

min
z∈Zp

〈uk, z〉

and calculate
d(uk) = 〈vk+1, uk〉.

Step 4. If d(uk) = d(uk) then stop; otherwise set Jk+1 = Jk∪{k+1}, increase
k by one and go to Step 1.

The first p-efficient point v0 can be found by solving the subproblem in
Step 3, for an arbitrary u ≥ 0. All master problems will be solvable, if the
first one is solvable, i.e., if the set {x ∈ R

n
+ : Ax ≥ b, Tx ≥ v0} is non-empty.

If not, adding a penalty term M1lT t to the objective, and replacing (2.46) by

Tx+ t ≥
∑
j∈Jk

λjv
j ,

with t ≥ 0 and a very large M , is the usual remedy (1lT = [1 1 . . . 1]). The
calculation of the upper bound at Step 2 is easy, because one can simply select
jk ∈ Jk with λjk

> 0 and set d(uk) = (uk)T vjk . At Step 3 one may search for
p-efficient solutions only, due to Lemma 5.

The algorithm is finite. Indeed, the set Jk cannot grow indefinitely, because
there are finitely many p-efficient points (Theorem 17). If the stopping test
of Step 4 is satisfied, optimality conditions for the convex hull problem (2.17)
are satisfied. Moreover Ĵk = {j ∈ Jk : 〈vj , uk〉 = d(uk)} ⊆ Ĵ(u).

When the dimension of x is large and the number of rows of T small, an
attractive alternative to the cone generation method is provided by bundle
methods applied directly to the dual problem

max
u≥0

[
h(u) + d(u)

]
,

because at any u ≥ 0 subgradients of h and d are readily available. For a
comprehensive description of bundle methods the reader is referred to [161,
188].

Let us now focus our attention on solving the auxiliary problem in Step 3,
which is explicitly written as

min{〈u, z〉 | F (z) ≥ p}, (2.48)

where F (·) denotes the distribution function of Z.
Assume that the components Zi, i = 1, . . . , s, are independent. Then we

can write the probabilistic constraint in the following form:
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ln(F (z)) =

s∑
i=1

ln(Fi(zi)) ≥ ln p.

Since we know that at least one of the solutions is a p-efficient point, with
no loss of generality we may restrict the search to grid vectors z. Furthermore,
by Lemma 3, we have zi ≥ li, where li are p-efficient points of Zi. For integer
grids we obtain a nonlinear knapsack problem:

min

s∑
i=1

uizi

s∑
i=1

ln(Fi(zi)) ≥ ln p,

zi ≥ li, zi ∈ Z, i = 1, . . . , s.

If bi is a known upper bound on zi, i = 1, . . . , s, we can transform the above
problem to a 0–1 linear programming problem:

min
s∑

i=1

bi∑
j=li

juiyij

s∑
i=1

bi∑
j=li

ln(Fi(j))yij ≥ ln p,

bi∑
j=li

yij = 1, i = 1, . . . , s,

yij ∈ {0, 1}, i = 1, . . . , s, j = li, . . . , ui.

In this formulation, zi =
∑bi

j=li
jyij .

For log-concave marginals Fi(·) the following compact formulation is pos-

sible. Setting zi = li +
∑bi

j=li+1 δij with binary δij , we can reformulate the
problem as a 0–1 knapsack problem:

min

s∑
i=1

bi∑
j=li+1

uiδij

s∑
i=1

bi∑
j=li+1

aijδij ≥ r,

δij ∈ {0, 1}, i = 1, . . . , s, , j = li + 1, . . . bi,

where aij = lnFi(j) − lnFi(j − 1) and r = ln p − lnF (l). Indeed, by the
log-concavity, we have ai,j+1 ≤ aij , so there is always a solution with nonin-
creasing δij , j = li + 1, . . . , bi. Very efficient solution methods exist for such
knapsack problems [239].

If the grid Z is not integer we can map it to integers by numbering the
possible realizations of each Zi in an increasing order.
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One advantage of the cone generation method is that we can separate the
search for new p-efficient points (via (2.48)) and the solution of the ‘easy’
part of the problem: the master problem (2.45)–(2.47) in Step 1. Another
advantage is that we do not need to generate and keep all p-efficient points.

Let us consider the optimal solution xlow of the convex hull problem (2.17)
and the corresponding multipliers λj . Define J low = {j ∈ J : λj > 0}.

If J low contains only one element, the point xlow is feasible and there-
fore optimal for the disjunctive formulation (2.8). If, however, there are more
positive λ’s, we need to generate a feasible point. A natural possibility is to
consider the restricted disjunctive formulation:

min 〈c, x〉
subject to Tx ∈

⋃
j∈J low Kj ,

x ∈ D.
(2.49)

It can be solved by simple enumeration of all cases for j ∈ J low:

min 〈c, x〉
subject to Tx ≥ vj ,

x ∈ D.
(2.50)

In general, it is not guaranteed that any of these problems has a non-empty
feasible set. To ensure that problem (2.49) has a solution, it is sufficient that
the following stronger version of Assumption 2.1 holds true.

Assumption 2.2. The set Λ := {(u,w) ∈ R
m+s
+ | ATw + TTu ≤ c} is non-

empty and bounded.

Indeed, then each of the dual problems (2.28) has an optimal solution,
so by duality in linear programming each of the subproblems (2.50) has an
optimal solution. We can, therefore, solve all of them and choose the best
solution.

An alternative strategy would be to solve the corresponding upper bound-
ing problem (2.50) every time a new p-efficient point is generated. If Uj denotes
the optimal value of (2.50), the upper bound at iteration k is

Ūk = min
0≤j≤k

Uj . (2.51)

This may be computationally efficient, especially if we solve the dual problem
(2.28), in which only the objective function changes from iteration to iteration.

If the distribution function of Z is α-concave on the set of possible values
of Z, Theorem 18 provides an alternative formulation of the upper bound
problem (2.41):
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min 〈c, x〉
subject to x ∈ D

Tx ≥ z,

z ∈ Z
m, (2.52)

z ≥
∑
j∈Jk

λjv
j ,

∑
j∈Jk

λj = 1

λj ≥ 0, j ∈ Jk.

Problem (2.52) provides a more accurate bound than the bound (2.51), be-
cause the set of integer z dominated by convex combinations of p-efficient
points in Jk is not smaller than Jk. In fact, we need to solve this problem only
at the end, with Jk replaced by J low.

Special algorithms for probabilistic set-covering problem are presented in
[39]. Branch-and-Bound techniques are developed in [40] for the case when x
is an integer vector. The methods use the algebraic description of the feasible
set by p-efficient points and suggest different techniques for generating the
relevant p-efficient points.

Bounds via binomial moments

If the components of Z are dependent it is difficult to evaluate the constraint
function G(·), e.g., for solving the subproblem (2.14) in the cone generation
algorithm. Still, some bounds on its optimal solution may prove useful. A num-
ber of bounds are developed using only partial information on the distribution
function of Z in the form of the marginal distributions:

Fi1...ik
(zi1 , . . . , zik

) = P{Zi1 ≤ zi1 , . . . Zik
≤ zik

}, 1 ≤ i1 < . . . < ik ≤ m.

Since for each marginal distribution one has Fi1...ik
(zi1 , . . . , zik

) ≥ F (z)
the following relaxation of Z (defined by (2.5)) can be obtained.

Lemma 8. For each z ∈ Zp and for every 1 ≤ i1 < . . . < ik ≤ s the following
inequality holds true:

Fi1...ik
(zi1 , . . . , zik

) ≥ p.

We can determine probability bounds by solving certain linear optimiza-
tion problem (see ( [55,279,280]). The following result is known:

Theorem 24. For any distribution function F : R
m → [0, 1] and any 1 ≤

k ≤ m, at every z ∈ R
m the optimal value of the following linear programming

problem:
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max vm

v0+v1+ v2 + v3 +· · ·+ vm = 1

v1+2v2+ 3v3 +· · ·+ mvm =
∑

1≤i≤m

Fi(zi)

v2 +
(
3
2

)
v3 +· · ·+

(
m
2

)
vm =

∑
1≤i1<i2≤m

Fi1i2(zi1 , zi2)

...

vk +
(
k+1

k

)
vk+1+· · ·+

(
m
k

)
vm =

∑
1≤i1<...<ik≤m

Fi1...ik
(zi1 , . . . , zik

)

v0 ≥ 0, v1 ≥ 0, . . . , vm ≥ 0.
(2.53)

provides an upper bound for F (z1, . . . , zm).

We can use this result to bound the objective function in problem (2.48).

Proposition 1. Let Z = (Z1, . . . , Zm) be an integer random vector and let
Fi1,...,ik

denote its marginal distribution functions. Then for every p ∈ (0, 1)
and for every 1 ≤ k ≤ m the optimal value of the problem

min 〈u, z〉
v0+v1+ v2 + v3 +· · ·+ vm = 1

v1+2v2+ 3v3 +· · ·+ mvm =
∑

1≤i≤m

Fi(zi)

v2 +
(
3
2

)
v3 +· · ·+

(
m
2

)
vm =

∑
1≤i1<i2≤m

Fi1i2(zi1 , zi2)

...

vk +
(
k+1

k

)
vk+1+· · ·+

(
m
k

)
vm =

∑
1≤i1<...<ik≤m

Fi1...ik
(zi1 , . . . , zik

)

v0 ≥ 0, v1 ≥ 0, . . . , vs−1 ≥ 0, vm ≥ p, z1 ≥ l1, z2 ≥ l2, . . . , zm ≥ lm,
z ∈ Z

m

(2.54)
provides a lower bound on the optimal value d(u) given by (2.48).

Proof. If z ∈ Z, that is, F (z) ≥ p, then the optimal value of (2.53) satisfies
vm ≥ p. Thus z and the solution v of (2.53) are feasible for (2.54). Since the
objective functions of (2.48) and (2.54) are the same, the result follows. �

Problem (2.54) is a nonlinear mixed-integer problem. Its advantage over
the original formulation is that it uses marginal functions in an explicit way
which allows for the development of specialized solution methods.

2.5.8 Probabilistic Valid Inequalities

A relation between probabilistic constraints and the theory of valid inequali-
ties in integer programming has been developed in [311].
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We shall just sketch some ideas in this direction. Let us assume that the
distribution of Z is approximated by finitely many scenarios z1, . . . , zS hav-
ing probabilities p1, . . . , pS . Under mild assumptions problem (2.1) can be
converted to a mixed-integer programming problem

min f(x) (2.55)

subject to g(x, zs) +Mvs ≥ 0, s = 1, . . . , S, (2.56)

S∑
s=1

psvs ≤ 1 − p, (2.57)

x ∈ D,
vs ∈ {0, 1}, s = 1, . . . , S, (2.58)

where M is a vector with sufficiently large components, so vs = 1 makes
(2.56) trivial. Each binary variable vs indicates whether the current solution
x violates the constraint g(x, zs) ≥ 0 or not, and the probability constraint
takes on the form of the knapsack inequality (2.57).

In many applications it is possible to determine a partial order ‘�’ in the
set of scenarios zs, representing their difficulty for the constraints g(x, zs) ≥ 0.
In the simplest setting, we shall have zs � zσ (zs is easier than zσ) if

g(x, zσ) ≥ 0 ⇒ g(x, zs) ≥ 0, for all x ∈ X.

Then the mixed-integer formulation (2.55)–(2.58) can be augmented with the
precedence constraint:

vs ≤ vσ if zs � zσ.

Probabilistic valid inequalities for the binary variables vs are developed on
the basis of this structure. For each scenario zs we define the set of comparable
scenarios which are at least as hard as zs:

As = {zj : zs � zj}.

If we fail to satisfy the constraint g(x, zs) ≥ 0 for scenario s, we shall fail
for all scenarios in As, i.e., vj = 1 for all zj ∈ As. In this way probabilistic
counterparts of the concepts of a cover and cover inequalities known from
integer programming are introduced. In our setting, a set C ⊂ {1, . . . , S} is
an induced cover if

P

{⋃
s∈C

As

}
> 1 − p.

If vs = 1 for all s ∈ C, then we must have vj = 1 for all zj in the union
of the sets As, s ∈ C, and the probability constraint (2.57) will be violated.
Therefore the following induced cover inequality must hold true:∑

s∈C

vs ≤ |C| − 1.
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The second implication of the partial order is that we do not need to
enforce inequality (2.56) for all scenarios. By a similar argument, if g(x, zs) ≥
0, then g(x, zσ) ≥ 0 for all zσ � zs. Thus, we may try to determine a set L of
critical scenarios, similarly to the set of p-efficient points of the problem with
the random right hand side.

These two basic ideas can be put together to formulate the following ap-
proximate problem:

min f(x)

subject to g(x, zs) +Mvs ≥ 0 s ∈ L,
S∑

s=1

psvs ≤ 1 − p,

x ∈ X,

vs ≤ vσ, if zs � zσ

vs ∈ [0, 1], s = 1, . . . , S,∑
s∈C

vs ≤ |C| − 1.

For a detailed description of this solution technique we refer to [311].

2.6 Cash Matching with Probabilistic Liquidity
Constraints

There are many publication addressing interesting applications of probabilis-
tic constraints. We do not attempt to address the potential of probabilistic
optimization for solving applied problems. We return to a version of our start-
ing example because our duality theory finds an interesting interpretation in
its context.

We consider the following cash matching problem. We have random lia-
bilities Lt in periods t = 1, . . . , T and a basket of n bonds. The payment of
bond i in period t is denoted by ait. It is zero for t before the purchase of the
bond and for t greater than the maturity time of the bond. At the time of
purchase ait is the negative of the price of the bond, at the following periods
it is equal to the coupon payment, and at the time of maturity it is equal to
the face value plus the coupon payment. Our initial capital equals c0.

The objective is to design a bond portfolio such that the probability of
covering the liabilities over the entire period 1, . . . , T is at least p. Subject to
this condition, we want to maximize the final cash on hand, guaranteed with
probability p.

Let us introduce the cumulative liabilities

Zt =

t∑
τ=1

Lτ , t = 1, . . . , T.
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Denoting by xi the amount invested in bond i, we observe that the cumulative
cash flows up to time t, denoted ct, can be expressed as follows:

ct = ct−1 +
n∑

i=1

aitxi, t = 1, . . . , T.

Using cumulative cash flows and cumulative liabilities permits the carry-over
of capital from one stage to the next one, while keeping the random quantities
at the right hand side of the constraints. The problem takes on the form

max cT

subject to P
[
ct ≥ Zt, t = 1, . . . , T

]
≥ p,

ct = ct−1 +

n∑
i=1

aitxi, t = 1, . . . , T,

x ≥ 0.

Let us observe that first constraint of this problem is a probabilistic liquidity
constraint. If the vector Z has a quasi-concave distribution (e.g., joint normal
distribution), the resulting problem is convex. Thus both the dual method
form Section 2.5.3 and the primal-dual method from Section 2.5.4 yield opti-
mal solutions of the problem.

The convex hull problem (2.17) can be now written as follows:

max cT

subject to ct = ct−1 +

n∑
i=1

aitxi, t = 1, . . . , T, (2.59)

ct ≥
T+1∑
j=1

λjv
j
t , t = 1, . . . , T, (2.60)

T+1∑
j=1

λj = 1, (2.61)

λ ≥ 0, x ≥ 0. (2.62)

In constraint (2.60) the vectors vj = (vj
1, . . . , v

j
T ), for j = 1, . . . , T + 1, are p-

efficient trajectories of the cumulative liabilities Z = (Z1, . . . , ZT ). Constraints
(2.60)–(2.62) require that the cumulative cash flows are greater than or equal
to a convex combination of p-efficient trajectories. Recall that by Lemma 4,
no more than T + 1 p-efficient trajectories are needed. Unfortunately, we do
not know the optimal collection of these trajectories.

Let us assign non-negative Lagrange multipliers u = (u1, . . . , uT ) to the
constraint (2.60), multipliers w = (w1, . . . , wT ) to the constraints (2.59), and
a multiplier ρ ∈ R to the constraint (2.61). For the convenience of notation
we introduce the constant wT+1 = 1. The dual problem becomes
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min c0w1 − ρ (2.63)

subject to wt = wt+1 + ut, t = T, T − 1, . . . , 1, (2.64)

T∑
t=1

wtait ≤ 0, i = 1, . . . , n, (2.65)

ρ ≤
T∑

t=1

utv
j
t , j = 1, . . . , T + 1. (2.66)

We can observe that each dual variable ut is the cost of borrowing a unit of
cash for one time period, t. The amount ut is to be paid at the end of the
planning horizon. It follows from (2.64) that each multiplier wt is the amount
that has to be returned at the end of the planning horizon if a unit of cash is
borrowed at t and held till T .

The constraints (2.65) represent the non-arbitrage condition. For each
bond i we can consider the following operation: borrow money to buy the
bond and lend away its coupon payments, according to the rates implied by
wt’s. At the end of the planning horizon, we collect all loans and pay off the
debt. The profit from this operation should be non-positive for each bond,
and this is represented by (2.65).

Let us observe that each product utv
j
t is the the amount that has to be paid

at the end, for having a debt in the amount vj
t in period t. Recall that vj

t is
the p-efficient cumulative liability up to time t. Denote the implied one-period
liabilities by

Lj
t = vj

t − vj
t−1, t = 2, . . . , T,

Lj
1 = vj

1.

Changing the order of summation, we obtain

T∑
t=1

utv
j
t =

T∑
t=1

ut

t∑
τ=1

Lj
τ =

T∑
τ=1

Lj
τ

T∑
t=τ

ut =
T∑

τ=1

Lj
τ (wτ − 1).

It follows that the sum appearing at the right hand side of (2.66) is the extra
cost of covering the jth p-efficient liability sequence by borrowed money, that
is, the difference between the amount that has to returned at the end of the
planning horizon, and the total liability. The variable ρ, therefore, represents
the minimal cost of this form, for all p-efficient trajectories. This allows us
to interpret the dual objective function (2.63) as the amount obtained at T
for lending away our capital c0 decreased by the extra cost of covering a p-
efficient liability sequence by borrowed money. By duality this quantity is the
same as cT , which implies that both ways of covering the liabilities are equally
profitable.

To observe the work of the methods we have used data on 72 government
bonds and AAA corporate bonds ranging from 6-month treasury bills (which
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do not pay coupons, but sell at discount) to 5-year bonds paying coupons
each 6-months. The liabilities were assumed to be normally distributed with
expectation 2,000,000 and standard deviation 100,000. The initial capital was
c0 = 20, 000, 000 and the number of 6-month periods T = 10. The probability
p = 0.95. To facilitate the numerical solution of the method, the distribution
of the liabilities was approximated by N = 100 equally likely scenarios.

The dual and the primal-dual methods were used to solve the problem. The
search for new p-efficient points in both methods was implemented as a simple
binary optimization problem with a knapsack constraint. Other subproblems
were solved by the CPLEX linear programming solver.

The dual method terminated after 34 iterations finding the optimal port-
folio of 9 bonds of different maturities. The primal-dual method found exactly
the same solution after just 3 iterations. In both cases the computation time
on a 1.7GHz PC was less than one minute.

The key element of both methods is the subproblem for generating p-
efficient points.

The problem at hand was linear, and therefore both methods were equally
easy to implement. If the functions f and g are nonlinear, one iteration of the
primal-dual method requires more computational effort than one iteration of
the dual method.
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Summary. In this chapter, we establish a framework for formal comparisons of sev-
eral leading optimization algorithms, providing guidance to practitioners for when
to use or not use a particular method. The focus in this chapter is five general algo-
rithm forms: random search, simultaneous perturbation stochastic approximation,
simulated annealing, evolution strategies, and genetic algorithms. We summarize the
available theoretical results on rates of convergence for the five algorithm forms and
then use the theoretical results to draw some preliminary conclusions on the relative
efficiency. Our aim is to sort out some of the competing claims of efficiency and to
suggest a structure for comparison that is more general and transferable than the
usual problem-specific numerical studies.

3.1 Introduction

To address the shortcomings of classical deterministic algorithms, a number
of powerful optimization algorithms with embedded randomness have been
developed. The population-based methods of evolutionary computation, for
example, are one class among many of the available stochastic optimization
algorithms. Hence, a user facing a challenging optimization problem for which
a stochastic optimization method is appropriate meets the daunting task of
determining which algorithm is appropriate for a given problem. This choice is
made more difficult by some dubious claims that have been made about some
popular algorithms. An inappropriate approach may lead to a large waste of
resources, both from the view of wasted efforts in implementation and from
the view of the resulting suboptimal solution to the optimization problem of
interest.

Hence, there is a need for objective analysis of the relative merits and
shortcomings of leading approaches to stochastic optimization. This need has
certainly been recognized by others, as illustrated, for example, in recent
conferences on evolutionary computation, where numerous sessions are de-
voted to comparing algorithms. Nevertheless, virtually all comparisons have
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been numerical tests on specific problems. For example, a large fraction of
the book [323] is devoted to numerical comparisons. Although sometimes en-
lightening, such comparisons are severely limited in the general insight they
provide. Some comparisons for noisy evaluations of a simple spherical loss
function are given in [15], Chapter 6; however, some of the competitors were
implemented in non-standard forms, making the results difficult to interpret
for an analyst using a more conventional implementation. Spall [341] also has
a number of comparisons (theoretical and numerical) for the cases of noise-free
and noisy loss evaluations. At the other end of the spectrum are the ‘no free
lunch’ theorems, [399], which simultaneously consider all possible loss func-
tions and thereby draw conclusions that have limited practical utility since
one always has at least some knowledge of the nature of the loss function
being minimized.

Our aim in this chapter is to lay a framework for a theoretical comparison
of efficiency applicable to a broad class of practical problems where some (in-
complete) knowledge is available about the nature of the loss function. We will
consider five basic algorithm forms: random search, simultaneous perturbation
stochastic approximation (SPSA), simulated annealing (SAN), and two forms
of evolutionary computation (evolution strategy and genetic algorithms). The
basic optimization problem corresponds to finding an optimal point θ∗:

θ∗ = arg min
θ∈Θ

L(θ),

where L(θ) is the loss function to be minimized, Θ is the domain over which
the search will occur, and θ is a p-dimensional vector of parameters. We are
mainly interested in the case where θ∗ is a unique global minimum.

Although stochastic optimization approaches other than the five above
exist, we are restricting ourselves to the five general forms in order to be
able to make tangible progress (note that there are various specific implemen-
tations of each of these general algorithm forms). These five algorithms are
general-purpose optimizers with powerful capabilities for serious multivari-
ate optimization problems. Further, they have in common the requirement
that they only need measurements of the objective function, not requiring
derivative information (gradient or Hessian) for the loss function. It is the
long-term expectation that this theoretical framework will provide guidance
to those faced with an optimization problem and the associated difficult choice
of selecting a suitable method. It is critical to make an informed choice prior
to investing the considerable resources required given the inherent difficul-
ties in implementing a particular algorithm in a large-scale practical problem
(software implementation, data preparation, algorithm tuning, etc.).

Central to the approach of this contribution will be the known theoretical
analysis on the rate of convergence of each of the candidate algorithms. Our
approach will be built as much as possible on existing theory characterizing
the rates of convergence for the algorithms to perform the comparative anal-
ysis. There appears to be no previous analysis putting the theoretical results
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on a common basis for performing an objective comparison. Of course, this
approach has limitations in general because many algorithms have little – or
possibly no – theoretical justification. Nonetheless, it is our expectation that
performing a formal theoretical comparison of the chosen algorithms will shed
light on relative performance of other similar algorithms as well, even if the
similar algorithms lack the same current level of theoretical justification.

One might ask whether questions of relative efficiency are relevant in light
of the ‘no free lunch (NFL)’ theorems of [399] and others. The NFL theorems
state, in essence, that the expected performance of any pair of optimization
algorithms across all possible problems is identical. In practice, of course, one
is not interested in solving ‘all possible problems,’ as there is usually some
prior information about the problems of interest and this prior information
will affect the algorithm implementation. Hence, the NFL results may not
adequately reflect the performance of candidate algorithms as they are actu-
ally applied. In other words, some algorithms do work better than others on
problems of interest. Nevertheless, the NFL results are an important backdrop
against which to view the results here, providing limits on the extent to which
one algorithm can be claimed as ‘better’ than another.

In Sections 3.2 through 3.5, we discuss the known convergence rate results
on the five algorithm forms under consideration. Section 3.6 then uses these
results to provide a theoretical framework for comparison. We demonstrate
these results in analyzing the relative efficiency as the problem dimension
increases.

3.2 Simple Global Random Search

We first establish a rate of convergence result for the simplest (‘blind’) random
search method where we repeatedly sample over the domain of interest, Θ ⊆
R

p. This can be done in recursive form or in ‘batch’ (non-recursive) form by
simply laying down a number of points in Θ and taking as our estimate of θ∗

that value of θ yielding the lowest L value. A recursive implementation of this
idea is as follows.

Step 0 (Initialization). Pick an initial value of θ, say θ̂0, according to prior
information or some probability distribution on the domain Θ. Calculate
L(θ̂0). Set k = 0.

Step 1. Generate a new independent value of θ, say θnew(k), according to the

chosen probability distribution. If L(θnew(k)) < L(θ̂k), set θ̂k+1 = θnew(k).

Else take θ̂k+1 = θ̂k.
Step 2. Repeat Step 1 until the maximum allowable number of L evaluations

has been reached or the user is otherwise satisfied with the current esti-
mate of θ∗.
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It is well known that the random search algorithm above will converge
in some stochastic sense under modest conditions (see, e.g., [338]). A typical
convergence theorem is of the following form (proof in [341], Section 2.2).

Theorem 1. Suppose that θ∗ is the unique minimizer of L on the domain Θ
in the sense that L(θ∗) = infθ∈Θ L(θ) and inf{L(θ) : ‖θ−θ∗‖ ≥ ε} > L(θ∗) >
−∞ for all ε > 0. Suppose further that for any ε > 0 and ∀k, there exists a
δ(ε) > 0 such that

P{θnew(k) : L(θnew(k)) < L(θ∗) + ε} ≥ δ(ε).

Then, for the random search algorithm, θ̂k → θ∗ a.s. (almost surely) as k→∞.

While the above theorem establishes convergence of the simple random
search algorithm, it is also of interest to examine the rate of convergence.
The rate is intended to tell the analyst how close θ̂k is likely to be to θ∗

for a given cost of search. The cost of search here will be expressed in terms
of number of loss function evaluations. Knowledge of the rate is critical in
practical applications as simply knowing that an algorithm will eventually
converge begs the question of whether the algorithm will yield a practically
acceptable solution in any reasonable period. To evaluate the rate, let us
specify a ‘satisfactory region’ S(θ∗) representing some neighborhood of θ∗

providing acceptable accuracy in our solution (e.g., S(θ∗) might represent a
hypercube about θ∗ with the length of each side representing a tolerable error
in each coordinate of θ). An expression related to the rate of convergence of
the above simple random search algorithm is then given by

P{θ̂k ∈ S(θ∗)} = 1 − (1 − P{θnew(k) ∈ S(θ∗)})k (3.1)

We will use this expression in Section 3.6 to derive a convenient formula for
comparison of efficiency with other algorithms.

3.3 Simultaneous Perturbation Stochastic
Approximation

The next algorithm we consider is SPSA. This algorithm is designed for contin-
uous variable optimization problems. Unlike the other algorithms here, SPSA
is fundamentally oriented to the case of noisy function measurements and
most of the theory is in that framework. This will make for a difficult com-
parison with the other algorithms, but Section 3.6 will attempt a comparison
nonetheless. The SPSA algorithm works by iterating from an initial guess
of the optimal θ, where the iteration process depends on a highly efficient
‘simultaneous perturbation’ approximation to the gradient g(θ) ≡ ∂L(θ)/∂θ.

Assume that measurements y(θ) of the loss function are available at any
value of θ:
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y(θ) = L(θ) + noise.

For example, in a Monte Carlo simulation-based optimization context, L(θ)
may represent the mean response with input parameters θ, and y(θ) may
represent the outcome of one simulation experiment at θ. In some problems,
exact loss function measurements will be available; this corresponds to the
noise = 0 setting (and in the simulation example, would correspond to a de-
terministic, non-Monte Carlo, simulation). Note that no direct measurements
(with or without noise) of the gradient of L(θ) are assumed available.

It is assumed that L(θ) is a differentiable function of θ and that the min-
imum point θ∗ corresponds to a zero point of the gradient, i.e.,

g(θ∗) =
∂L(θ)

∂θ

∣∣∣∣
θ=θ∗

= 0. (3.2)

In cases where more than one point satisfies (3.2), there exists theory that
ensures that the algorithm will converge to the global minimum, [220]. (As
a consequence of the basic recursive form of the algorithm there is generally
not a risk of converging to a maximum or saddlepoint of L(θ), i.e., to non-
minimum points where g(θ) may equal zero.) Another extension of SPSA to
global optimization is discussed in [88]. The SPSA procedure has the general
recursive SA form:

θ̂k+1 = θ̂k − akĝk(θ̂k),

where ĝk(θ̂k) is the estimate of the gradient g(θ) at the iterate θ̂k based
on the above-mentioned measurements of the loss function and ak > 0 is
a ‘gain’ sequence. This iterate can be shown to converge under reasonable
conditions (e.g., [341] Section 7.3, and [112] for local convergence; [220] for
global convergence). The core gradient approximation is

ĝk (θ̂k) =
y (θ̂k + ck∆k) − y (θ̂k − ck∆k)

2ck

⎡⎢⎢⎢⎣
∆−1

k1

∆−1
k2

...
∆−1

kp

⎤⎥⎥⎥⎦ , (3.3)

where ck is some ‘small’ positive number and the user-generated p-dimensional
random perturbation vector, ∆k = [∆k1, ∆k2, . . . , ∆kp]

T , contains {∆ki}
that are independent and symmetrically distributed about 0 with finite inverse
moments E(|∆ki|−1) for all k, i. One particular distribution for ∆ki that satis-
fies these conditions is the symmetric Bernoulli ±1 distribution; two common
distributions that do not satisfy the conditions (in particular, the critical finite
inverse moment condition) are uniform and normal. The essential basis for ef-
ficiency of SPSA in multivariate problems is apparent in (3.3), where only two
measurements of the loss function are needed to estimate the p-dimensional
gradient vector for any p; this contrasts with the standard finite difference
method of gradient approximation, which requires 2p measurements.
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Most relevant to the comparative analysis goals of this chapter is the
asymptotic distribution of the iterate. This was derived in [339], with further
developments in [88,112,340]. Essentially, it is known that under appropriate
conditions,

kβ/2(θ̂k − θ∗) dist−−→ N (µ,Σ) as k → ∞, (3.4)

where β > 0 depends on the choice of gain sequences (ak and ck), µ de-
pends on both the Hessian and the third derivatives of L(θ) at θ∗ (note that
in general, µ �= 0 in contrast to many well-known asymptotic normality re-
sults in estimation), and Σ depends on the Hessian matrix at θ∗ and the
variance of the noise in the loss measurements. Given the restrictions on the
gain sequences to ensure convergence and asymptotic normality, the fastest
allowable value for the rate of convergence of θ̂k to θ∗ is k−1/3. This contrasts
with the fastest allowable rate of k−1/2 for gradient-based algorithms such as
Robbins-Monro SA.

Unfortunately, (3.4) is not directly usable in our comparative studies here
since the other algorithms being considered here appear to have formal results
for convergence rates only for the case of noise-free loss measurements. The
authors are unaware of any general asymptotic distribution result for the
noise-free case (note that it is not appropriate to simply let the noise level go to
zero in (3.4) in deriving a result for the noise-free case; it is likely that the rate
factor β will also change if an asymptotic distribution exists). Some partial
results, however, are available that are related to the rate of convergence.

Gerencsér [137] established that the moments
[
E

(∥∥∥θ̂k − θ∗
∥∥∥q)]1/q

converge

to zero at a rate of k−1/2 for any q > 0, when ak has the standard 1/k decay
rate. More recently, Gerencsér and Vágó [138] established that the noise-
free SPSA algorithm has a geometric rate of convergence when constant gains
ak = a are used. In particular, for functions having bounded third derivatives,
they show for sufficiently small a,

lim sup
k→∞

∥∥∥θ̂k − θ∗
∥∥∥

ηk
= 1 a.s.

for some 0 < η < 1. Gerencsér and Vágó [138] go further for quadratic loss
functions by specifying η in terms of a and the Hessian matrix of L. Unfortu-
nately, even in the quadratic case, η is not fully specified in terms of quantities
associated with L and the algorithm itself (i.e., η depends on unknown con-
stants).

3.4 Simulated Annealing Algorithms

The simulated annealing (SAN) method [187,226] was originally developed for
optimization over discrete finite sets. The Metropolis SAN method produces
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a sequence that converges in probability to the set of global minima of the
loss function as Tk, the temperature, converges to zero at an appropriate rate.

Gelfand and Mitter [134] present a SAN method for continuous param-
eter optimization. They obtained discrete-time recursions (which are similar
to a stochastic approximation algorithm) for Metropolis-type SAN algorithms
that, in the limit, optimize continuous parameter loss functions. Spall ( [341]
Section 8.6) summarizes this connection of SAN to SA in greater detail. Sup-

pose that θ̂k is such a Metropolis-type SAN sequence for optimizing L. To
define this sequence, let qk(x, ·) be the p-dimensional Gaussian density func-
tion with mean x and variance b2kσ

2
k(x)Ip, where σ2

k(x) = max {1, aτ
k‖x‖}, τ is

fixed in the range 0 < τ < 1/4, and ak = a/k for large k, with a > 0. (Observe
that sup

{
σ2

k(x), x ∈ A
}
→ 1 as k → ∞ for any bounded set A.) Also, let

sk(x, y) =

{
exp

(
−L(y)−L(x)

Tk

)
if L(y) > L(x)

1 otherwise,

where Tk(x) = b2kσ
2
k(x)

/
(2ak). The function sk(x, y) is the acceptance proba-

bility, as in the usual Metropolis algorithm.
The SAN sequence can be obtained through simulation, in a manner sim-

ilar to the discrete case:

Step 1. Let θ̂k be the current state.
Step 2. Generate a candidate solution θ̃ according to (the one-step Markov

transition) probability density qk(θ̂k, ·).
Step 3. Let δk = L(θ̃)−L(θ̂k). (Then sk(θ̂k, θ̃) ≤ 1, where sk(θ̂k, θ̃) = 1 if δk ≤

0). Let θ̂k+1 = θ̃ if δk ≤ 0. Otherwise, consider an independent random

variable Uk uniformly distributed on the interval [0, 1]. Let θ̂k+1 = θ̂k if

sk(θ̂k, θ̃) > Uk.

The resulting sequence θ̂k has Markov transition probabilities

P

{
θ̂k+1 ∈ A

∣∣∣θ̂k = x
}

=

∫
A

pk(y|x )dy,

where
pk(y|x) = qk(x, y)sk(x, y) + rk(x)δ(y − x)

and δ(·) is the Dirac-delta function.
Let {Wk} be an i.i.d. sequence of p-dimensional standard Gaussian random

vectors and let the sequence ξ0, ξ1, . . . be defined by setting

θ̂k+1 = θ̂k − ak(g(θ̂k) + ξk) + bkWk a.s., k > 0. (3.5)

The reason for introducing this form for the recursion is to show that θ̂k

converges in probability to the set of global minima of L. This can be shown
if we can show that the sequence θ̂x

k is tight, where θ̂x
k denotes the solution to
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(3.5) with initial condition θ̂0 = x. If θ̂x
k is tight, then it can be established

that θ̂x
k converges in probability, uniformly in x, for x belonging to a compact

set K. The limiting distribution is given by the loss function L. In particular,
it is the uniform measure on the set of global minima of L. Thus, the main
reason for introducing ξk is to facilitate the proof of tightness of θ̂x

k . The

sequence θ̂x
k is tight under certain restrictions on the sequences ak and bk,

namely that ak = a/k (as mentioned above) and bk = b/
√
k log log k for large

k, where a and b are positive constants.
The algorithm is a Metropolis algorithm in the usual sense (i.e., as in the

discrete case where the temperature sequence is independent of the state) if

almost all θ̂k lie in some fixed compact set for all k > K, for some K > 0,
since eventually σ2

k(θ̂k) = 1. (This assertion follows directly from steps in

the proof of Lemma 2(a) in [134], page 121). The sequence {θ̂k} converges in
probability to the global minimum of the loss function. If there is a unique
global minimizer θ∗, then the sequence converges in probability to θ∗. To be
specific, suppose that L(θ) has a unique minimum at θ∗ and let S(θ∗) be a

neighborhood of θ∗. Gelfand and Mitter [134] show that P{θ̂k ∈ S(θ∗)} → 1
as k → ∞.

Furthermore, like SPSA, SAN has an asymptotic normality result (but
unlike SPSA, this result applies in the noise-free case). In particular, follow-
ing [403], assume that ak = a/k, bk = (b/(kγ log(k1−γ +B0))

1/2, where B0, a,
and b are positive constants, 0 < γ < 1. Let H(θ∗) denote the Hessian of L(θ)
evaluated at θ∗ and let Ip denote the p× p identity matrix. Yin [403] showed
that

[log(k1−γ +B0)]
1/2(θ̂k − θ∗) → N (0, Σ) in distribution,

where ΣH +HTΣ + (b/a)I = 0.

3.5 Evolutionary Computation

3.5.1 General Principles and Theory

Evolutionary computation (EC) represents a class of stochastic search and op-
timization algorithms that use a Darwinian evolutionary model. The principle
feature of an EC algorithm is the search through a population of candidate
solutions for the optimal value of a loss function. There are three general
approaches in evolutionary computation, namely evolutionary programming
(EP), evolution strategies (ES) and genetic algorithms (GA). All three ap-
proaches work with a population of candidate solutions and randomly alter
the solutions over a sequence of generations according to evolutionary oper-
ations of competitive selection, mutation and sometimes recombination (re-
production). The fitness of each population element to survive into the next
generation is determined by a selection scheme based on evaluating the loss
function for each element of the population. The selection scheme is such that
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the most favorable elements of the population tend to survive into the next
generation while the unfavorable elements tend to perish.

The principal differences in the three approaches are the selection of evolu-
tionary operators used to perform the search and the computer representation
of the candidate solutions. EP uses selection and mutation only to generate
new solutions. While both ES and GA use selection, recombination and mu-
tation, recombination is used more extensively in GA. A GA traditionally
performs evolutionary operations using binary encoding of the solution space,
while EP and ES perform the operations using real-coded solutions. The GA
also has a real-coded form and there is some indication that the real-coded
GA may often be more efficient and provide greater precision than the binary-
coded GA ( [341], Chapters 9 and 10). The distinction among the three ap-
proaches has begun to blur as new hybrid versions of EC algorithms have
arisen.

The formal convergence of EC algorithms to the optimal θ∗ has been con-
sidered in a number of references. Eiben et al. [118] derived a convergence
in probability result for an elitist GA using the powerful tools of Markov
chain theory assuming a finite search space. This result characterized the
convergence properties of the GA in terms of the selection, mutation, and re-
combination probabilities. Rudolph [306] analyzed the basic GA in the binary
search space, the canonical GA, without elitist selection. He found that the
canonical GA will never converge to the global optimum, and that conver-
gence for this GA comes only by saving the best solution obtained over the
course of the search. For function optimization it makes sense to keep the best
solution obtained over the course of the search, so convergence is guaranteed.
For GA in the binary search space, convergence results that assume a finite
search space seem of little practical use; since there are a finite number of
points to search, random search and simple enumeration are also guaranteed
to converge. However since convergence is a precondition for convergence rate
calculations, convergence results assuming a finite search space are not en-
tirely meaningless. Rudolph [309] summarizes the sufficient conditions on the
mutation, recombination, and selection probabilities for convergence of EC al-
gorithms in finite search spaces, with a simplified mathematical structure that
does not rely on Markov chain theory. Reeves and Rowe [293] and Spall [341],
Chapter 10 include a review and further references related to EC convergence
theory.

Convergence analysis for EP, ES, and real-valued GA often relies on the
Borel-Cantelli Lemma (see for example [21]). The convergence proofs for
these algorithms assume that the mutation is applied with non-zero prob-
ability such that the joint distribution of new solutions has non-zero prob-
ability everywhere. The restrictions made on the mutation operator seem
to make these proofs of only academic interest. Convergence properties of
EP, ES and real-valued GA may also be derived using the theory of Markov
chains. Rudolph [307] details the theory and offers sufficient conditions for
convergence of EC algorithms. Other approaches have been taken including
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modeling EC algorithms as supermartingales as in [307]. Qi and Palmeiri [283]
analyzed the real-valued GA assuming an infinite population size. They found
that the solutions for a GA using only selection converges in distribution to
the distribution concentrated at the global optimum. Also the mean loss value
for a real-valued GA with selection and mutation converges to the global op-
timum. Hart [153] takes a different tack. He defines a class of EC algorithms
called evolutionary pattern search algorithms that encompass the real-coded
GA, EP, and ES and establishes a stationary point convergence result by ex-
tending the convergence theory of generalized pattern search algorithms. The
convergence result does not guarantee convergence to the global optimum; it
only guarantees that a stationary point is found. Stopping rules related to
modifying the mutation probability for the algorithms are provided, however
the stopping rules seem to require that the pattern search algorithm structure
be adopted.

Global convergence results can be given for a broad class of problems, but
the same cannot be said for convergence rates. The mathematical complex-
ity of analyzing EC convergence rates is significant. Determining how many
generations of the population are required in order to ensure a certain er-
ror in the solution is apparently an open problem for arbitrary loss functions.
Vose [386,387] showed that assuming an infinite population size, and for every
0 < δ < 14, the number of generations required for the GA to come within a
distance δ of θ∗ is O(− log δ). This result is not directly usable in our compar-
ison, however, since it does not give a quantifiable expression for the number
of generations required to guarantee that the best population element will be
within some δ distance of θ∗.

Additional convergence rate results that exist are for restricted classes of
loss functions that have some special properties that can be taken advantage
of and usually with simplified ECs. In particular, except for the ‘big O’ result
above, [386,387] (which allows for all three fundamental operations-selection,
mutation, and recombination), most of the convergence rate results available
are for EC algorithms using selection and mutation only, or using selection
and recombination. Both [45] and [307] examine ES algorithms that include
selection, mutation and recombination. The function analyzed in both cases is
the classic spherical loss function L(θ) = ‖θ‖2. Convergence rates based on the
spherical loss function are somewhat useful, if it is assumed that the sphere
approximates a local basin of attraction. A number of other convergence rate
results are also available for the spherical loss function; see for example [283]
for a real-valued GA.

3.5.2 Convergence Rates for ES Algorithms

This section presents several means by which to determine the rate of con-
vergence for the ES approach to EC. One of the more practically useful con-
vergence rates for EC algorithms applies in a particular class of convex loss
functions. The following theorem due to Rudolph [308] is an application of a
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more general result by Rappl [285]. The theorem is the starting place for the
specific convergence rate result that will be used for comparison in Section 3.6.

Definition 1. An algorithm has a geometric rate of convergence if and only
if E[L∗

k − L(θ∗)] = O(ηk) where η ∈ (0, 1) defines the convergence rate.

Theorem 2 ( [308]). Let Θ̄k ≡ {θ̂k1, θ̂k2, . . . , θ̂kN} be the sequence of pop-

ulations of size N generated by some ES at generation k(θ̂ki) represents the
ith estimate for θ from the population of N elements). If E[L∗

k − L(θ∗)] < ∞
and E[L∗

k+1 − L(θ∗)|Θ̄k] ≤ η[L∗
k − L(θ∗)] a.s. for all k ≥ 0 where L∗

k =

min{L(θ̂k1), L(θ̂k2), . . . , L(θ̂kN )}, then the ES algorithm converges a.s. geo-
metrically fast to the optimum of the objective function.

The condition E[L∗
k+1 − L(θ∗)|Θ̄k] ≤ η[L∗

k − L(θ∗)] implies that the se-
quence decreases monotonically on average. This condition is needed since in
the (1, λ)-ES that will be considered below, the loss value of the best par-
ent in the current generation may be worse than the loss value of the best
parent of the previous generation, although on average this will not be the
case. Rudolph [308] shows that a (1, λ)-ES using selection and mutation only
(where the mutation probability is selected from a uniformly distributed dis-
tribution on the unit hyperball), with certain classes of loss functions, satisfies
the assumptions of the theorem. One such class is the (K, q)-strongly convex
functions:

Definition 2. Let L : Θ → R. Then L is called (K, q)-strongly convex on Θ
if for all x, y ∈ Θ and for each α ∈ [0, 1] the inequalities

K

2
α(1−α)‖x− y‖2≤αL(x)+(1−α)L(y)−L(αx+(1−α)y)≤G

2
α(1−α)‖x− y‖2

hold with 0 < K ≤ G ≡ Kq < ∞.

For example, every quadratic function is (K, q)-strongly convex if the Hes-
sian matrix is positive definite. In the case of twice differentiable functions,
fairly simple tests are available for verifying that a function is (K,q)-strongly
convex, from Nemirovsky and Yudin [241]. Let ν1 be the smallest eigenvalue
and let ν2 be the largest eigenvalue of the Hessian matrix. If there exist pos-
itive constants K and G such that 0 < K ≤ ν1 ≤ ν2 ≤ G < ∞ for all θ
then the function L is (K, q)-strongly convex with q = G/K. Other tests are
possible that only assume the existence of the gradient g(θ) (see [146]).

The convergence rate result for a (1, λ)-ES using only selection and mu-
tation on a (K, q)-strongly convex loss function is geometric with a rate of
convergence

η =
(
1 −M2

λ,pq
2
)

where Mλ,p = E[Bλ:λ] > 0 and where Bλ:λ denotes the maximum of λ inde-
pendent identically distributed Beta random variables. The computation of
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Mλ,p is complicated since it depends on both the number of offspring λ and
the problem dimension p. Asymptotic approximations are available. Assuming
p is fixed and λ → ∞ then Mλ,p ≈ (2p−1 log λ)1/2. To extend this convergence
rate from a (1, λ)-ES to a (N,λ)-ES, note that each of the N parents generate
λ/N offspring. Then the convergence rate for the (N,λ)-ES where offspring
are only obtained by mutation is

η ≤ 1 − 2p−1 log(λ/N)

q2

for (K, q)-strongly convex functions.
Let us now discuss an alternative method based on approximating the

behavior of an idealized (N,λ)-ES as a solution to an ordinary differential
equation. Let r =

∥∥θ̄k − θ∗
∥∥, where θ̄k is the center of mass (sample mean)

of {θ̂k1, θ̂k2, . . . , θ̂kN}. Consider a loss function of the spherical-based form
L(θ) = f (‖θ − θ∗‖), where f is a strictly increasing function. Then, an ap-
proximate description of the ES is given by the differential equation

dr

dt
= −c(t)

p
r(t),

where each time increment (t) of unity represents one iteration of the ES
and c(t) is some function dependent on the ES coefficients, [46]. An idealized
ES may be based on the assumption that c(t) is a constant, say c∗. As dis-
cussed in [46], this is tantamount to knowing the value of r at every time,
and normalizing the mutation scale factor at each time so that it is propor-
tional to r. Obviously, this implementation of an ES is idealized because r
will almost certainly not be known in practice. Nevertheless, it provides a ba-
sis for some theoretical analysis. Solving the above differential equation with
constant c(t) = c∗ and then inverting to solve for t yields

t =
p

c∗
log

[
r(0)

r(t)

]
. (3.6)

Expression (3.6) provides a basis for an estimate of the number of time steps
to reach a given distance r(t). Ignoring negligible computation associated with
the algorithm itself (e.g., the random number generation), the total cost of
the algorithm is then the number of function evaluations per iteration times
the number of time steps.

3.5.3 Convergence Rates for GA Algorithms

Based on results in [306] and elsewhere, [341], Section 10.5 and [344] dis-
cuss how it is possible to cast the binary bit-based GA in the framework of
Markov chains. This allows for a rate of convergence analysis. Consider a GA
with a population size of N . Further, suppose that each population element
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is a binary string of length b bits. Hence, there are 2b possible strings for
an individual population element. Then the total number of unique possible
populations is given by (see [348])

Npop ≡ (N + 2b − 1)!

(2b − 1)!N !
.

It is possible to construct a Markov transition matrix Π that provides the
probability of transitioning from one population of size N to another popula-
tion of the same size. This transition matrix has dimension Npop ×Npop. An
individual element in the transition matrix can be computed according to the
formulas in [344] (see also [348]). These elements depend in a non-trivial way
on the population size, crossover rate, mutation rate, and number of elements
considered ‘elite.’

Of primary interest in analyzing the performance of GA algorithms using
Markov chains is the probability of obtaining a population that contains the
optimum θ∗. Let πk be an Npop×1 vector having jth component, πk(j), equal
to the probability that the kth generation will result in population j. From
basic Markov chain theory,

πT
k =πT

k−1Π=πT
0 Π

k

where π0 is an initial probability distribution.
The stationary distribution of the GA is then given by

π̄T ≡ lim
k→∞

πT
k = lim

k→∞
πT

0 Π
k.

Further, under standard ergodicity assumptions for Markov chains, π̄ satisfies
π̄T = π̄TΠ. This equation provides a mechanism for solving directly for the
stationary distribution (e.g., [168], pages 123-124).

Unfortunately, from a practical view, the Markov chain approach has a
significant deficiency. The dimension Npop grows very rapidly with increases
in the number of bits b and/or the population size N . An estimate of the size
of Npop can be obtained by Stirling’s approximation as follows:

Npop ≈
√

2π

(
1 +

2b − 1

N

)N (
1 +

N

2b − 1

)2b−1 (
1

2b − 1
+

1

N

)1/2

Thus far, our analysis using the above approach has been restricted to
scalar θ systems (requiring fewer bits b than a multivariate system) and low
N . Examples are given in [341], Section 10.5 and [344]. An approach for com-
pressing the size of the transition matrix (to emphasize only the most likely
states) is given in [343]. However, this approach is only useful in an adaptive
sense as the algorithm is running; it is not designed for a-priori efficiency
analysis.
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3.6 Comparative Analysis

3.6.1 Problem Statement and Summary of Efficiency Theory for
the Five Algorithms

This section uses the specific algorithm results in Sections 3.2 to 3.5 above in
drawing conclusions on the relative performance of the five algorithms. There
are obviously many ways one can express the rate of convergence, but it is
expected that, to the extent they are based on the theory outlined above, the
various ways will lead to broadly similar conclusions. We will address the rate
of convergence by focusing on the question:

With some high probability 1 − ρ (ρ a small number), how many L(·)
function evaluations, say n, are needed to achieve a solution lying in some
‘satisfactory set’ S(θ∗) containing θ∗?

With the random search algorithm in Section 3.2, we have a closed form
solution for use in questions of this sort while with the SPSA, SAN, and EC
algorithms of Sections 3.3 through 3.5, we must apply the existing asymptotic
results, assuming that they apply to the finite-sample question above. For
the GA, there is a finite sample solution using the Markov chain approach.
For each of the five algorithms, we will outline below an analytical expression
useful in addressing the question. After we have discussed the analytical ex-
pressions, we present a comparative analysis in a simple problem setting for
varying p.

Random Search

We can use (3.1) to answer the question above. Setting the left-hand side of
(3.1) to 1 − ρ and supposing that there is a constant sampling probability
P ∗ = P{θnew(k) ∈ S(θ∗)} for all k, we have

n =
log ρ

log (1 − P ∗)
. (3.7)

Although (3.7) may appear benign at first glance, this expression grows
rapidly as p gets large due to P ∗ approaching 0. (A numerically stable approx-
imation that is useful with small P ∗ is given in [341], page 62). Hence, (3.7)
shows the extreme inefficiency of simple random search in higher-dimensional
problems as illustrated in the study below. Note that while (3.7) is in terms

of the iterate θ̂k, a result related to the rate of convergence for L(θ̂k) is given
in [265], page 24; this result is in terms of extreme value distributions and
also confirms the inefficiency of simple random search algorithms in high-
dimensional problems.

Simultaneous Perturbation Stochastic Approximation

As mentioned in Section 3.4, there is no known asymptotic normality re-
sult in the case of noise-free measurements of L(θ) (although Gerencsér and
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Vágó, [138], show that the rate of convergence is geometric with an unknown
constant governing the decay). Nonetheless, a conservative representation of
the rate of convergence is available by assuming a noisy case with small levels
of noise. Then we know from (4.4) that the approximate distribution of θ̂k

with optimal decay rates for the gains ak and ck is N (θ∗ + µ/k1/3, Σ/k2/3).
In principle, then, one can use this distribution to compute the probabilities
associated with arbitrary sets S(θ∗), and these probabilities will be directly a
function of k. In practice, due to the correlation in Σ, this may not be easy
and so inequalities such as in [363], Chapter 2 can be used to provide bounds

on P{θ̂k ∈ S(θ∗}) in terms of the marginal probabilities of the θ̂k elements.
For purposes of insight, consider a case where the covariance matrix Σ is

diagonal. If S(θ∗) is a hypercube of the form [s−1 , s
+
1 ] × [s−2 , s

+
2 ] × ... ×

[s−p , s
+
p ], then P{θ̂k ∈ S(θ∗)} is a product of the marginal normal probabilities

associated with each element of θ̂k lying in its respective interval [s−i , s
+
i ] ,

i = 1, 2, . . . , p. Such diagonal covariance matrices arise when the loss function
is separable in each of the components of θ. Then we can find the k such
that the product of probabilities equals 1 − ρ. To illustrate more specifically,
suppose further that Σ = σ2I, the µ/k1/3 term in the mean is negligible, that
S(θ∗) is centered around θ∗, and that δs ≡ s+i − s−i for all i. (i.e., s+i − s−i
does not depend on i). Then for a specified ρ, we seek the n such that P{θ̂k ∈
S(θ∗)} = P{θ̂ki ∈ [s−i , s

+
i ]}p = 1 − ρ. From standard N (0, 1) distribution

tables, there exists a displacement factor, say d(p), such that the probability
contained within ±d(p) units contains probability amount (1 − ρ)1/p; we are
interested in the k such that 2d(p)σ/k1/3 = δs. From the fact that SPSA
uses two L(θ∗) evaluations per iteration, the value n to achieve the desired

probability for θ̂k ∈ S(θ∗) is then

n = 2

(
2d(p)σ

δs

)3

.

Unfortunately, the authors are unaware of any convenient analytical form
for determining d(p), which would allow a ‘clean’ analytical comparison with
the efficiency formula (3.7) above (a closed-form approximation to normal
probabilities of intervals is given in [171], pages 55-57, but this approximation
does not yield a closed form for d(p)).

Simulated Annealing

Because SAN, like SPSA, has an asymptotic normality result, the method
above for characterizing the rate of convergence for SPSA may also be used
here. Again, we shall consider the case where the covariance matrix is diagonal
(Σ = σ2I). Assume also that S(θ∗) is a hypercube of the form [s−1 , s

+
1 ] ×

[s−2 , s
+
2 ] × ... × [s−p , s

+
p ] centered around θ∗, and that δs ≡ s+i − s−i ,

for all i. The (positive) constant B0 is assumed small enough that it can be
ignored. At each iteration after the first, SAN must evaluate L(θ∗) only once
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per iteration. So the value n to achieve the desired probability for θ̂k ∈ S(θ∗)
is

log n1−γ =

(
2d(p)σ

δs

)2

.

Evolution Strategy

As discussed in Section 3.5, the rate-of-convergence results for algorithms
of the evolutionary computation type are not as well developed as for the
other three algorithms of this chapter. Theorem 2 gives a general bound on
E[L(θ̂k)−L(θ∗)] for application of a (N,λ)-ES form of EC algorithm to (K, q)-
strongly convex functions. A more explicit form of the bound is available
for the (1, λ)-ES. Unfortunately, even in the optimistic case of an explicit

numerical bound on E[L(θ̂k) − L(θ∗)], we cannot readily translate the bound

into a probability calculation for θ̂k ∈ S(θ∗), as used above (and, conversely,

the asymptotic normality result on θ̂k for SPSA and SAN cannot be readily
translated into one on L(θ̂k) since ∂L/∂θ = 0 at θ∗, see, e.g., [327], pages
122-124, although Lehmann in [204], pages 338-339 suggests a possible means
of coping with this problem via higher-order expansions). So, in order to make
some reasonable comparison, let us suppose that we can associate a set S(θ∗)
with a given deviation from L(θ∗), i.e., S(θ∗) = {θ : L(θ̂k) − L(θ∗) ≤ ε} for
some prespecified tolerance ε > 0 (note that S(θ∗) is a function of ε). As

presented in [308], E[L(θ̂k)−L(θ)] ≤ ηk for sufficiently large k, where η is the
convergence rate in Section 3.5. Then by Markov’s inequality,

1 − P{θ̂k ∈ S(θ∗)} ≤ E[L(θ̂k) − L(θ∗)]
ε

≤ ηk

ε
(3.8)

indicating that P{θ̂k ∈ S(θ∗)} is bounded below by the ES bounds mentioned
in Section 3.5. For EC algorithms in general (and ES in particular), there are
λ evaluations of the loss function for each generation k so that n = λk, where

k =
log ρ− log(1/ε)

log
[
1 − 2

pq2 log(λ/N)
] . (3.9)

We also report results related to the differential equation solution (3.6).
As noted, this solution is tied to some restrictions, namely to loss functions
of the spherical-based form L(θ) = f (‖θ − θ∗‖) and to an idealized ES with
a mechanism for adaptively scaling the mutation magnitude according to the
current distance r =

∥∥θ̄k − θ∗
∥∥. Further, as a deterministic approximation to

a stochastic algorithm, there is no simple way to determine the probability
ρ defined above. If, as mentioned above, we consider S(θ∗) in the form of
a hypercube [s−1 , s

+
1 ] × [s−2 , s

+
2 ] × ... × [s−p , s

+
p ], we can specify a rinside

that defines the radius of the largest hypersphere that is contained within the
hypercube and routside that defines the radius of the smallest hypersphere that
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lies outside (i.e., contains) the hypercube. The number of function evaluations
needed to yield a solution in S(θ∗) is then bounded above and below by the
number required for a solution to lie in these inside and outside hyperspheres.
That is, substituting rinside or routside for r(t) in the right-hand side of (3.6)
yields an upper and lower bound, respectively, to the number of time steps,
which, by the appropriate multiplication, yields bounds to the number of
function evaluations.

Genetic Algorithm

As mentioned in Section 3.5, while the GA has a relatively clean theory that
applies in both finite and asymptotic samples, there are significant challenges
in computing the elements of the Markov transition matrix Π. The number
of possible states – corresponding to the number Npop of possible populations
– grows extremely rapidly with the number of population elements N or the
number of bits b. The computation of the Npop × Npop transition matrix Π
quickly overwhelms even the most powerful current or foreseeable personal
computers.

Nevertheless, in principle, the Markov structure is convenient for estab-
lishing a convergence rate for the GA. Recall that πk is the Npop × 1 vector
having jth component, πk(j), equal to the probability that the kth genera-
tion will result in population j. Let us denote by SJ the set of indices j such
that population j contains at least one member lying inside S(θ∗). Hence,
SJ ⊆ {1, 2, . . . , N}. Then

n = N + (N −Nelite) min

⎧⎨⎩k :
∑
j∈SJ

πk(j) ≥ 1 − ρ

⎫⎬⎭,

where Nelite denotes the number of elite elements in the population being
saved from one generation to the next and we have assumed that all non-elite
function evaluations are not ‘saved’ from one generation to the next (i.e.,
every generation entails N −Nelite function evaluations).

3.6.2 Application of Convergence Rate Expressions for Varying p

We now apply the results above to demonstrate relative efficiency for vary-
ing p. Because the GA result is computationally explosive as p gets larger
(requiring a larger bit string length and/or population size), we restrict the
comparison here to the four algorithms: random search, SPSA, SAN and ES.
Let Θ = [0, 1]p (the p-dimensional hypercube with minimum and maximum
θ values of 0 and 1 for each component). We want to guarantee with proba-
bility 0.90 that each element of θ is within 0.04 units of the optimal. Let the
(unknown) optimal θ, θ∗, lie in (0.04, 0.96)p. The individual components of θ∗

are θ∗i . Hence,
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S(θ∗) = [θ∗1 − 0.04, θ∗1 + 0.04] × [θ∗2 − 0.04, θ∗2 + 0.04] × . . .

×[θ∗p − 0.04, θ∗p + 0.04] ⊂ Θ.

Table 3.1 is a summary of relative efficiency for the setting above for
p = 2, 5, and 10; the efficiency is normalized so that all algorithms perform
equally at p = 1, as described below. The numbers in Table 3.1 are the ratios
of the number of loss measurements for the given algorithm over the number
for the best algorithm at the specified p; the highlighted values 1.0 indicate
the best algorithm for each of the values of p. To establish a fair basis for
comparison, we fixed the various parameters in the expressions above (e.g.,
σ in SPSA and SAN, λ for the ES, etc.) so that the algorithms produced
identical efficiency results for p = 1 (requiring n = 28 measurements to achieve
the objective outlined above). These parameters do not explicitly depend on
p. We then use these parameter settings as p increases. Of course, in practice,
algorithm parameters are typically tuned for each new problem, including
changes in p. Hence, the results may not reflect practical relative efficiency,
including the cost of the tuning process. Rather, they point towards general
efficiency trends as a function of problem dimension in the absence of problem-
specific tuning.

For the random sampling algorithm, suppose uniform sampling on Θ is
used to generate θnew(k) for all k. Then, P ∗ = 0.08p. For SPSA, we fix σ such
that the same number of function measurements in the p = 1 case (n = 28)
is used for both random search and SPSA (so δs = 0.08 and σ = 0.0586).
Likewise, for SAN, we fix σ to achieve the same objective (so δs = 0.08 and
σ = 0.031390). Also, for convenience, take γ = 1/2. To compare the (N,λ)-ES
algorithm with the random search, SPSA, and SAN algorithms, it is assumed
that the loss function is restricted to the (K, q)-strongly convex functions or
spherical-based forms discussed in Section 3.5. Also let λ = 14, N = 7, ε = 8.3,
q = 4, and ρ = 0.1. The variables were constrained here so that for p = 1,
we have the same n (= 28) as realized for the other algorithms. Table 3.1
summarizes the performance comparison results.

Table 3.1. Ratios of loss measurements needed relative to best algorithm at each
p, for 1 ≤ p ≤ 10

p = 1 p = 2 p = 5 p = 10

Random search 1.0 11.6 8970 2 × 109

SPSA 1.0 1.5 1.0 1.0

SAN 1.0 1.0 2.2 4.1

ES (from (3.8), (3.9)) 1.0 1.9 1.9 2.8

ES (from (3.6) w. inside hypersphere) 1.0 2.1 2.4 3.8

ES (from (3.6) w. outside hypersphere) 1.0 1.8 1.8 2.6
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Table 3.1 illustrates the explosive growth in the relative (and absolute)
number of loss evaluations needed as p increases for the random search al-
gorithm. The other algorithms perform more comparably, but there are still
some non-negligible differences. For example, at p = 5, SAN will take 2.2
times more loss measurements than SPSA to achieve the objective of having
θ̂k inside S(θ∗) with probability 0.90. Of course, as p increases, all algorithms
take more measurements; the table only shows relative numbers of function
evaluations (considered more reliable than absolute numbers).

This large improvement of SPSA and SAN relative to random search may
partly result from the more restrictive regularity conditions of SPSA and SAN
(i.e., for formal convergence, SPSA assumes a several-times-differentiable loss
function) and partly from the fact that SPSA and SAN work with implicit
gradient information via gradient approximations. (The reasons for improve-
ment with ES are less clear due to the lack of an identifiable connection to the
gradient.) Of course, to maintain a fair comparison, SPSA and SAN, like the
other algorithms here, explicitly use only loss evaluations, no direct gradient
information. On the other hand, there are some differences between SPSA
and SAN. The different gradient approximations in SPSA and SAN may ex-
plain their relative efficiency. The ‘Metropolis-type approximation appears to
be much farther away from an exact gradient-based algorithm than a finite-
difference approximation’ ( [134], page 128). By contrast, SPSA, recall, uses
a (highly efficient) finite-difference-like approximation to the gradient.

The performance for ES is quite good. The restriction to strongly convex
loss functions (from (3.8) and (3.9)) or spherical losses (from (3.6)), however,
gives the ES in this setting a strong structure not available to the other
algorithms. It remains unclear what practical theoretical conclusions can be
drawn on a broader class of problems. More advanced sensitivity studies for
various λ, N , and q have not yet been completed. Further, the inequality in
(3.8) provides an optimistic assessment of the convergence rate. Ideally, a more
general rate-of-convergence theory will provide a more broadly applicable basis
for comparison.
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Summary. We consider optimization problems involving coherent measures of risk.
We derive necessary and sufficient conditions of optimality for these problems, and
we discuss the nature of the nonanticipativity constraints. Next, we introduce dy-
namic measures of risk, and formulate multistage optimization problems involving
these measures. Conditions similar to dynamic programming equations are devel-
oped. The theoretical considerations are illustrated with many examples of mean-risk
models applied in practice.

4.1 Introduction

Consider a stochastic system whose output variable Z is a real valued random
variable. If it depends on some decision vector x ∈ R

n, we can write the
relation

Z(ω) = f(x, ω), ω ∈ Ω.

Here f : R
n ×Ω → R, and (Ω,F) is a measurable space. To focus attention,

we shall be interested in the case when smaller values of Z are ‘better’, for
example, Z may represent random cost or losses. It will be obvious how our
considerations can be adapted to the case of reverse preferences.

In order to find the ‘best’ values of the decision vector x we can formulate
the stochastic optimization problem

min
x∈S

{
φ(x)

.
= EP [f(x, ω)]

}
,

where S ⊂ R
n is a set of feasible decision vectors, and P is a probability mea-

sure (distribution) on the sample space (Ω,F). The theory of such stochastic
optimization problems and numerical methods for their solution are well de-
veloped (see [312]).

There are two basic difficulties associated with the above formulation.
First, it is assumed that the probability distribution P is known. In real life
applications the probability distribution is never known exactly. In some cases
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it can be estimated from historical data by statistical techniques. However, in
many cases the probability distribution neither can be estimated accurately
nor remains constant. Even worse, quite often one subjectively assigns cer-
tain weights (probabilities) to a finite number of possible realizations (called
scenarios) of the uncertain data. Such a simplified model can hardly be con-
sidered an accurate description of the reality.

The second basic question is why we want to optimize the expected value
of the random outcome Z. In some situations the same decisions under similar
conditions are made repeatedly over a certain period of time. In such cases
one can justify optimization of the expected value by arguing that, by the Law
of Large Numbers, it gives an optimal decision on average. However, because
of the variability of the data, the average of the first few results may be very
bad. For example, one may lose all his investments, and it does not help that
the decisions were optimal on average.

For these reasons, quantitative models of risk and risk aversion are needed.
There exist several approaches to model decision making under risk. The
classical approach is based on the expected utility theory of von Neumann
and Morgenstern [385]. One specifies a disutility function3 g : R → R and
formulates the problem

min
x∈S

{
φg(x)

.
= EP

[
g(f(x, ω))

]}
. (4.1)

Unfortunately, it is extremely difficult to elicit the disutility function of a
decision maker.

The second approach is to specify constraints on risk. The most common
is the Value at Risk constraint, which involves the critical value zmax allowed
for risk exposure, and the probability pmax of excessive outcomes:

P
[
Z ≥ zmax

]
≤ pmax.

In the stochastic optimization literature such constraints are called probabilis-
tic or chance constraints [280]. Variations of this concept are known as inte-
grated chance constraints [152], Conditional Value at Risk [300], or expected
shortfall [1].

A direct way to deal with the issue of uncertain probability distribution, is
to identify a plausible family A of probability distributions and, consequently,
to consider the min-max problem

min
x∈S

{
φ(x)

.
= sup

P∈A
EP [f(x, ω)]

}
. (4.2)

The idea of the worst-case (min-max) formulation is not new of course. It goes
back to von Neumann’s game theory and was already discussed, for example

3We consider here minimization problems, and that is why we speak about disu-
tility. Any disutility function g corresponds to a utility function u : R → R defined by
u(−z) = −g(z). Note that the function u is concave and increasing (nondecreasing)
if and only if the function g is convex and increasing (nondecreasing).
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in the context of stochastic programming, in Žáčková [388] almost 40 years
ago.

The attempts to overcome the drawbacks of the expected value optimiza-
tion have also a long history. One can try to reach a compromise between
the optimization on average and the minimization of a certain measure of the
involved risk. This leads to the formulation

min
x∈S

{
φ(x)

.
= ρ[F (x)]

}
, (4.3)

where ρ(Z) is a mean-risk measure, defined on a space of random variables
Z : Ω → R, and [F (x)](ω) = f(x, ω). The classical mean-variance risk measure
ρ(Z)

.
= E[Z] + cVar[Z], where c is a non-negative constant, is going back to

Markowitz [214].
There are several problems with the mean-variance risk measure. First,

the expectation and variance are measured in different units. Second, the
mean-variance model is not consistent with the classical relation of stochastic
dominance, which formalizes risk-averse preferences [246].

In recent years risk analysis came under intensive investigation, in par-
ticular from the point of view of the optimization theory. In this chapter we
discuss a general theory of optimization of risk measures. We show, in particu-
lar, that the above approaches of min-max formulation (4.2) and risk measure
formulation (4.3), in a sense, are equivalent to each other.

We also introduce and analyze new models of dynamic optimization prob-
lems involving risk functions. We introduce the concept of conditional risk
mappings, and we derive dynamic programming relations for the correspond-
ing optimization models. In this way we provide an alternative approach to
the recent works [17, 119, 266, 294], where various dynamic risk models are
considered.

4.2 Risk Functions

In this section we give a formal definition of risk functions and we discuss their
basic properties. Let (Ω,F) be a sample space, equipped with sigma algebra
F , on which considered uncertain outcomes (random functions Z = Z(ω))
are defined. By a risk function we understand a function ρ(Z) which maps Z
into the extended real line R = R ∪ {+∞} ∪ {−∞}. In order to make this
concept precise we need to define a space Z of allowable random functions
Z(ω) for which ρ(Z) is defined. It seems that a natural choice of Z will be the
space of all F-measurable functions Z : Ω → R. However, typically, this space
is too large for development of a meaningful theory. In almost all interesting
examples considered in this chapter we deal with the space4 Z .

= Lp(Ω,F , P ).
We will discuss an appropriate choice of the space Z later.

4Recall that Lp(Ω,F , P, R
n) denotes the linear space of all F-measurable func-

tions ψ : Ω → R
n such that

∫
Ω
‖ψ(ω)‖p dP (ω) < +∞. More precisely, an element of
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We assume throughout this chapter that Z is a linear space of F-
measurable functions and considered risk functions ρ : Z → R are proper.
That is, ρ(Z) > −∞ for all Z ∈ Z and the domain

dom(ρ)
.
= {Z ∈ Z : ρ(Z) < +∞}

is non-empty. We consider the following axioms associated with a risk func-
tion ρ. For Z1, Z2 ∈ Z we denote by Z2 � Z1 the pointwise partial order
meaning Z2(ω) ≥ Z1(ω) for all ω ∈ Ω.

(A1) Convexity:

ρ(αZ1 + (1 − α)Z2) ≤ αρ(Z1) + (1 − α)ρ(Z2)

for all Z1, Z2 ∈ Z and all α ∈ [0, 1].
(A2) Monotonicity: If Z1, Z2 ∈ Z and Z2 � Z1, then ρ(Z2) ≥ ρ(Z1).
(A3) Translation Equivariance: If a ∈ R and Z ∈ Z, then ρ(Z+a) = ρ(Z)+a.
(A4) Positive Homogeneity: If α > 0 and Z ∈ Z, then ρ(αZ) = αρ(Z).

These axioms were introduced, and risk functions satisfying (A1)–(A4)
were called coherent risk measures, in Artzner et al. [16].

In order to proceed with the analysis we need to associate with the space
Z a dual space Z∗ of measures such that the scalar product

〈µ,Z〉 .
=

∫
Ω

Z(ω) dµ(ω) (4.4)

is well defined for all Z ∈ Z and µ ∈ Z∗. That is, we assume that Z∗ is a linear
space of finite signed measures5 µ on (Ω,F) such that

∫
Ω
|Z| d|µ| < +∞ for

all Z ∈ Z. We assume that Z and Z∗ are paired (locally convex topological
vector) spaces. That is, Z and Z∗ are equipped with respective topologies
which make them locally convex topological vector spaces and these topologies
are compatible with the scalar product (4.4), i.e., every linear continuous
functional on Z can be represented in the form 〈µ, ·〉 for some µ ∈ Z∗, and
every linear continuous functional on Z∗ can be represented in the form 〈·, Z〉
for some Z ∈ Z. In particular, we can equip each space Z and Z∗ with its
weak topology induced by its paired space. This will make Z and Z∗ paired
locally convex topological vector spaces provided that for any Z ∈ Z \ {0}

Lp(Ω,F , P, R
n) is a class of such functions ψ(ω) which may differ from each other

on sets of P -measure zero. For n = 1 we denote this space by Lp(Ω,F , P ). Unless
stated otherwise, while dealing with these spaces we assume that p ∈ [1, +∞), P is
a probability measure on (Ω,F) and expectations are taken with respect to P . For

ψ ∈ Lp(Ω,F , P ), its norm ‖ψ‖p
.
=
(∫

Ω
|ψ(ω)|p dP (ω)

)1/p
.

5Recall that a finite signed measure µ can be represented in the form µ = µ+−µ−,
where µ+ and µ− are non-negative finite measures on (Ω,F). This representation
is called the Jordan decomposition of µ. The measure |µ| = µ+ + µ− is called the
total variation of µ.
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there exists µ ∈ Z∗ such that 〈µ,Z〉 �= 0, and for any µ ∈ Z∗ \{0} there exists
Z ∈ Z such that 〈µ,Z〉 �= 0.

If Z .
= Lp(Ω,F , P ), we can consider its dual space Z∗ .

= Lq(Ω,F , P ),
where q ∈ (1,+∞] is such that 1/p + 1/q = 1. Here Z, equipped with the
respective norm, is a Banach space and Z∗ is its dual Banach space. In order
to make these spaces paired spaces we can equip Z with its strong (norm)
topology and Z∗ with its weak∗ topology. Moreover, if p ∈ (1,+∞), then
Z and Z∗ are reflexive Banach spaces. In that case, they are paired spaces
when equipped with their strong topologies. Note also that in this case every
measure µ ∈ Z∗ has a density ζ ∈ Lq(Ω,F , P ), i.e., dµ = ζdP . When dealing
with these spaces we identify the corresponding measure with its density and
for Z ∈ Lp(Ω,F , P ) and ζ ∈ Lq(Ω,F , P ) we use the scalar product

〈ζ, Z〉 .
=

∫
Ω

ζ(ω)Z(ω) dP (ω).

Unless stated otherwise we always assume the following.

(C) For every A ∈ F the space Z contains the indicator6 function IA.

Since the space Z is linear, this implies that Z contains all step functions of
the form

∑m
i=1 αiIAi

, where ai ∈ R and Ai ∈ F , i = 1, . . . ,m. This holds true,
in particular, for every space Z .

= Lp(Ω,F , P ).
The partial order in the space Z, appearing in condition (A2), is defined

by the cone
Z+

.
= {Z ∈ Z : Z(ω) ≥ 0, ∀ω ∈ Ω},

i.e., Z2 � Z1 if and only if Z2 − Z1 ∈ Z+. Consider the cone Z∗
+ of all non-

negative measures in the space Z∗. For any Z ∈ Z+ and any µ ∈ Z∗
+, we have

that 〈µ,Z〉 ≥ 0. Moreover, because of assumption (C) above, we have that
Z∗

+ coincides with the dual cone of the cone Z+, which is defined as the set
of µ ∈ Z∗ such that 〈µ,Z〉 ≥ 0 for all Z ∈ Z+.

We can now formulate the basic (conjugate) duality result. Recall that the
conjugate function ρ∗ : Z∗ → R of a risk function ρ is defined as

ρ∗(µ)
.
= sup

Z∈Z

{
〈µ,Z〉 − ρ(Z)

}
, (4.5)

and the conjugate of ρ∗ (the biconjugate function) as

ρ∗∗(Z)
.
= sup

µ∈Z∗

{
〈µ,Z〉 − ρ∗(µ)

}
.

By lsc(ρ) we denote the lower semicontinuous hull of ρ taken with respect
to the considered topology of Z. The following is the basic duality result of
convex analysis (see, e.g., [299, Theorem 5] for a proof).

6Recall that the indicator function IA is defined as IA(ω) = 1 for ω ∈ A and
IA(ω) = 0 for ω �∈ A.
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Theorem 1 (Fenchel-Moreau). Suppose that function ρ : Z → R is convex
and proper. Then ρ∗∗ = lsc(ρ).

It follows that if ρ is convex and proper, then the representation

ρ(Z) = sup
µ∈Z∗

{
〈µ,Z〉 − ρ∗(µ)

}
(4.6)

holds true if ρ is lower semicontinuous. Conversely, if (4.6) is satisfied for some
function ρ∗(·), then ρ is lower semicontinuous and convex. Note also that if
ρ is proper, lower semicontinuous and convex, then its conjugate function ρ∗

is proper. Let us also remark that if Z is a Banach space and Z∗ is its dual
(e.g., Z = Lp(Ω,F , P ) and Z∗ = Lq(Ω,F , P )) and ρ is convex, then ρ is lower
semicontinuous in the weak topology if and only if it is lower semicontinuous
in the strong (norm) topology.

If the set Ω is finite, say Ω = {ω1, . . . , ωK}, then the technical level of the
analysis simplifies considerably. Every function Z ∈ Z can be identified with
the vector (Z(ω1), . . . , Z(ωK)). Thus the space Z is finite dimensional, Z =
R

K , and can be paired with itself. Moreover, in the finite dimensional case, if ρ
is proper and convex, then it is continuous (and hence lower semicontinuous)
at every point in the interior of its domain. In particular, it is continuous at
every point if it is real valued. In order to avoid technical details one can be
tempted to restrict the discussion to finite sample spaces. However, apart from
restricting the generality, this would result in losing some important essentials
of the analysis. It turns out that some important properties enjoyed by risk
functions in the case of finite Ω do not extend to continuous distributions (see
the examples in the next section).

As it was discussed above, in order for the representation (4.6) to hold we
only need the convexity (condition (A1)) and lower semicontinuity properties
to be satisfied. Let us observe that (4.6) is equivalent to

ρ(Z) = sup
µ∈A

{
〈µ,Z〉 − ρ∗(µ)

}
, (4.7)

where
A .

= {µ ∈ Z∗ : ρ∗(µ) < +∞}

is the domain of ρ∗. It is not difficult to show that if representation (4.6) (or,
equivalently, representation (4.7)) holds true, then condition (A2) is satisfied
if and only if the set A contains only non-negative measures, and condition
(A3) is satisfied if and only if µ(Ω) = 1 for every µ ∈ A (cf. [314]). We obtain
that if conditions (A1)–(A3) are satisfied and ρ is lower semicontinuous, then
the representation (4.7) holds true with A ⊂ P, where P denotes the set of
all probability measures in the space Z∗.
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Moreover, if Z is a Banach lattice7 and ρ satisfies conditions (A1) and (A2),
then ρ is continuous at every point8 Z ∈ int(dom(ρ)) ( [314]). Note that every
space Lp(Ω,F , P ) is a Banach lattice. Also if ρ is positively homogeneous,
then ρ∗(µ) = 0 for µ ∈ A and ρ∗(µ) = +∞ otherwise. Therefore we have the
following. Recall that

P .
=
{
ζ ∈ Lq(Ω,F , P ) :

∫
Ω
ζ(ω) dP (ω) = 1, ζ � 0

}
denotes the set of probability measures in the dual space Lq(Ω,F , P ).

Theorem 2. Suppose that Z .
= Lp(Ω,F , P ), risk function ρ : Z → R is

proper and conditions (A1)–(A3) are satisfied. Then for all Z ∈ int(dom(ρ))
it holds that

ρ(Z) = sup
ζ∈P

{
〈ζ, Z〉 − ρ∗(ζ)

}
. (4.8)

If, moreover, ρ is positively homogeneous, then there exists a non-empty con-
vex closed set A ⊂ P such that for all Z ∈ int(dom(ρ)) it holds that

ρ(Z) = sup
ζ∈A

〈ζ, Z〉. (4.9)

In this way we have established the equivalent representation of convex risk
functions, which corresponds to the min-max model (4.2).

In various forms of generality the above dual representations of convex
risk functions were derived in [16, 127, 301, 314]. If the set Ω is finite, say
Ω = {ω1, . . . , ωK} with respective (positive) probabilities p1, . . . , pK , then
the corresponding set

P =
{
ζ ∈ R

K :
∑K

k=1 pkζk = 1, ζ ≥ 0
}

is bounded, and hence the set A is also bounded. It follows that if Ω is finite
and ρ is proper and conditions (A1)–(A4) are satisfied, then ρ(·) is real valued
and representation (4.9) holds.

4.3 The Utility Model

It is also possible to relate the theory of convex risk functions with the utility
model (4.1). Let Z .

= Lp(Ω,F , P ) and Z∗ .
= Lq(Ω,F , P ), and let g : R → R

7It is said that Banach space Z is a Banach lattice, with respect to the considered
partial order defined by the cone Z+, if Z is a lattice, i.e., for any Z1, Z2 ∈ Z the
element max{Z1(·), Z2(·)} also belongs to Z, and moreover if |Z1(·)| ≤ |Z2(·)|, then
‖Z1‖ ≤ ‖Z2‖.

8We denote by int(dom(ρ)) the interior of the domain of ρ. That is, Z ∈
int(dom(ρ)) if there is a neighborhood N of Z such that ρ(Z′) is finite for all
Z′ ∈ N .
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be a proper convex lower semicontinuous function such that the expectation
E[g(Z)] is well defined9 for all Z ∈ Z. We can view the function g as a disutility
function. Consider the risk function

ρ(Z)
.
= E[g(Z)] (4.10)

and assume that ρ is proper. Since g is lower semicontinuous and convex, we
have that

g(z) = sup
α∈R

{αz − g∗(α)} ,

where g∗ is the conjugate of g. As g is proper, the conjugate function g∗ is
also proper. It follows that

ρ(Z) = E

[
sup
α∈R

{αZ − g∗(α)}
]
. (4.11)

We use the following interchangeability principle (see, e.g., Rockafellar and
Wets [302, Theorem 14.60]). It is said that a linear space M of F-measurable
functions ψ : Ω → R

m is decomposable if for every ψ ∈ M and B ∈ F ,
and every bounded and F-measurable function W : Ω → R

m, the space M
also contains the function V (·) .

= IΩ\B(·)ψ(·) + IB(·)W (·). In the subsequent
analysis we work with spaces M .

= Lp(Ω,F , P,Rm) which are decomposable.
Now let M be a decomposable space and h : R

m ×Ω → R be a random lower
semicontinuous function10. Then

E

[
inf

y∈Rm
h(y, ω)

]
= inf

Y ∈M
E
[
HY

]
, (4.12)

where HY (ω)
.
= h(Y (ω), ω), provided that the right hand side of (4.12) is less

than +∞. Moreover, if the common value of both sides in (4.12) is not −∞,
then

Ȳ ∈ argminY ∈M E[HY ] ifandonlyif Ȳ (ω) ∈ argminy∈Rm h(y, ω) for a.e. ω ∈ Ω.

Clearly the above interchangeability principle can be applied to a maximiza-
tion, rather than minimization, procedure simply by replacing function h(y, ω)
with −h(y, ω).

Let us return to the dual formulation (4.11) of the risk function (4.10). By
using the interchangeability formula (4.12) with h(α, ω)

.
= −[αZ(ω) − g∗(α)]

we obtain
ρ(Z) = sup

ζ∈Z∗

{
〈ζ, Z〉 − E[g∗(ζ)]

}
. (4.13)

9It is allowed here for E[g(Z)] to take value +∞, but not −∞ since the corre-
sponding risk function is required to be proper.

10A function h : R
m×Ω → R is said to be random lower semicontinuous if its epi-

graphical mapping is closed valued and measurable. Random lower semicontinuous
functions are also called normal integrands (cf. [302, Definition 14.27]).
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It follows that ρ is convex and lower semicontinuous, and representation (4.6)
holds with

ρ∗(ζ) = E[g∗(ζ)].

Moreover, if the function g is nondecreasing, then ρ satisfies the monotonicity
condition (A2). However, the risk function ρ does not satisfy condition (A3)
unless g(z) ≡ z, and ρ is not positively homogeneous unless g is positively
homogeneous.

4.4 Examples of Risk Functions

In this section we discuss several examples of risk functions which are com-
monly used in applications. In the following, P is a (reference) probability
measure on (Ω,F) and, unless stated otherwise, all expectations and proba-
bilistic statements are made with respect to P .

Example 1 (Mean-variance risk function). Consider

ρ(Z)
.
= E[Z] + cVar[Z], (4.14)

where c ≥ 0 is a given constant. It is natural to use here the space Z .
=

L2(Ω,F , P ) since for any Z ∈ L2(Ω,F , P ) the expectation E[Z] and variance
Var[Z] are well defined and finite.

By direct calculation we can verify that

Var[Z] =
∥∥Z − E[Z]

∥∥2
= sup

ζ∈Z

{
〈ζ, Z − E[Z]〉 − 1

4
‖ζ‖2

}
,

where the scalar products and the norms are in the sense of the (Hilbert)
space L2(Ω,F , P ). Since 〈ζ, Z −E[Z]〉 = 〈ζ −E[ζ], Z〉 we can rewrite the last
expression as follows:

Var[Z] = sup
ζ∈Z

{
〈ζ − E[ζ], Z〉 − 1

4
‖ζ‖2

}
= sup

ζ∈Z

{
〈ζ − E[ζ], Z〉 − 1

4
Var[ζ] − 1

4

(
E[ζ]

)2}
.

Consequently, the above maximization can be restricted to such ζ ∈ Z that
E[ζ] = 0, and hence

Var[Z] = sup
ζ∈Z

E[ζ]=0

{
〈ζ, Z〉 − 1

4
Var[ζ]

}
.

Therefore the risk function ρ, defined in (4.14), can be equivalently ex-
pressed for c > 0 as follows:
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ρ(Z) = E[Z] + c sup
ζ∈Z

E[ζ]=0

{
〈ζ, Z〉 − 1

4
Var [ζ]

}
= sup

ζ∈Z
E[ζ]=1

{
〈ζ, Z〉 − 1

4c
Var[ζ]

}
.

It follows that for any c ≥ 0 the function ρ is convex and lower semicontinuous.
Furthermore

ρ∗(ζ) =

{
1
4cVar[ζ], if E[ζ] = 1,

+∞, otherwise.

The function ρ satisfies the translation equivariance condition (A3), because
the domain of its conjugate contains only ζ such that E[ζ] = 1. However, for
any c ≥ 0 the function ρ is not positively homogeneous and it does not satisfy
the monotonicity condition (A2), because the domain of ρ∗ contains density
functions which are not non-negative.

Example 2 (Mean-deviation risk function of order p). For Z .
= Lp(Ω,F , P ),

Z∗ .
= Lq(Ω,F , P ) and c ≥ 0 consider

ρ(Z)
.
= E[Z] + c

(
E
[
|Z − E[Z]|p

])1/p
. (4.15)

Note that
(
E
[
|Z|p

])1/p
= ‖Z‖p, where ‖ · ‖p denotes the norm of the space

Lp(Ω,F , P ). We have that

‖Z‖p = sup
‖ζ‖q≤1

〈ζ, Z〉,

and hence(
E
[
|Z − E[Z]|p

])1/p
= sup

‖ζ‖q≤1

〈ζ, Z − E[Z]〉 = sup
‖ζ‖q≤1

〈ζ − E[ζ], Z〉.

It follows that representation (4.9) holds with the set A given by

A = {ζ ′ ∈ Z∗ : ζ ′ = 1 + ζ − E[ζ], ‖ζ‖q ≤ c} .

We obtain here that ρ satisfies conditions (A1), (A3) and (A4).
The monotonicity condition (A2) is more involved. Suppose that p = 1.

Then q = +∞ and hence for any ζ ′ ∈ A and P -almost every ω ∈ Ω we have

ζ ′(ω) = 1 + ζ(ω) − E[ζ] ≥ 1 − |ζ(ω)| − E[ζ] ≥ 1 − 2c.

It follows that if c ∈ [0, 1/2], then ζ ′(ω) ≥ 0 for P -almost every ω ∈ Ω,
and hence condition (A2) follows. Conversely, take ζ

.
= c(−IA + IΩ\A), for

some A ∈ F , and ζ ′ = 1 + ζ − E[ζ]. We have that ‖ζ‖∞ = c and ζ ′(ω) =
1 − 2c + 2cP (A) for all ω ∈ A It follows that if c > 1/2, then ζ ′(ω) < 0 for
all ω ∈ A, provided that P (A) is small enough. We obtain that for c > 1/2
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the monotonicity property (A2) does not hold if the following condition is
satisfied:

For any ε > 0 there exists A ∈ F such that ε > P (A) > 0. (4.16)

That is, for p = 1 the mean-deviation function ρ satisfies (A2) if, and provided
that condition (4.16) holds, only if c ∈ [0, 1/2].

Suppose now that p > 1. For a set A ∈ F and α > 0 let us take ζ
.
= −αIA

and ζ ′ = 1 + ζ − E[ζ]. Then ‖ζ‖q = αP (A)1/q and ζ ′(ω) = 1 − α + αP (A)
for all ω ∈ A. It follows that if p > 1, then for any c > 0 the mean-deviation
function ρ does not satisfy (A2) provided that condition (4.16) holds.

Example 3 (Mean-upper-semideviation risk function of order p). Let Z .
=

Lp(Ω,F , P ) and for c ≥ 0 consider11

ρ(Z)
.
= E[Z] + c

(
E

[[
Z − E[Z]

]p
+

])1/p

. (4.17)

For any c ≥ 0 this function satisfies conditions (A1), (A3) and (A4), and
similarly to the derivations of Example 2 it can be shown that representation
(4.9) holds with the set A given by

A =
{
ζ ′ ∈ Z∗ : ζ ′ = 1 + ζ − E[ζ], ‖ζ‖q ≤ c, ζ � 0

}
. (4.18)

Since |E[ζ]| ≤ E|ζ| ≤ ‖ζ‖q for any ζ ∈ Lq(Ω,F , P ), we have that every element
of the above set A is non-negative and has its expected value equal to 1. This
means that the monotonicity condition (A2) holds true, if and, provided that
condition (4.16) holds, only if c ∈ [0, 1] (see [314]). That is, ρ is a coherent
risk function if c ∈ [0, 1].

Example 4 (Mean-upper-semivariance from a target). Let Z .
= L2(Ω,F , P )

and for weight c ≥ 0 and target τ ∈ R consider

ρ(Z)
.
= E[Z] + cE

[[
Z − τ

]2
+

]
.

We can now use (4.13) with g(z) = z + c(z − τ)2+. Since

g∗(α) =

{
(α− 1)2/4c+ τ(α− 1), if α ≥ 1,

+∞, otherwise,

we obtain that

ρ(Z) = sup
ζ∈Z, ζ(·)≥1

{
E[ζZ] − τE[ζ − 1] − 1

4c
E[(ζ − 1)2]

}
.

Consequently, representation (4.7) holds with12 A = {ζ ∈ Z : ζ − 1 � 0} and

11We denote [a]p+
.
= (max{0, a})p.

12Recall that A
.
= dom(ρ∗).
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ρ∗(ζ) = τE[ζ − 1] +
1

4c
E[(ζ − 1)2], ζ ∈ A.

If c > 0, none of the conditions (A3) and (A4) is satisfied by this risk function.

Example 5 (Mean-upper-semideviation of order p from a target). Let Z .
=

Lp(Ω,F , P ) and for c ≥ 0 and τ ∈ R consider

ρ(Z)
.
= E[Z] + c

(
E

[[
Z − τ

]p
+

])1/p

. (4.19)

For any c ≥ 0 and τ this risk function satisfies conditions (A1) and (A2), but
not (A3) and (A4), if c > 0. We have(

E

[[
Z − τ

]p
+

])1/p

= sup
‖ζ‖q≤1

E
(
ζ[Z − τ ]+

)
= sup

‖ζ‖q≤1, ζ(·)≥0

E
(
ζ[Z − τ ]+

)
= sup

‖ζ‖q≤1, ζ(·)≥0

E
(
ζ[Z − τ ]

)
= sup

‖ζ‖q≤1, ζ(·)≥0

E
[
ζZ − τζ

]
.

We obtain that representation (4.7) holds with A = {ζ ∈ Z∗ : ‖ζ‖q ≤ c, ζ �
0} and ρ∗(ζ) = τE[ζ] for ζ ∈ A.

Example 6. Let v : R → R be a proper lower semicontinuous convex function.
For Z .

= Lp(Ω,F , P ) consider the function

ρ(Z)
.
= inf

α∈R

E
[
Z + v(Z − α)

]
. (4.20)

Assume that functions ψα(z)
.
= z + v(z −α), α ∈ R, are bounded from below

by a P -integrable function, and hence ρ(Z) > −∞ for all Z ∈ Z. Since the
function (Z,α) �→ E

[
Z + v(Z − α)

]
is convex, it follows that ρ(·) is convex.

Also ρ(Z + a) = ρ(Z) + a for any a ∈ R and Z ∈ Z. This can be shown by
making the change of variables z �→ z+ a in the calculation of ρ(Z + a). That
is, ρ satisfies conditions (A1) and (A3).

Let us calculate the conjugate of ρ:

ρ∗(ζ) = sup
Z∈Z

{
E[ζZ] − ρ(Z)

}
= sup

Z∈Z, α∈R

E
[
ζZ − Z − v(Z − α)

]
= sup

Z∈Z, α∈R

E
[
(Z + α)ζ − Z − α− v(Z)

]
= sup

Z∈Z

{
E[ζZ − Z − v(Z)]

}
+ sup

α∈R

{
α(E[ζ] − 1)

}
. (4.21)
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By the interchangeability formula (4.12), the first term in (4.21) can be ex-
pressed as follows:

sup
Z∈Z

E
[
ζZ − Z − v(Z)

]
= E

[
sup
z∈R

{
z(ζ − 1) − v(z)

}]
= E [v∗(ζ − 1)] ,

where v∗(·) is the conjugate function of v(·). The supremum with respect to
α in (4.21) is +∞, unless E[ζ] = 1. We conclude that

ρ∗(ζ) =

{
E [v∗(ζ − 1)] , if E[ζ] = 1,

+∞, otherwise.
(4.22)

The function ρ satisfies the monotonicity condition (A2) if and only if its
domain contains only probability density functions. This is equivalent to the
condition that E[v∗(ζ−1)] = +∞ for any such ζ ∈ Z∗ that the event ‘ζ(ω) < 0’
happens with positive probability. In particular, ρ satisfies (A2) if v∗(t) = +∞
for t < −1. This is the same as requiring that the function φ(z)

.
= z + v(z) is

monotonically nondecreasing on R.

Example 7 (Conditional value at risk). For Z .
= L1(Ω,F , P ), Z∗ .

= L∞(Ω,
F , P ) and constants ε1 ≥ 0 and ε2 ≥ 0 consider

ρ(Z)
.
= E[Z] + inf

α∈R

E
(
ε1[α− Z]+ + ε2[Z − α]+

)
. (4.23)

Note that the above function ρ is of the form (4.20) with

v(z)
.
= ε1[−z]+ + ε2[z]+. (4.24)

We have here that the function z+v(z) is positively homogeneous, and mono-
tonically nondecreasing if and only if ε1 ≤ 1. It follows that for any ε1 ∈ [0, 1]
and ε2 ≥ 0, the above function ρ is a coherent risk function satisfying condi-
tions (A1)–(A4). Moreover,

v∗(t) =

{
0, if t ∈ [−ε1, ε2],
+∞, otherwise.

Consequently we have that, for any ε1 ≥ 0 and ε2 ≥ 0, representation (4.9)
holds with

A =
{
ζ ∈ Z∗ : 1 − ε1 ≤ ζ(ω) ≤ 1 + ε2, a.e. ω ∈ Ω, E[ζ] = 1

}
.

For ε1 > 0 and ε2 > 0 we can write ρ in the form

ρ(Z) = (1 − ε1)E[Z] + ε1CV@Rκ[Z],

where κ
.
= ε2/(ε1 + ε2) and
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CV@Rκ[Z]
.
= inf

a∈R

{
a+

1

1 − κ
E
(
[Z − a]+

)}
is the so-called Conditional Value at Risk function, [300]. By the above analysis
we have that CV@Rκ[Z] is a coherent risk function for any κ ∈ (0, 1) and the
corresponding set A is given by

A =
{
ζ ∈ Z∗ : 0 ≤ ζ(ω) ≤ (1 − κ)−1, a.e. ω ∈ Ω, E[ζ] = 1

}
.

4.5 Stochastic Dominance Conditions

In all examples considered in Section 4.4, the space Z was given by Lp(Ω,F , P )
with Z∗ .

= Lq(Ω,F , P ) and, moreover, the risk functions ρ(Z) discussed there
were dependent only on the distribution of Z. That is, each risk function ρ(Z),
considered in Section 4.4, could be formulated in terms of the cumulative dis-
tribution function (cdf) FZ(z)

.
= P (Z ≤ z) associated with Z ∈ Z. In other

words these risk functions satisfied the following condition:

(D) If Z1, Z2 ∈ Z are such that P (Z1 ≤ z) = P (Z2 ≤ z) for all z ∈ R, then
ρ(Z1) = ρ(Z2).

We say that risk function ρ : Z → R is law invariant if it satisfies the above
condition (D). For law invariant risk functions it makes sense to discuss their
monotonicity properties with respect to various stochastic orders defined for
(real valued) random variables.

Many stochastic orders can be characterized by a class G of functions
g : R → R as follows. For (real valued) random variables Z1 and Z2 it is said
that Z2 dominates Z1, denoted Z2 �G Z1, if E[g(Z2)] ≥ E[g(Z1)] for all g ∈ G
for which the corresponding expectations do exist. This stochastic order is
called the integral stochastic order with generator G. We refer to [237, Chapter
2] for a thorough discussion of this concept. For example, the usual stochastic
order, written Z2 �st Z1, corresponds to the generator G formed by all non-
decreasing functions g : R → R. It is possible to show that Z2 �st Z1 if and
only if FZ2

(z) ≤ FZ1
(z) for all z ∈ R (e.g., [237, Theorem 1.2.8]). We say

that the integral stochastic order is increasing if all functions in the set G are
non-decreasing. The usual stochastic order is an example of increasing integral
stochastic order.

We say that a law invariant risk function ρ is consistent with the integral
stochastic order if Z2 �G Z1 implies ρ(Z2) ≥ ρ(Z1) for all Z1, Z2 ∈ Z, i.e.,
ρ is monotone with respect to �G . For an increasing integral stochastic order
we have that if Z2(ω) ≥ Z1(ω) for a.e. ω ∈ Ω, then g(Z2(ω)) ≥ g(Z1(ω)) for
any g ∈ G and a.e. ω ∈ Ω, and hence E[g(Z2(ω))] ≥ E[g(Z1(ω))]. That is,
if Z2 � Z1 in the almost sure sense, then Z2 �G Z1. It follows that if ρ is
law invariant and consistent with respect to an increasing integral stochas-
tic order, then it satisfies the monotonicity condition (A2). In other words
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if ρ does not satisfy condition (A2), then it cannot be consistent with any
increasing integral stochastic order. In particular, for c > 0 the mean-variance
risk function, defined in (4.14), is not consistent with any increasing integral
stochastic order, and for p > 1 the mean-deviation risk function, defined in
(4.15), is not consistent with any increasing integral stochastic order provided
that condition (4.16) holds.

Consider now the usual stochastic order. It is well known that Z2 �st Z1

if and only if there exists a probability space (Ω,F , P ) and random variables

Ẑ1 and Ẑ2 on it such that13 Ẑ1
D∼ Z1 and Ẑ2

D∼ Z2, and Ẑ2(ω) ≥ Ẑ1(ω) for
all ω ∈ Ω (e.g., [237, Theorem 1.2.4]). In our context, this relation between
the usual stochastic order and the almost sure order cannot be used directly,
because we are not allowed to change freely the probability space (Ω,F , P ),
which is an integral part of our definition of a risk function.

However, if our space (Ω,F , P ) is sufficiently rich, so that a uniform14 ran-
dom variable U(ω) exists on this space, we can easily link the monotonicity
assumption (A2) with the consistency with the usual stochastic order. Sup-
pose that the risk function ρ is law invariant and satisfies the monotonicity
condition (A2). Recall that Z2 �st Z1 if and only if FZ2

(z) ≤ FZ1
(z) for all

z ∈ R. Consider random variables Ẑ1
.
= F−1

Z1
(U) and Ẑ2

.
= F−1

Z2
(U), where the

inverse distribution function is defined as

F−1
Z (t)

.
= inf {z : FZ(z) ≥ t} .

We obtain that Ẑ2(ω) ≥ Ẑ1(ω) for all ω ∈ Ω, and by virtue of (A2), ρ(Ẑ2) ≥
ρ(Ẑ1). By construction, Ẑ1 has the same distribution as Z1, and Ẑ2 has the
same distribution as Z2. Since the risk function is law invariant, we conclude
that ρ(Z2) ≥ ρ(Z1). Consequently, the risk function ρ is consistent with the
usual stochastic order. It follows that in a sufficiently rich probability space
the monotonicity condition (A2) and the consistency with the usual stochastic
order are equivalent (for law invariant risk functions).

It is said that Z2 is bigger than Z1 in increasing convex order, written
Z2 �icx Z1, if E[g(Z2)] ≥ E[g(Z1)] for all increasing convex functions g :
R → R such that the expectations exist. Clearly this is an integral stochastic
order with the corresponding generator given by the set of increasing convex
functions. It is the counterpart of the classical stochastic dominance relation,
which is the increasing concave order (recall that we are dealing here with
minimization rather than maximization procedures). Consider the setting of
Example 6 with risk function ρ defined in (4.20). Suppose that the function
φ(z)

.
= z+v(z) is monotonically nondecreasing on R. Note that φ(·) is convex,

since v(·) is convex. We obtain that if Z2 ≥icx Z1, then E[φ(Z2−α)] ≥ E[φ(Z2−
13The notation X

D
∼ Y means that random variables X and Y , which can be

defined on different probability spaces, have the same cumulative distribution func-
tion.

14Random variable U : Ω → [0, 1] is said to be uniform if P (U ≤ z) = z for every
z ∈ [0, 1].
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α)] for any fixed α ∈ R, and hence (by taking minimum over α ∈ R) that
ρ(Z2) ≥ ρ(Z1). That is, the risk function defined in (4.20) is consistent with
the increasing convex order. We have in this way re-established the stochastic
dominance consistency result of [248].

The mean-upper-semideviation risk function of order p ≥ 1 (Example 3)
is also consistent with the increasing convex order, provided that c ∈ [0, 1].
We can prove this for p = 1 as follows (see [246]).

Suppose that Z2 �icx Z1. First, using g(z)
.
= z we see that

E[Z1] ≤ E[Z2]. (4.25)

Second, setting g(z)
.
=
(
z − E[Z1]

)
+

we find that

E

[(
Z1 − E[Z1]

)
+

]
≤ E

[(
Z2 − E[Z1]

)
+

]
.

Using (4.25) we can continue this estimate as follows:

E

[(
Z1 − E[Z1]

)
+

]
≤ E

[(
Z2 − E[Z2] + E[Z2] − E[Z1]

)
+

]
≤ E

[(
Z2 − E[Z2]

)
+

]
+ E[Z2] − E[Z1].

This can be rewritten as

E[Z1] + E

[(
Z1 − E[Z1]

)
+

]
≤ E[Z2] + E

[(
Z2 − E[Z2]

)
+

]
, (4.26)

which is the required relation ρ(Z1) ≤ ρ(Z2) for c = 1. Combining inequalities
(4.25) and (4.26) with coefficients 1 − c and c, we obtain the required result
for any c ∈ [0, 1]. The proof for p > 1 can be found in [247] (in the stochastic
dominance setting).

4.6 Differentiability of Risk Functions

In this section we discuss differentiability properties of risk functions. In the
analysis of optimization of risk measures we also have to deal with composite
functions of the form

φ(x)
.
= ρ(F (x)).

Here F : R
n → Z is a mapping defined by [F (x)](·) .

= f(x, ·), associated with
a function f : R

n ×Ω → R. Of course, in order for this mapping F to be well
defined we have to assume that the random variable Z(ω) = f(x, ω) belongs
to Z for any x ∈ R

n. We say that the mapping F is convex if the function
fω(·) .

= f(·, ω) is convex for every ω ∈ Ω. It is not difficult to verify and is
well known that the composite function φ(x) is convex if F is convex and ρ is
convex and satisfies the monotonicity condition (A2). Let us emphasize that
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in order to preserve convexity of the composite function φ we need convexity
of F and ρ and the monotonicity property (A2).

Consider a point Z̄ ∈ Z such that ρ(Z̄) is finite valued. Since it is assumed
that ρ is proper, this means that Z̄ ∈ dom(ρ). The following limit (provided
that it exists)

ρ′(Z̄, Z)
.
= lim

t↓0
ρ(Z̄ + tZ) − ρ(Z̄)

t

is called the directional derivative of ρ at Z̄ in direction Z. If this limit exists for
all Z ∈ Z, it is said that ρ is directionally differentiable at Z̄. It is said that ρ is
Hadamard directionally differentiable at Z̄, if ρ is directionally differentiable
at Z̄ and, moreover, the following limit holds:

ρ′(Z̄, Z) = lim
Z′→Z

t↓0

ρ(Z̄ + tZ ′) − ρ(Z̄)

t
.

It can be observed that ρ′(Z̄, Z) is just the one sided derivative of the function
g(t)

.
= ρ(Z̄ + tZ) at t = 0. If ρ is convex, then the function g : R → R is also

convex, and hence ρ′(Z̄, Z) exists, although it can take values +∞ or −∞.
It said that an element µ ∈ Z∗ is a subgradient of ρ at Z̄ if

ρ(Z) ≥ ρ(Z̄) + 〈µ,Z − Z̄〉, ∀Z ∈ Z.

The set of all subgradients of ρ, at Z̄, is called the subdifferential of ρ and
denoted ∂ρ(Z̄). It is said that ρ is subdifferentiable at Z̄ if ∂ρ(Z̄) is non-empty.
By convex analysis we have that if ρ is convex and continuous at Z̄, then it is
subdifferentiable at Z̄, and, moreover, if Z is a Banach space (equipped with
its norm topology), then ρ is Hadamard directionally differentiable at Z̄.

It is said that ρ is Gâteaux (Hadamard) differentiable at Z̄ if it is
(Hadamard) directionally differentiable at Z̄ and there exists µ̄ ∈ Z∗ such
that ρ′(Z̄, Z) = 〈µ̄, Z〉 for all Z ∈ Z. The functional µ̄ represents the deriva-
tive of ρ at Z̄ and denoted ∇ρ(Z̄). If the space Z is finite dimensional, then
the concept of Hadamard differentiability coincides with the usual concept of
differentiability. By convex analysis we have the following.

Theorem 3. Suppose that Z is a Banach space (e.g., Z .
= Lp(Ω,F , P )), and

ρ is convex and finite valued and continuous at Z̄. Then ρ is subdifferentiable
and Hadamard directionally differentiable at Z̄, and the following formulas
hold:

∂ρ(Z̄) = argmaxµ∈Z∗

{
〈µ, Z̄〉 − ρ∗(µ)

}
, (4.27)

ρ′(Z̄, Z) = supµ∈∂ρ(Z̄)〈µ,Z〉. (4.28)

Moreover, ρ is Hadamard differentiable at Z̄ if and only if ∂ρ(Z̄) = {µ̄} is a
singleton, in which case ∇ρ(Z̄) = µ̄.
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As we mentioned earlier, if Z .
= Lp(Ω,F , P ) and ρ satisfies conditions

(A1) and (A2), then ρ is continuous and subdifferentiable at every point of
the interior of its domain, see [314]. In particular, if ρ is real valued, then ρ
is continuous and subdifferentiable at every point of Z and formulas (4.27)
and (4.28) hold. Moreover, if ρ is a real valued coherent risk function, then
representation (4.9) holds and

∂ρ(Z̄) = argmaxζ∈A 〈ζ, Z̄〉. (4.29)

Consider now the composite function φ(x)
.
= ρ(F (x)). Since fω(·) is real

valued, we have that if fω(·) is convex, then it is directionally differentiable
at every point x̄ ∈ R

n and its directional derivative f ′
ω(x̄, x) is finite valued.

By using the chain rule for directional derivatives and (4.28) we obtain the
following differentiability properties of the composite function, at a point x̄ ∈
R

n (cf. [314]).

Proposition 1. Suppose that Z is a Banach space, the mapping F : R
n → Z

is convex, the function ρ is convex, finite valued and continuous at Z̄
.
= F (x̄).

Then the composite function φ(x) = ρ(F (x)) is directionally differentiable at
x̄, its directional derivative φ′(x̄, x) is finite valued for every x ∈ R

n and

φ′(x̄, x) = sup
µ∈∂ρ(Z̄)

∫
Ω

f ′
ω(x̄, x) dµ(ω). (4.30)

Moreover, if ∂ρ(Z̄) = {µ̄} is a singleton, then the composite function φ is
differentiable at x̄ if and only if fω(·) is differentiable at x̄ for µ̄-almost every
ω, in which case

∇φ(x̄) =

∫
Ω

∇fω(x̄) dµ̄(ω).

It is also possible to write the above differentiability formulas in terms
of subdifferentials. Suppose that F is convex. Then for any15 measure µ ∈
Z∗

+ the integral function ψµ(x)
.
=

∫
Ω
fω(x) dµ(ω) is also convex. Moreover,

if the integral function ψµ(·) is finite valued (and hence continuous) in a
neighborhood of a point x̄ ∈ R

n, then

ψ′
µ(x̄, x) =

∫
Ω

f ′
ω(x̄, x) dµ(ω),

and by Strassen’s disintegration theorem the following interchangeability for-
mula holds:

∂ψµ(x̄) =

∫
Ω

∂fω(x̄) dµ(ω). (4.31)

The integral in the right hand side of (4.31) is understood as the set of all
vectors of the form

∫
Ω
δ(ω) dµ(ω), where δ(ω) is a µ-integrable selection16 of

∂fω(x̄).

15Recall that Z∗
+ denotes the set of non-negative measures µ ∈ Z∗.

16It is said that δ(ω) is a selection of ∂fω(x̄) if δ(ω) ∈ ∂fω(x̄) for almost every ω.
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Suppose that the assumptions of Proposition 1 hold, and monotonicity
condition (A2) is satisfied and hence φ is convex and ∂ρ(Z̄) ⊂ Z∗

+. Now
formula (4.30) means that φ′(x̄, ·) is equal to the supremum of ψ′

µ(x̄, ·) over

µ ∈ ∂ρ(Z̄). The functions ψ′
µ(x̄, ·) are convex and positively homogeneous,

and hence ∂φ(x̄) is equal to the topological closure of the union of the sets
∂ψ′

µ(x̄) over µ ∈ ∂ρ(Z̄). Consequently, we obtain that formula (4.30) can be
written in the following equivalent form:17

∂φ(x̄) = cl
{⋃

µ∈∂ρ(Z̄)

∫
Ω
∂fω(x̄) dµ(ω)

}
. (4.32)

Note that since ∂ρ(Z̄) is convex, it is straightforward to verify that the set
inside the parentheses at the right hand side of (4.32) is convex.

Let us consider now some examples discussed in Section 4.4.

Example 8 (Mean-upper-semideviation risk function of order p). Consider the
setting of Example 3. We have that the risk function ρ, defined in (4.17), is
a convex real valued continuous function. It follows that for any Z ∈ Z the
subdifferential ∂ρ(Z) is non-empty and formula (4.29) holds with the set A
given in (4.18). That is,

∂ρ(Z) =
{
1 + ζ − E[ζ] : ζ ∈ ∆Z

}
,

where

∆Z
.
= argmaxζ∈Z∗

{
〈ζ, Y 〉 : ‖ζ‖q ≤ c, ζ � 0

}
and Y

.
= Z − E[Z]. (4.33)

If p ∈ (1,+∞), then the set ∆Z can be described as follows. If the function
Z(·) is constant, then Y (·) ≡ 0 and hence ∆Z = {ζ : ‖ζ‖q ≤ c, ζ � 0}.
Suppose that Z(·) is not constant18 and hence Y (·) is not identically zero. Note
that the ‘argmax’ in (4.33) is not changed if Y is replaced by Y+(·) .

= [Y (·)]+.
With Y+ is associated a unique point ζ∗ ∈ Z∗ such that ‖ζ∗‖q = 1 and
〈ζ∗, Y 〉 = ‖Y ‖p. Since Y+ � 0, it follows that ζ∗ � 0 and ∆Z = {c ζ∗}. That
is, for p > 1 and nonconstant Z ∈ Z, the subdifferential ∂ρ(Z) is a singleton,
and hence ρ is differentiable at Z.

Suppose now that p = 1 and hence q = +∞. In that case

∆Z =

{
ζ ∈ Z∗ :

ζ(ω) = c if Y (ω) > 0, ζ(ω) = 0 if Y (ω) < 0,
0 ≤ ζ(ω) ≤ c if Y (ω) = 0

}
.

It follows that ∆Z is a singleton, and hence ρ is differentiable at Z, if and
only if Y (ω) �= 0 for P -almost every ω ∈ Ω.

17By cl(S) we denote the topological closure of the set S ⊂ R
n.

18Of course, this and similar statements here should be understood up to a set of
P -measure zero.



138 A. Ruszczyński, A. Shapiro

Example 9 (Mean-upper-semideviation of order p from a target). Consider the
setting of Example 5. The risk function ρ, defined in (4.19), is real valued
convex and continuous. We have that

∂ρ(Z) = argmaxζ∈Z∗

{
〈ζ, Z − τ〉 : ‖ζ‖q ≤ c, ζ � 0

}
.

Similarly to the previous example, we have here that if p > 1, then ρ is
differentiable at Z if and only if P{Z(ω) �= τ} > 0. If p = 1, then ρ is
differentiable at Z if and only if P{Z(ω) �= τ} = 1.

Example 10. Consider the setting of Example 6 with the risk function ρ defined
in (4.20). Because of (4.22) and by (4.27) we have

∂ρ(Z) = argmaxζ∈Z∗, E[ζ]=1 E
[
ζZ − v∗(ζ − 1)

]
. (4.34)

Also the subdifferential of function h(ζ)
.
= E

[
ζZ − v∗(ζ − 1)

]
is given by

∂h(ζ) =
{
Z ′ ∈ Z : Z ′(ω) ∈ Z(ω) − ∂v∗(ζ(ω) − 1), ω ∈ Ω

}
.

By the first order optimality conditions we have then that ζ̄ ∈ Z∗ is an optimal
solution of the right hand side problem of (4.34) if and only if there exists
λ̄ ∈ R such that

Z(ω) − λ̄ ∈ ∂v∗(ζ̄(ω) − 1), a.e. ω ∈ Ω, and E[ζ̄] = 1.

Since the inclusion a ∈ ∂v∗(z) is equivalent to z ∈ ∂v(a) we obtain

∂ρ(Z) =
{
ζ ∈ Z∗ : ζ(ω) ∈ 1 + ∂v(Z(ω) − λ̄), a.e. ω ∈ Ω, E[ζ] = 1

}
. (4.35)

Note that λ̄ is an optimal solution of the dual problem

min
λ∈R

sup
ζ∈Z∗

E
[
ζZ − v∗(ζ − 1) − λ(ζ − 1)

]
.

By interchanging the integral and max operators (see (4.12)), the above prob-
lem can be written in the following equivalent form:

minλ∈R E
[
supz∈R

{
(Z − λ)z − v∗(z − 1) + λ

}]
.

Example 11 (Conditional value at risk). Consider the setting of Example 7
with ρ defined in (4.23). We can use results of the previous example with
function v(z) defined in (4.24). We have here that λ̄ is an optimal solution of
the problem

minλ∈R E
[
− ε1[λ− Z]+ + ε2[Z − λ]+

]
. (4.36)

For ε1 > 0 and ε2 > 0 an optimal solution λ̄ of (4.36) is given by a κ-quantile
of Z (recall that κ = ε2/(ε1 + ε2)). That is, λ̄ ∈ [a, b] where

a
.
= inf {t : P (Z ≤ t) ≥ κ} and b

.
= sup {t : P (Z ≤ t) ≥ κ} .
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By (4.35) we have

∂ρ(Z) =

⎧⎪⎪⎨⎪⎪⎩ζ ∈ Z∗ :

ζ(ω) = 1 − ε1, if Z(ω) < λ̄
ζ(ω) = 1 + ε2, if Z(ω) > λ̄
ζ(ω) ∈ [1 − ε1, 1 + ε2], if Z(ω) = λ̄
E[ζ] = 1

⎫⎪⎪⎬⎪⎪⎭ . (4.37)

Note that elements (functions) ζ ∈ ∂ρ(Z) are defined up to sets of P -measure
zero and the above formula (4.37) holds for any κ-quantile λ̄ ∈ [a, b]. Also
recall that for ε1 = 1 the risk function ρ(·) coincides with CV@Rκ[ · ].

4.7 Optimization of Risk Functions

In this section we consider the optimization problem

min
x∈S

{
φ(x)

.
= ρ(F (x))

}
. (4.38)

Recall that with the mapping F : R
n → Z is associated the function f(x, ω) =

[F (x)](ω). We assume throughout this section, and the following Sections 4.8
and 4.9, that

(i) S is a non-empty closed convex subset of R
n,

(ii) the mapping F : R
n → Z is convex,

(iii) the risk function ρ : Z → R is proper, lower semicontinuous and satisfies
conditions (A1) and (A2).

It follows that the composite function φ : R
n → R is convex, and hence

optimization problem (4.38) is a convex problem. Because of the Fenchel-
Moreau theorem, we can employ representation (4.7) of the risk function ρ to
write problem (4.38) in the following min-max form:

min
x∈S

sup
µ∈A

Φ(x, µ), (4.39)

where A .
= dom(ρ∗) and

Φ(x, µ)
.
= 〈µ, F (x)〉 − ρ∗(µ). (4.40)

Note that because of the assumed monotonicity condition (A2), the set A
contains only non-negative measures, i.e., A ⊂ Z∗

+. If, moreover, assumption
(A3) holds, then A is a subset of the set P ⊂ Z∗ of probability measures, and
for µ ∈ P,

〈µ, F (x)〉 = Eµ[F (x)] =
∫

Ω
f(x, ω) dµ(ω).

If assumption (A4) also holds, then ρ∗(µ) = 0 and hence Φ(x, µ) = Eµ[F (x)]
for any µ ∈ A. Therefore if ρ is a coherent risk function, then problem (4.38)
can be written in the min-max form
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min
x∈S

sup
µ∈A

Eµ[F (x)].

We have here that the function Φ(x, µ) is concave in µ and, since F is
convex, is convex in x. Therefore, under various regularity conditions, the
‘min’ and ‘max’ operators in (4.39) can be interchanged to obtain the problem

max
µ∈A

inf
x∈S

Φ(x, µ). (4.41)

For example, the following holds (cf. [314]).

Proposition 2. Suppose that Z is a Banach space, the mapping F is convex,
the function ρ is proper, lower semicontinuous and satisfies assumptions (A1)–
(A3). Then the optimal values of problems (4.39) and (4.41) are equal to each
other, and if their common optimal value is finite, then problem (4.41) has
an optimal solution µ̄. Moreover, the optimal values of (4.39) and (4.41) are
equal to the optimal value of the problem

min
x∈S

Φ(x, µ̄), (4.42)

and if x̄ is an optimal solution of (4.39), then x̄ is also an optimal solution
of (4.42).

We obtain that, under assumptions specified in the above proposition,
there exists a probability measure µ̄ ∈ P such that problem (4.38) is ‘almost’
equivalent to problem (4.42). That is, optimal values of problems (4.38) and
(4.42) are equal to each other and the set of optimal solutions of problem
(4.38) is contained in the set of optimal solutions of problem (4.42). Of course,
the corresponding probability measure µ̄ is not known apriori and could be
obtained by solving the dual problem (4.41).

We also have that if the optimal values of problems (4.39) and (4.41) are
equal to each other, then x̄ is an optimal solution of (4.39) and µ̄ is an optimal
solution of (4.41) if and only if (x̄, µ̄) is a saddle point of Φ(x, µ), i.e.,

x̄ ∈ argminx∈S Φ(x, µ̄) and µ̄ ∈ argmaxµ∈A Φ(x̄, µ).

Conversely, if Φ(x, µ) possesses a saddle point, then the optimal values of
problems (4.39) and (4.41) are equal. Because of convexity and lower semi-
continuity of ρ we have that ρ∗∗(·) = ρ(·), and by (4.40) we obtain that

argmaxµ∈A Φ(x̄, µ) = ∂ρ(Z̄),

where Z̄
.
= F (x̄). Moreover, if ψ(·) .

= Eµ̄[F (·)] is finite valued in a neighbor-
hood of x̄, then the first order optimality condition for x̄ to be a minimizer
of ψ(x) over x ∈ S is that19 0 ∈ NS(x̄) + ∂ψ(x̄). Together with Strassen’s
disintegration theorem (see (4.31)) this leads to the following optimality con-
ditions.

19By NS(x̄)
.
=
{
y ∈ R

n : (x − x̄)T y ≤ 0, ∀x ∈ S
}

we denote the normal cone to
S at x̄ ∈ S. By the definition NS(x̄) = ∅ if x̄ �∈ S.
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Proposition 3. Suppose that Z is a Banach space, the risk function ρ satisfies
conditions (A1)–(A3), the set S and the mapping F are convex, and x̄ ∈ X
and µ̄ ∈ P are such that Eµ̄[F (·)] is finite valued in a neighborhood of x̄.
Denote Z̄

.
= F (x̄). Then (x̄, µ̄) is a saddle point of Φ(x, µ) if and only if

0 ∈ NS(x̄) + Eµ̄[∂fω(x̄)] and µ̄ ∈ ∂ρ(Z̄). (4.43)

Under the assumptions of Proposition 3, conditions (4.43) can be viewed as
optimality conditions for a point x̄ ∈ S to be an optimal solution of problem
(4.38). That is, if there exists a probability measure µ̄ ∈ ∂ρ(Z̄) such that
the first condition of (4.43) holds, then x̄ is an optimal solution of problem
(4.38), i.e., (4.43) are sufficient conditions for optimality. Moreover, under the
assumptions of Proposition 2, the existence of such a probability measure µ̄
is a necessary condition for optimality of x̄.

4.8 Nonanticipativity Constraints

The optimization problem (4.38) can be written in the following equivalent
form:

min
X∈MS , x∈Rn

ρ(FX) subject to X(ω) = x, ∀ω ∈ Ω, (4.44)

where M .
= Lp(Ω,F , P,Rn) and [FX ](ω)

.
= f(X(ω), ω), for X ∈ M, and

MS
.
= {X ∈ M : X(ω) ∈ S, a.e. ω ∈ Ω}.

Although the above problem involves optimization over the functional space
M, the constraints X(ω) = x, ω ∈ Ω, ensure that this problem is equivalent to
problem (4.38). These constraints are called the nonanticipativity constraints.

Ignoring the nonanticipativity constraints we can write the following re-
laxation of problem (4.44):

min
X∈MS

ρ(FX). (4.45)

Let us note now that the interchangeability principle, similar to (4.12), holds
for risk functions as well.

Proposition 4. Let Z .
= Lp(Ω,F , P ), ρ : Z → R be a real valued risk func-

tion satisfying conditions (A1) and (A2), f : R
n ×Ω → R be a random lower

semicontinuous function and G : Ω ⇒ R
n be a closed valued measurable mul-

tifunction20. Let FG(ω)
.
= infx∈G(ω) f(x, ω) and suppose that FG ∈ Z. Then

ρ(FG) = inf
X∈M

{
ρ
(
FX

)
: X(ω) ∈ G(ω) a.e. ω ∈ Ω

}
. (4.46)

20A multifunction G : Ω ⇒ R
n maps a point ω ∈ Ω into a set G(ω) ⊂ R

n. It
is said that G is closed valued if G(ω) is a closed subset of R

n for any ω ∈ Ω. It
is said that G is measurable if for any closed set A ⊂ R

n the inverse image set
G−1(A)

.
= {ω ∈ Ω : G(ω) ∈ A} is F-measurable.
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The above interchangeability formula can be either derived from (4.12) by
using the dual representation (4.7) or proved directly. Indeed, for any X ∈ M
such that X(·) ∈ G(·) we have that FG(·) ≤ f(X(·), ·), and hence it follows by
assumption (A2) that ρ(FG) ≤ ρ(FX). This implies that ρ(FG) is less than
or equal to the right hand side of (4.46). Conversely, suppose for the moment
that the minimum of f(x, ω) over x ∈ G(ω) is attained for a.e. ω ∈ Ω, and
let X̄(·) ∈ arg minx∈G(·) f(x, ·) be a measurable selection such that X̄ ∈ M.
Then ρ(FG) = ρ(FX̄), and hence ρ(FG) is greater than or equal to the right
hand side of (4.46). It also follows then that

X̄ ∈ argminX∈M
{
ρ
(
FX

)
: X(ω) ∈ G(ω) a.e. ω ∈ Ω

}
.

Such arguments can be also pushed through without assuming existence of
optimal solutions by considering ε-optimal solutions with arbitrary ε > 0. Let
us emphasize that the monotonicity assumption (A2) is the key condition for
(4.46) to hold.

By employing (4.46) with G(ω) ≡ S and denoting FS(ω)
.
= infx∈S f(x, ω),

we obtain that the optimal value of problem (4.45) is equal to ρ(FS), provided
that FS ∈ Z. The difference between the optimal values of problems (4.38)
and (4.45), that is

RVPIρ
.
= inf

x∈S
ρ[F (x)] − ρ(FS),

is called the Risk Value of Perfect Information. Since problem (4.45) is a
relaxation of problem (4.38), we have that RVPIρ is non-negative. It is also
possible to show that if ρ is real valued and satisfies conditions (A1)–(A4),
and hence representation (4.9) holds, then

inf
µ∈A

EVPIµ ≤ RVPIρ ≤ sup
µ∈A

EVPIµ,

where
EVPIµ

.
= infx∈S Eµ

[
f(x, ω)] − Eµ

[
infx∈S f(x, ω)

]
is the Expected Value of Perfect Information associated with the probability
measure µ (cf. [314]).

4.9 Dualization of Nonanticipativity Constraints

In addition to the assumptions (i)–(iii) of Section 4.7, we assume in this section
that Z .

= Lp(Ω,F , P ) and Z∗ .
= Lq(Ω,F , P ), and that M∗ .

= Lq(Ω,F , P,Rn)
is the dual of the space M .

= Lp(Ω,F , P,Rn). Consider the Lagrangian

L0(X,x, λ)
.
= ρ(FX) + E[λT (X − x)], (X,x, λ) ∈ M × R

n × M∗,

associated with the nonanticipativity constraints of problem (4.44). Note that
problem (4.44) can be written in the following equivalent form:
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min
X∈MS , x∈Rn

{
sup

λ∈M∗

L0(X,x, λ)

}
. (4.47)

By interchanging the ‘min’ and ‘max’ operators in (4.47) we obtain the (La-
grangian) dual of problem (4.44). Observe that infx∈Rn L0(X,x, λ) is equal to
−∞ if E[λ] �= 0, and to L(X,λ) if E[λ] = 0, where

L(X,λ)
.
= ρ(FX) + E[λTX].

Therefore the (Lagrangian) dual of problem (4.44) takes on the form

max
λ∈M∗

{
inf

X∈MS

L(X,λ)

}
subject to E[λ] = 0. (4.48)

By the standard theory of Lagrangian duality we have that the optimal value
of the primal problem (4.44) is greater than or equal to the optimal value of
the dual problem (4.48). Moreover, under appropriate regularity conditions,
there is no duality gap between problems (4.44) and (4.48), i.e., their optimal
values are equal to each other. In particular, if the Lagrangian L0(X,x, λ)
possesses a saddle point ((X̄, x̄), λ̄), then (X̄, x̄) and λ̄ are optimal solutions
of problems (4.44) and (4.48), respectively, and there is no duality gap between
problems (4.44) and (4.48). Noting that L0(X,x, λ) is linear in x and λ, we
obtain that ((X̄, x̄), λ̄) is a saddle point if and only if the following conditions
hold:

X̄(ω) = x̄, a.e. ω ∈ Ω, and E[λ̄] = 0,

X̄ ∈ argminX∈MS
L(X, λ̄). (4.49)

Consider the function Φ(X)
.
= ρ(FX) : M → R. Because of convexity of

F and assumptions (A1) and (A2), this function is convex. Its subdifferential
∂Φ(X) ⊂ M∗ is defined in the usual way. By convexity, assuming that ρ is
continuous at Z̄

.
= F (x̄), we can write the following optimality conditions for

(4.49) to hold:
−λ̄ ∈ NS(x̄) + ∂Φ(X̄). (4.50)

Therefore we obtain that if problem (4.38) possesses an optimal solution x̄,
then the Lagrangian L0(X,x, λ) has a saddle point if and only if there exists
λ̄ ∈ M∗ satisfying condition (4.50) and such that E[λ̄] = 0.

The following result holds (cf. [314]).

Proposition 5. Suppose that ρ satisfies conditions (A1)–(A3) and mapping
F is convex. Furthermore, suppose that problem (4.38) possesses an optimal
solution x̄ and ρ is subdifferentiable at F (x̄). Then there exists λ̄ such that
((X̄, x̄), λ̄), where X̄(ω) ≡ x̄, is a saddle point of the Lagrangian L0(X,x, λ),
and hence there is no duality gap between problems (4.38) and (4.48), and
(X̄, x̄) and λ̄ are optimal solutions of problems (4.44) and (4.48), respectively.
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Let us return to the question of decomposing problem (4.49). Suppose
that ρ is real valued and conditions (A1)–(A3) are satisfied, and hence by
Theorem 2 representation (4.8) holds. Then

inf
X∈MS

L(X,λ) = inf
X∈MS

sup
ζ∈P

{
E[ζFX + λTX] − ρ∗(ζ)

}
. (4.51)

Suppose, further, that the ‘inf’ and ‘sup’ operators at the right hand side
of equation (4.51) can be interchanged (note that the function inside the
parentheses in the right hand side of (4.51) is convex in X and concave in ζ).
Then

inf
X∈MS

L(X,λ) = sup
ζ∈P

inf
X∈MS

{
E[ζFX + λTX] − ρ∗(ζ)

}
= sup

ζ∈P

{
E

(
inf
x∈S

[ζ(ω)f(x, ω) + λ(ω)Tx]
)
− ρ∗(ζ)

}
,

where the last equality follows by the interchangeability principle. Therefore,
we obtain that, under the specified assumptions, the optimal value of the dual
problem (4.48) is equal to sup

E[λ]=0,ζ∈P D(λ, ζ), where

D(λ, ζ)
.
= E

{
inf
x∈S

[ζ(ω)f(x, ω) + λ(ω)Tx]

}
− ρ∗(ζ). (4.52)

If, moreover, there is no duality gap between problems (4.38) and (4.48), then
the following duality relation holds:

inf
x∈S

ρ[F (x)] = sup
λ∈M∗, ζ∈P

E[λ]=0

D(λ, ζ).

Note the separable structure of the right hand side of (4.52). That is, in order
to calculate D(λ, ζ) one needs to solve the minimization problem inside the
parentheses at the right hand side of (4.52) separately for every ω ∈ Ω, and
then to take the expectation of the optimal values calculated.

4.10 Two-Stage Programming

Suppose now that the function f(x, ω) is given in the form

f(x, ω)
.
= inf

y∈G(x,ω)
g(x, y, ω),

where g : R
n × R

m × Ω → R is a random lower semicontinuous function
and G : R

n × Ω ⇒ R
m is a closed valued measurable multifunction. Note

that it follows that the optimal value function f(x, ω) is measurable, and
moreover is random lower semicontinuous provided that G(·, ω) are locally
uniformly bounded. We refer to the corresponding problem (4.38) as a two-
stage program. For example, if the set S is polyhedral,
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g(x, y, ω)
.
= cTx+ q(ω)T y, (4.53)

G(x, ω)
.
=
{
y : T (ω)x+W (ω)y = h(ω), y ≥ 0

}
, (4.54)

and ρ(Z) ≡ E[Z], then problem (4.38) becomes a two-stage linear stochastic
programming problem.

It is important to note that it is implicitly assumed here that for every x ∈
S the optimal value f(x, ω) is finite for all ω ∈ Ω. In particular, this requires
the second stage problem to be feasible (i.e., G(x, ω) �= ∅) for every ω ∈ Ω.
That is, it requires the considered two-stage problem to have a relatively
complete recourse.

Suppose that ρ satisfies conditions (A1) and (A2). Then by the inter-
changeability formula (4.46) we have that, for a fixed x ∈ S,

ρ(F (x)) = inf
Y ∈M

Y (·)∈G(x,·)

ρ [ΓY (x)] ,

where [ΓY (x)](ω)
.
= g(x, Y (ω), ω) and M .

= Lp(Ω,F , P,Rm). Consequently
the first stage problem (4.38) is equivalent to the problem

min
x∈S, Y ∈M

ρ [ΓY (x)] s.t. Y (ω) ∈ G(x, ω) a.e. ω ∈ Ω. (4.55)

Note again that the key property ensuring equivalence of problems (4.38) and
(4.55) is the monotonicity condition (A2).

If the set Ω = {ω1, . . . , ωK} is finite, we can identify space Lp(Ω,F , P,Rm)
with the finite dimensional space R

mK of vectors Y = (y1, . . . , yK). In that
case ΓY (x) = (g(x, y1, ω1), . . . , g(x, yK , ωK)) ∈ R

K and ρ is a function from
R

K to R. Then problem (4.55) can be written in the form

min
x∈Rn, Y ∈RmK

ρ [ΓY (x)] s.t. x ∈ S, yk ∈ G(x, ωk), k = 1, . . . ,K. (4.56)

In particular, if the function g and mapping G are given in the form (4.53)
and (4.54), respectively, then problem (4.56) takes the form

min
x∈S, Y ∈RmK

ρ
(
cTx+ qT

1 y1, . . . , c
Tx+ qT

KyK

)
subject to Tkx+Wkyk = hk, yk ≥ 0, k = 1, . . . ,K,

(4.57)

where qk
.
= q(ωk), Tk

.
= T (ωk), Wk

.
= W (ωk) and hk

.
= h(ωk). If, further,

condition (A3) is satisfied, then

ρ
(
cTx+ qT

1 y1, . . . , c
Tx+ qT

KyK

)
= cTx+ ρ

(
qT
1 y1, . . . , q

T
KyK

)
.

Assume now that condition (A4) also holds true. Then the set A of proba-
bility measures, constituting the domain of the conjugate function ρ∗, can be
identified with a certain convex closed subset of the simplex in R

K :

A ⊂
{
p ∈ R

K :
∑K

k=1 pk = 1, pk ≥ 0, k = 1, . . . ,K
}
.
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In this case we can rewrite problem (4.57) as follows:

min
x∈S, Y ∈RmK

(
cTx+ max

p∈A

K∑
k=1

pkq
T
k yk

)
subject to Tkx+Wkyk = hk, yk ≥ 0, k = 1, . . . ,K.

In the following sections of this chapter we shall extend this observation to
multistage problems.

4.11 Conditional Risk Mappings

In order to construct dynamic models of risk we need to extend the concept
of a risk function. In multi-stage (dynamic) stochastic programming the main
theoretical tool is the concept of conditional expectation. That is, let (Ω,F2, P )
be a probability space, F1 be a sigma subalgebra of F2, i.e., F1 ⊂ F2, and Xi,
i = 1, 2, be spaces of all Fi-measurable and P -integrable functions Z : Ω → R.
The conditional expectation E[ · |F1] is defined as a mapping from X2 into X1

such that∫
A

E[Z|F1](ω) dP (ω) =

∫
A

Z(ω)dP (ω), for allA ∈ F1 and Z ∈ X2.

The approach that we adopt here is aimed at extending this concept to risk
mappings. Our presentation is based on [313]. Let (Ω,F2) be a measurable
space, F1 be a sigma subalgebra of F2, and Zi, i = 1, 2, be linear spaces of Fi-
measurable functions Z : Ω → R. We assume that Z1 ⊂ Z2 and each space Zi

is sufficiently large such that it includes all Fi-measurable step functions, i.e.,
condition (C) is satisfied. Also we assume that with each Zi is paired a dual
space Z∗

i of finite signed measures on (Ω,Fi). In applications we typically
use spaces Zi

.
= Lp(Ω,Fi, P ) and Z∗

i
.
= Lq(Ω,Fi, P ) for some (reference)

probability measure P . At this moment, however, this is not essential and is
not assumed. Let ρ : Z2 → Z1 be a mapping, referred to as risk mapping.
Consider the following conditions21:

(M1) Convexity:

ρ(αZ1 + (1 − α)Z2) � αρ(Z1) + (1 − α)ρ(Z2)

for all Z1, Z2 ∈ Z2 and all α ∈ [0, 1].
(M2) Monotonicity: If Z1, Z2 ∈ Z2 and Z2 � Z1, then ρ(Z2) � ρ(Z1).
(M3) Translation Equivariance: If Y ∈ Z1 and Z ∈ Z2, then

ρ(Z + Y ) = ρ(Z) + Y.

21Recall that the relation Z1 � Z2 denotes the inequality Z1(ω) ≤ Z2(ω) for all
ω ∈ Ω.
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(M4) Positive Homogeneity: If α > 0 and Z ∈ Z2, then ρ(αZ) = αρ(Z).

Axioms (M1)–(M4) generalize the conditions introduced in [294] for dynamic
risk measures in the case of a finite space Ω.

If the sigma algebra F1 is trivial, i.e., F1 = {∅, Ω}, then any F1-measurable
function is constant over Ω, and hence the space Z1 can be identified with R.
In that case ρ maps Z2 into the real line R, and conditions (M1)–(M4) coincide
with the respective conditions (A1)–(A4). In order to emphasize that the risk
mapping ρ is associated with spaces Z1 and Z2 we sometimes write it as
ρZ2|Z1

. We say that the risk mapping ρ is a conditional risk mapping if it
satisfies conditions (M1)–(M3).

Remark 1. Note that if Y ∈ Z1, then we have by condition (M3) that

ρ(Y ) = ρ(0 + Y ) = Y + ρ(0).

If, moreover, ρ is positively homogeneous (i.e., condition (M4) holds), then
ρ(0) = 0. Therefore, if conditions (M1)–(M4) hold, then ρ(Y ) = Y for any
Y ∈ Z1.

For ω ∈ Ω, we associate with a risk mapping ρ the function

ρω(Z)
.
= [ρ(Z)](ω), Z ∈ Z2.

Note that since it is assumed that all functions of the space Z1 are real valued,
it follows that ρω maps Z2 into R, i.e., ρω(·) is also real valued. Conditions
(M1), (M2) and (M4) simply mean that function ρω satisfies the respective
conditions (A1), (A2) and (A4) for every ω ∈ Ω. Condition (M3) implies (but
is not equivalent to) condition (A3) for the functions ρω, ω ∈ Ω.

We say that the mapping ρ is lower semicontinuous if for every ω ∈ Ω
the corresponding function ρω is lower semicontinuous. With each function
ρω : Z2 → R is associated its conjugate function ρ∗ω : Z∗

2 → R, defined in
(4.5). Note that although ρω is real valued, it can happen that ρ∗ω(µ) = +∞
for some µ ∈ Z∗

2 .
By PZ∗

i
we denote the set of all probability measures on (Ω,Fi) which are

in Z∗
i . Moreover, with each ω ∈ Ω we associate a set of probability measures

PZ∗
2 |F1

(ω) ⊂ PZ∗
2

formed by all ν ∈ PZ∗
2

such that for every B ∈ F1 it holds
that

ν(B) =

{
1, if ω ∈ B,

0, if ω �∈ B.
(4.58)

Note that ω is fixed here and B varies in F1. Condition (4.58) simply means
that for every ω and every B ∈ F1 we know whether B happened or not. In
particular, if F1 = {∅, Ω}, then PZ∗

2 |F1
(ω) = PZ∗

2
for all ω ∈ Ω.

We can now formulate the basic duality result for conditional risk map-
pings (cf. [313]) which can be viewed as an extension of Theorem 2. Recall
that 〈µ,Z〉 = Eµ[Z] for µ ∈ PZ∗

i
and Z ∈ Zi.
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Theorem 4. Let ρ = ρ
Z2|Z1

be a lower semicontinuous conditional risk map-
ping satisfying conditions (M1)–(M3). Then for every ω ∈ Ω it holds that

ρω(Z) = sup
µ∈PZ∗

2 |F1
(ω)

{
〈µ,Z〉 − ρ∗ω(µ)

}
, ∀Z ∈ Z2. (4.59)

Moreover, if ρ is positively homogeneous (i.e., condition (M4) holds), then for
every ω ∈ Ω there exists a closed convex set A(ω) ⊂ PZ∗

2 |F1
(ω) such that

ρω(Z) = sup
µ∈A(ω)

〈µ,Z〉, ∀Z ∈ Z2. (4.60)

Conversely, suppose that a mapping ρ : Z2 → Z1 can be represented in
form (4.59) for some ρ∗ : Z∗

2 ×Ω → R. Then ρ is lower semicontinuous and
satisfies conditions (M1)–(M3).

Remark 2. As it was mentioned in the discussion following Theorem 1, if Z2

is a Banach lattice (e.g., Z2
.
= Lp(Ω,F2, P )) and ρ satisfies conditions (M1)

and (M2), then for any ω ∈ Ω the corresponding function ρω : Z2 → R

is continuous, and hence is lower semicontinuous. Therefore, in the case of
Z2

.
= Lp(Ω,F2, P ), the assumption of lower semicontinuity of ρ in the above

theorem holds true automatically.

Remark 3. The concept of conditional risk mappings is closely related to the
concept of conditional expectations. Let P be a probability measure on (Ω,F2)
and suppose that every Z ∈ Z2 is P -integrable. For Z ∈ Z2, define

ρ(Z)
.
= E[Z|F1].

Suppose, further, that the space Z1 is large enough so that it contains E[Z|F1]
for all Z ∈ Z2. Then ρ : Z2 → Z1 is a well defined22 mapping. The condi-
tional expectation mapping ρ satisfies conditions (M1)–(M3) and is linear,
and hence is positively homogeneous. The representation (4.60) holds with
A(ω) = {µ(ω)} being a singleton and µω = µ(ω) being a probability measure
on (Ω,F2) for every ω ∈ Ω. Moreover, for any A ∈ F2 it holds that

µω(A) = E[IA|F1](ω) = [P (A|F1)](ω).

That is, µ(·) is the conditional probability of P with respect to F1. Note that
E[Z|F1](ω) = Eµω

[Z].

The family of conditional risk mappings is closed under the operation
of taking maximum. Let

{
ρν = ρν

Z2|Z1

}
ν∈I be a family of conditional risk

mappings satisfying assumptions (M1)–(M3). Suppose, further, that for every
Z ∈ Z2 the function

22Note that the function E[Z|F1](·) is defined up to a set of P -measure zero, i.e.,
two versions of E[Z|F1](·) can be different on a set of P -measure zero.
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[ρ(Z)](·) .
= sup

ν∈I

[
ρν(Z)

]
(·)

belongs to the space Z1, and hence ρ maps Z2 into Z1. It is then straightfor-
ward to verify that the max-function ρ also satisfies assumptions (M1)–(M3).
Moreover, if ρν , ν ∈ I, are lower semicontinuous and/or positively homoge-
neous, then ρ is also lower semicontinuous and/or positively homogeneous. In
particular, let ρν(Z)

.
= Eν [Z|F1], ν ∈ I, where I is a family of probability

measures on (Ω,F2). Suppose that the corresponding max-function

[ρ(Z)](·) .
= sup

ν∈I
Eν [Z|F1](·) (4.61)

is well defined, i.e., ρ maps Z2 into Z1. Then ρ is a lower semicontinuous
positively homogeneous conditional risk mapping. It is possible to show that,
under certain regularity conditions, the converse is also true, i.e., a positively
homogeneous conditional risk mapping can be represented in form (4.61) (cf.
[313]).

4.12 Multistage Optimization Problems

In this section we discuss optimization of risk measures in a dynamical setting.
We use the following framework. Let (Ω,F) be a measurable space and F1 ⊂
F2 ⊂ · · · ⊂ FT be a sequence of sigma algebras such that F1 = {∅, Ω} and
FT = F . Let Z1 ⊂ Z2 ⊂ · · · ⊂ ZT be a corresponding sequence of linear
spaces of Ft measurable functions, t = 1, . . . , T , and let ρZt|Zt−1

: Zt → Zt−1

be conditional risk mapings satisfying assumptions (M1)–(M3). Also consider
a sequence of functions Zt ∈ Zt, t = 1, . . . , T . By the definition of spaces Zt,
each function Zt : Ω → R is Ft-measurable, and since the sigma algebra F1

is trivial, Z1(ω) is constant and the space Z1 can be identified with R.
Consider the composite mappings23 ρZt−1|Zt−2

◦ ρZt|Zt−1
. Let us observe

that conditions (M1)–(M4) are preserved by such compositions. That is, if con-
ditions (M1) and (M2) (and also (M3), (M4)) hold for mappings ρZt−1|Zt−2

and
ρZt|Zt−1

, then these conditions hold for their composition as well. Therefore
the assumption that the mappings ρZt|Zt−1

, t = 2, . . . , T , satisfy conditions
(M1)–(M3) implies that the risk functions

ρt
.
= ρZ2|Z1

◦ · · · ◦ ρZt|Zt−1
: Zt → R, t = 2, . . . , T,

satisfy conditions (A1)–(A3). Moreover, consider the space Z .
= Z1 ×· · ·×ZT

and Z
.
= (Z1, . . . , ZT ) ∈ Z. Define function ρ̃ : Z → R as follows:

ρ̃(Z)
.
= Z1 + ρZ2|Z1

[
Z2 + ρZ3|Z2

(
Z3 + . . .

· · · + ρZT−1|ZT−2

[
ZT−1 + ρZT |ZT−1

(
ZT

)])]
.

(4.62)

23The composite mapping ρZt−1|Zt−2
◦ ρZt|Zt−1

: Zt → Zt−2 maps Zt ∈ Zt into

ρZt−1|Zt−2

[
ρZt|Zt−1

(Zt)
]
.
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By assumption (M3) we have

ZT−1 + ρZT |ZT−1

(
ZT

)
= ρZT |ZT−1

(
ZT−1 + ZT

)
,

and so on for t = T − 1, . . . , 2. Therefore we obtain that

ρ̃(Z) = ρT (Z1 + · · · + ZT ). (4.63)

Thus, condition (M3) allows us to switch between the cumulative formulation
(4.63) and nested formulation (4.62).

Remark 4. As it was mentioned above, we have that if ρZt−1|Zt−2
and ρZt|Zt−1

are positively homogeneous risk mappings, then the composite mapping
ρZt|Zt−2

.
= ρZt−1|Zt−2

◦ ρZt|Zt−1
is also a positively homogeneous risk map-

ping. By virtue of Theorem 4, with these mappings are associated closed
convex sets At−1,t−2(ω), At,t−1(ω) and At,t−2(ω), depending on ω ∈ Ω, such
that the corresponding representation (4.60) holds, provided that these map-
pings are lower semicontinuous. It is possible to show (cf. [313]) that At,t−2(ω)
is formed by all measures µ ∈ Z∗

t representable in the form

µ(A) =

∫
Ω

[µ2(ω̃)](A) dµ1(ω̃), A ∈ Ft,

where µ1 ∈ At−1,t−2(ω) and µ2(·) ∈ At,t−1(·) is a weakly∗ Ft-measurable
selection. Unfortunately, this formula is not very constructive and in general
it could be quite difficult to calculate the dual representation of the composite
mapping explicitly.

Remark 5. Consider the composite function ρ̃(·). As we mentioned in Remark
4, it could be difficult to write it explicitly. The situation simplifies consider-
ably if we assume a certain type of ‘between stages independence’ condition.
That is, suppose that Z ∈ Z is such that the functions

[
ρZt|Zt−1

(Zt)
]
(ω),

t = T, . . . , 2, are constants, i.e., independent of ω. Then by condition (M3)
we have that

ρ̃(Z) = Z1 + ρZ2|Z1
(Z2) + · · · + ρZT |ZT−1

(ZT ). (4.64)

We discuss this further in Example 12 of the following section.

Now let us formulate a multistage optimization problem involving risk
mappings. Suppose that we are given functions ft : R

nt × Ω → R and mul-
tifunctions Gt : R

nt−1 × Ω ⇒ R
nt , t = 1, . . . , T . We assume that the func-

tions ft(xt, ω) are Ft-random lower semicontinuous24, and the multifunctions
Gt(xt−1, ·) are closed valued and Ft-measurable. Note that since the sigma al-
gebra F1 is trivial, the function f1 : R

n1 → R does not depend on ω ∈ Ω, and

24Recall that it is said that function ft(xt, ω) is Ft-random lower semicontinuous
if its epigraphical mapping is closed valued and Ft-measurable.



4 Optimization of Risk Measures 151

by the definition G1(ω) ≡ G1, where G1 is a fixed closed subset of R
n1 . Let Mt,

t = 1, . . . , T , be linear spaces of Ft-measurable functions Xt : Ω → R
nt , and

M .
= M1×· · ·×MT . With functions ft we associate mappings Ft : Mt → Zt

defined as follows

[Ft(Xt)](ω)
.
= ft(Xt(ω), ω), Xt ∈ Mt.

Since F1 is trivial, the space M1 can be identified with R
n1 , and hence

F1(X1) = f1(X1).
Consider the problem

min
X∈M

ρT

(
F1(X1) + · · · + FT (XT )

)
,

s.t. Xt(ω) ∈ Gt(Xt−1(ω), ω), ω ∈ Ω, t = 1, . . . , T.
(4.65)

We refer to (4.65) as a multistage risk optimization problem. By (4.62) and
(4.63) we can write the equivalent nested formulation:

ρT

(
F1(X1) + · · · + FT (XT )

)
= F1(X1) + ρZ2|Z1

[
F2(X2)+

· · · + ρZT−1|ZT−2

[
FT−1(XT−1) + ρZT |ZT−1

(
FT (XT )

)]]
.

(4.66)

Since X ∈ M, it is assumed that Xt(ω) are Ft-measurable, and hence (4.65)
is adapted to the filtration Ft, t = 1, . . . , T .

As an example consider the following linear setting. Suppose that25

ft(xt, ω)
.
= ct(ω) · xt,

Gt(xt−1, ω)
.
=
{
xt ∈ R

nt : Bt(ω)xt−1 +At(ω)xt = bt(ω), xt ≥ 0
}
,

(4.67)

where ct(ω), bt(ω) are vectors and Bt(ω), At(ω) are matrices of appropriate
dimensions. It is assumed that the corresponding vector-valued functions

ξt(ω)
.
= (ct(ω), Bt(ω), At(ω), bt(ω)), t = 1, . . . , T,

are adapted to the filtration Ft, i.e., ξt(ω) is Ft-measurable, t = 1, . . . , T .
Then the nested formulation of the corresponding multistage risk optimization
problem can be written as follows:

min
x1∈G1

(
c1 · x1 + ρZ2|Z1

[
infx2∈G2(x1,ω)

(
c2(ω) · x2 + · · ·

+ρZT−1|ZT−2

[
infxT−1∈G2(xT−2,ω) cT−1(ω) · xT−1

+ρZT |ZT−1
[infxT ∈GT (xT−1,ω) cT (ω) · xT ]

])])
.

The precise meaning of the nested formulation of problem (4.65) is explained
by dynamic programming equations as follows. Define the (cost-to-go) func-
tion

25In order to avoid notational confusion we denote here by a·b the standard scalar
product of two vectors a, b ∈ R

n.
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QT (xT−1, ω)
.
=
[
ρZT |ZT−1

(
VT (xT−1)

)]
(ω), (4.68)

where
[VT (xT−1)](ω)

.
= inf

xT ∈GT (xT−1,ω)
fT (xT , ω). (4.69)

And so on for t = T − 1, . . . , 2,

Qt(xt−1, ω)
.
=
[
ρZt|Zt−1

(
Vt(xt−1)

)]
(ω), (4.70)

where

[Vt(xt−1)
]
(ω)

.
= inf

xt∈Gt(xt−1,ω)

{
ft(xt, ω) + Qt+1(xt, ω)

}
. (4.71)

Of course, equations (4.70) and (4.71) can be combined into one equation:

[Vt(xt−1)
]
(ω) = inf

xt∈Gt(xt−1,ω)

{
ft(xt, ω) +

[
ρZt+1|Zt

(
Vt+1(xt)

)]
(ω)

}
. (4.72)

Finally, at the first stage we solve the problem

inf
x1∈G1

Q2(x1). (4.73)

The optimal value and the set of optimal solutions of problem (4.73) provide
the optimal value and the first-stage set of optimal solutions of the multistage
program (4.65).

It should be mentioned that for the dynamic programming equations (4.72)
to be well defined we need to ensure that Vt(xt−1) ∈ Zt for every considered
xt−1. Note that since the function fT (xt, ω) is FT -random lower semicon-
tinuous and GT (xT−1, ·) is closed valued and FT -measurable, it follows that
[VT (xT−1)](·) is FT -measurable (e.g., [302, Theorem 14.37]). Still one has to
verify that VT (xT−1) ∈ ZT in order for QT (xT−1, ω) to be well defined. It will
follow then that QT (xT−1, ·) is Ft−1-measurable. In order to continue the pro-
cess for t = T − 1, it should be verified further that the function QT (xT−1, ω)
is FT−1-random lower semicontinuous. And so on for t = T − 2, . . . , 2. Fi-
nally, for t = 2 the function Q2(x1, ·) is F1-measurable, and hence does not
depend on ω. Let us emphasize that the key assumption ensuring equivalence
of the two formulations of the risk optimization problem is the monotonicity
condition (M2) (cf. [313]).

Remark 6. In some cases the function [VT (·)](ω), where VT is defined in (4.69),
is convex for all ω ∈ Ω. This happens, for example, if fT (·, ω) is convex for all
ω ∈ Ω, and GT is defined by linear constraints of form (4.67). If [VT (·)](ω) is
convex, then conditions (M1) and (M2) ensure that the corresponding function
QT (·, ω) is also convex. Similarly, the convexity property propagates to the
functions Qt(·, ω), t = T − 1, . . . , 2. In particular, in the linear case, where ft

and Gt are defined in (4.67), the functions Qt(·, ω), t = T, . . . , 2, are convex
for all ω ∈ Ω. In convex cases it makes sense to talk about subdifferentials26

∂Qt(xt−1, ω). In principle, these subdifferentials can be written in a recursive
form by using equations (4.70) and (4.71) and the analysis of Section 4.6.

26These subdifferentials are taken with respect to xt−1 for a fixed value ω ∈ Ω.
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4.13 Examples of Risk Mappings and Multistage
Problems

In this section we adopt the framework of Sections 4.11 and 4.12 with Zt
.
=

Lp(Ω,Ft, P ) and Z∗
t

.
= Lq(Ω,Ft, P ), t = 1, . . . , T . As before, unless stated

otherwise, all expectations and probability statements are made with respect
to the probability measure P . As it was already mentioned in Section 4.11,
the conditional expectation

ρZt|Zt−1
(Zt)

.
= E[Zt|Ft−1]

is a simple example of a conditional risk mapping. For that choice of condi-
tional risk mappings, we have(

ρZt−1|Zt−2
◦ ρZt|Zt−1

)
(Zt) = E[Zt|Ft−2],

and ρT (·) = E[ · ]. In that case (4.66) becomes the standard formulation of a
multistage stochastic programming problem and (4.68)–(4.73) represent well
known dynamic programming equations.

Now let us discuss analogues of some examples of risk functions considered
in Section 4.4.

Example 12. Consider the following extension of the mean-upper-semideviation
risk function (of order p ∈ [1,+∞)) discussed in Example 3. For Zt ∈ Zt and
ct ≥ 0 define

ρZt|Zt−1
(Zt)

.
= E[Zt|Ft−1] + ct σp(Zt|Ft−1),

where

σp(Zt|Ft−1)
.
=
(
E

[[
Zt − E[Zt|Ft−1]

]p
+

∣∣Ft−1

])1/p

.

If the sigma algebra Ft−1 is trivial, then E[ · |Ft−1] = E[ · ] and σp(Zt|Ft−1)
becomes the upper semideviation of Zt of order p. For a while we keep t fixed
and we use the notation ρ for the above mapping ρZt|Zt−1

.
By using the analysis of Example 3 it is possible to show that ρ satisfies

conditions (M1),(M3) and (M4), and also condition (M2), provided that ct ∈
[0, 1]. Indeed, clearly ρ is positively homogeneous, i.e., condition (M4) holds.
Condition (M3) can be verified directly. That is, if Y ∈ Zt−1 and Zt ∈ Zt,
then

ρ(Zt + Y ) = E[Zt + Y |Ft−1] + ct

(
E

[(
Zt + Y − E[Zt + Y |Ft−1]

)p

+

∣∣Ft−1

])1/p

= E[Zt|Ft−1] + Y + ct

(
E

[(
Zt − E[Zt|Ft−1]

)p

+

∣∣Ft−1

])1/p

= ρ(Zt) + Y.

For ω ∈ Ω consider the function ρω(·) = [ρ(·)](ω). Consider also the condi-
tional probability of P with respect to Ft−1, denoted µ(ω) or µω (see Re-
mark 3). Recall that E[Zt|Ft−1](ω) = Eµω

[Zt], and hence
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ρω(Zt) = Eµω
[Zt] + ct

(
Eµω

[(
Zt − Eµω

[Zt]
)p

+

])1/p

.

For a fixed ω the function ρω coincides with the risk function analyzed in
Example 3 with µω playing the role of the corresponding probability measure.
Consequently, ρω is convex, i.e., condition (M1) holds, and condition (M2)
follows, provided that ct ∈ [0, 1].

We have that µω ∈ PZ∗
t |Ft−1

(ω) and its conditional probability density
gω = dµω/dP has the following properties: gω ∈ Z∗

t , gω ≥ 0, for any A ∈ Ft,
the function ω �→

∫
A
gω(ω̃) dP (ω̃) is Ft−1-measurable and, moreover, for any

B ∈ Ft−1 it holds that∫
B

∫
A

gω(ω̃) dP (ω̃) dP (ω) = P (A ∩B).

By the analysis of Example 3 it follows that the representation

ρω(Zt) = sup
ζt∈At(ω)

E[ζtZt],

holds with

At(ω) =
{
ζ ′t ∈ Z∗

t : ζ ′t = gω

(
1 + ζt − E[gωζt]

)
, ‖ζt‖q ≤ ct, ζt � 0

}
.

In order to write the corresponding multistage problem in form (4.65) we need
to describe the composite function ρ̃ defined in (4.62). In general a description
of ρ̃ is quite messy. Let us consider the following two particular cases. Suppose
that p = 1 and all ct are zero except one, say cT . That is, ρZt|Zt−1

(·) .
=

E[ · |Ft−1], for t = 2, . . . , T − 1. In that case

ρZT−1|ZT−2

[
ZT−1 + ρZT |ZT−1

(ZT )
]

= E
[
ZT−1 + ρZT |ZT−1

(ZT )
∣∣FT−2

]
= E

[
ZT−1 + ZT

∣∣FT−2

]
+ cT E

[(
ZT − E[ZT |FT−1]

)
+

∣∣FT−2

]
,

and
ρ̃(Z) = E

[
Z1 + · · · + ZT + cT

[
ZT − E[ZT |FT−1]

]
+

]
.

Another case where calculations are simplified considerably is under the ‘be-
tween stages independence’ condition (compare with Remark 5). That is,
suppose that the objective functions ft and the constraint mappings Gt,
t = 2, . . . , T , are given in the form ft(xt, ξt(ω)) and Gt(xt−1, ξt(ω)), re-
spectively, where ξt(ω) are random vectors defined on a probability space
(Ω,F , P ). That is the case, for example, if ft and Gt are defined in the form
(4.67). With some abuse of notation we simply write ft(xt, ξt) and Gt(xt−1, ξt)
for the corresponding random functions and mappings. It will be clear from
the context when ξt is viewed as a random vector and when as its particular
realization.

Assume that the sigma algebra Ft is generated by (ξ1(ω), . . . , ξt(ω)), t =
1, . . . , T . Assume also that ξ1 is not random, and hence the sigma algebra F1

is trivial. Assume further the following condition, referred to as the between
stages independence condition:
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(I) For every t ∈ {2, . . . , T}, random vector ξt is (stochastically) independent
of (ξ1, . . . , ξt−1).

Then the minimum in the right hand side of (4.69) is a function of xT−1 and
ξT , and hence is independent of the random vector (ξ1, . . . , ξT−1). It follows
then that the corresponding cost-to-go function QT (xT−1), defined in (4.69),
is independent of ω. By continuing this process backwards we obtain that,
under the between stages independence condition, the cost-to-go functions
are independent of ω and the corresponding dynamic programming equations
can be written in the form

Qt(xt−1) = ρZt|Zt−1
(Vt(xt−1)), (4.74)

Vt(xt−1)(ξt) = inf
xt∈Gt(xt−1,ξt)

{
ft(xt, ξt) + Qt+1(xt)

}
, (4.75)

with

ρZt|Zt−1
(Vt(xt−1)) = E

[
Vt(xt−1)

]
+ ct

(
E

[(
Vt(xt−1) − E[Vt(xt−1)]

)p

+

])1/p

.

Also in that case the optimization in problem (4.65) should be performed over
functions Xt(ξt) and (compare with (4.64))

ρT (F1(X1) + F2(X2) + · · · + FT (XT )) =
F1(X1) + ρZ2|Z1

(F2(X2)) + · · · + ρZT |ZT−1
(FT (XT )).

(4.76)

Example 13. Consider the framework of Example 6. Let v : R → R be a
convex real valued function such that the function z + v(z) is monotonically
nondecreasing on R. Define[

ρZt|Zt−1
(Zt)

]
(ω)

.
= inf

Y ∈Zt−1

E
[
Zt + v(Zt − Y )|Ft−1

]
(ω). (4.77)

Of course, a certain care should be exercised in verification that the right
hand side of equation (4.77) gives a well defined mapping. For a while we
will keep t fixed and use notation ρ = ρZt|Zt−1

. Since the function (Zt, Y ) �→
E
[
Zt + v(Zt − Y )|Ft−1

]
(ω) is convex, it follows that ρω(·) is convex, i.e., the

condition (M1) holds. Since z + v(z) is nondecreasing, condition (M2) holds
as well. It is also straightforward to verify that condition (M3) holds here
by making change of variables Zt �→ Zt − Y . Let us calculate the conjugate
function ρ∗ω. In a way similar to (4.21) we have for ζt ∈ Z∗

t ,

ρ∗ω(ζt) = sup
Zt∈Zt

{
E[ζtZt] − ρω(Zt)

}
= sup

Zt∈Zt

{
E[ζtZt] + sup

Y ∈Zt−1

E
[
− Zt − v(Zt − Y )|Ft−1

]
(ω)

}
= sup

Zt∈Zt

{
E[ζt(Zt + Y )] + sup

Y ∈Zt−1

E
[
− Zt − Y − v(Zt)|Ft−1

]
(ω)

}
,
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and hence

ρ∗ω(ζt) = sup
Zt∈Zt

{
E[ζtZt] − E

[
Zt + v(Zt)|Ft−1

]
(ω)

}
+ sup

Y ∈Zt−1

E
[
Y (ζt − 1)|Ft−1

]
(ω).

(4.78)

Since Y ∈ Zt−1, and hence Y (ω) is Ft−1-measurable, we have

E
[
Y (ζt − 1)|Ft−1

]
(ω) = Y (ω)

(
E[ζt|Ft−1](ω) − 1

)
.

Therefore, the second maximum in the right hand side of (4.78) is equal to
zero if E[ζt|Ft−1](ω) = 1, and to +∞ otherwise. It follows that the domain of
ρ∗ω is included (this inclusion can be strict) in the set

A∗
t (ω)

.
=
{
ζt ∈ Z∗

t : E[ζt|Ft−1](ω) = 1
}
.

Note that for any B ∈ Ft−1 and ζt ∈ A∗
t (ω) it holds that

∫
B
ζt dP is equal

to 1 if ω ∈ B, and to 0 if ω �∈ B, i.e., A∗
t (ω) is a subset of PZ∗

t |Ft−1
(ω).

Consider the conditional probability of P with respect to Ft−1, denoted
µ(ω) or µω (see Remark 3). We have that µω ∈ PZ∗

t |Ft−1
(ω) and let gω =

dµω/dP be its conditional probability density (properties of gω were discussed
in the previous example). Recall that E[Zt|Ft−1](ω) = Eµω

[Zt], and hence

E
[
Zt + v(Zt)|Ft−1

]
(ω) = E[gω(Zt + v(Zt))].

This can be substituted into (4.78). Since by the interchangeability formula
the maximum over Zt at the right hand side of (4.78) can be taken inside the
integral, we obtain

ρ∗ω(ζt) =

{
E
[
supzt∈R

{
(ζt − gω)zt − gωv(zt)

}]
, if ζt ∈ A∗

t (ω),

+∞, otherwise.
(4.79)

By Theorem 4 we have then that

ρω(Zt) = sup
ζt∈A∗

t (ω)

{
E[ζtZt] − ρ∗ω(ζt)

}
.

In particular, let Zt
.
= L1(Ω,Ft, P ), Z∗

t
.
= L∞(Ω,Ft, P ) and take

v(z)
.
= ε1[−z]+ + ε2[z]+,

where ε1 ∈ [0, 1] and ε2 ≥ 0 (compare with Example 7). This function v(z)
is convex positively homogeneous, and the corresponding function z + v(z) is
nondecreasing. The maximum inside the expectation in the right hand side of
(4.79) is equal to zero if −ε1gω ≤ ζt − gω ≤ gωε2, and to +∞ otherwise. It
follows that the corresponding risk mapping ρ satisfies conditions (M1)–(M4),
and
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ρω(Zt) = sup
ζt∈At(ω)

E[ζtZt],

where η1
.
= 1 − ε1, η2

.
= 1 + ε2,

At(ω) =

{
ζt ∈ Z∗

t :
η1gω(ω̃) ≤ ζt(ω̃) ≤ η2gω(ω̃), a.e. ω̃ ∈ Ω,
E[ζt|Ft−1](ω) = 1

}
.

The between stages independence condition can be introduced here in a
way similar to the previous example. Under this condition formulas (4.74),
(4.75) and (4.76) will hold here as well.
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Summary. This chapter deals with the sampled scenarios approach to robust con-
vex programming and its applications to control analysis and synthesis. It has been
shown in previous work [71] that by randomly sampling a sufficient number of con-
straints among the (possibly) infinite constraints of a robust convex program, one
obtains a standard convex optimization problem whose solution is ‘approximately
feasible,’ in a probabilistic sense, for the original robust convex program. This is
a generalization property in the learning theoretic sense, since the satisfaction of a
certain number of ‘training’ constraints entails the satisfaction of other ‘unseen’ con-
straints. In this contribution we provide a new efficient bound on the generalization
rate of sampled convex programs, and discuss several applications of this paradigm
to robust control analysis and design problems.

5.1 Introduction

Robust convex programming [35, 141] deals with optimization problems sub-
ject to a family of convex constraints that are parameterized by uncertainty
terms. Solving a robust convex program (RCP) amounts to determining an op-
timal solution that is feasible for all possible constraints in the parameterized
family. In more precise terms, an RCP may be formalized as

RCP : min
θ∈Θ

cT θ subject to (5.1)

f(θ, δ) ≤ 0, ∀δ ∈ ∆,

where θ is the optimization variable, δ is the uncertainty parameter, Θ ⊆ R
nθ

is a convex and closed set, and ∆ ⊆ R
nδ . The objective to be minimized

can be taken as linear without loss of generality. Further, it is assumed that
f(θ, δ) : Θ×∆ → (−∞,∞] is continuous and convex in θ, for any fixed value
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of δ ∈ ∆. Notice that no assumption is instead made on the dependence of
f(θ, δ) on δ.

The constraints are here expressed by the condition f(θ, δ) ≤ 0, where
f is a scalar-valued function. Considering scalar-valued constraint func-
tions is without loss of generality, since multiple constraints f1(θ, δ) ≤
0, . . . , fnf

(θ, δ) ≤ 0 can be reduced to a single scalar-valued constraint by
the position f(θ, δ)

.
= maxi=1,...,nf

fi(θ, δ).
We remark that, despite convexity, robust convex programs are in general

hard to solve numerically, see [35,37,141]. This is one of the motivations that
led us to consider probabilistic relaxations of the problem, see [71] for an
in-depth discussion.

Important special cases of robust convex programs are robust linear pro-
grams, [36], for which f(θ, δ) = maxi=1,...,nf

fi(θ, δ) and each fi(θ, δ) is affine
in θ, and robust semidefinite programs, [12, 37, 141], for which f(θ, δ) =
λmax[F (θ, δ)], where

F (θ, δ) = F0(δ) +

nθ∑
i=1

θiFi(δ), Fi(δ) = FT
i (δ),

and λmax[·] denotes the largest eigenvalue.
The RCP paradigm has found to date applications in many engineering

endeavors, such as truss topology design [34], robust antenna array design,
portfolio optimization [142], and robust estimation [121]. However, we shall
be mainly concerned here with control systems, where RCPs arise naturally in
the context of analysis and synthesis based on parameter-dependent Lyapunov
functions, see, e.g., [12,100,101,124], as well as in various problems of robust
filtering [139,401] and set-membership state reachability and filtering [75,140].
It is perhaps also worth noticing that RCPs encompass deterministic min-max
games of the type

min
θ∈Θ

max
δ∈∆

f(θ, δ). (5.2)

These problems can indeed be cast in the RCP format as

min
θ∈Θ,γ

γ subject to

f(θ, δ) ≤ γ, ∀δ ∈ ∆.

In [69, 71], a probabilistic approach has been proposed to approximately
solve problem (5.1). This approach is based on sampling at random a finite
number N of constraints in the family {f(θ, δ) ≤ 0, δ ∈ ∆} and solving the
corresponding standard convex problem. In particular, we explicitly define the
scenario counterpart of RCP as

RCPN : min
θ∈Θ

cT θ subject to (5.3)

f(θ, δ(i)) ≤ 0, i = 1, . . . , N,
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where δ(1), . . . , δ(N) are N independent identically distributed (i.i.d.) samples,
drawn according to some given probability measure denoted as P. A scenario
design is given by an optimal solution θ̂N of RCPN . Notice that θ̂N is a random
variable that depends on the random extractions δ(1), . . . , δ(N).

5.1.1 Properties of RCPN

Let us first specify more precisely the probabilistic setup that we shall use in
the following. We assume that the support ∆ for δ is endowed with a σ-algebra
D and that P is defined over D. Moreover, we assume that {δ ∈ ∆ : f(θ, δ) ≤
0} ∈ D, ∀θ ∈ Θ. We have the following definition.

Definition 1 (violation probability). Let θ ∈ Θ be given. The probability
of violation of θ is defined as

V (θ)
.
= P{δ ∈ ∆ : f(θ, δ) > 0}.

For example, if a uniform (with respect to Lebesgue measure) probability
distribution is assumed, then V (θ) measures the volume of ‘bad’ parameters
δ such that the constraint f(θ, δ) ≤ 0 is violated. Clearly, a solution θ with
small associated V (θ) is feasible for most of the problem instances, i.e. it is
approximately feasible for the robust problem.

Definition 2 (ε-level solution). Let ε ∈ (0, 1). We say that θ ∈ Θ is an
ε-level robustly feasible (or, more simply, an ε-level) solution, if V (θ) ≤ ε.

Our goal is to devise an algorithm that returns a ε-level solution, where ε is
any fixed small level. It was shown in [71] that the solution returned by RCPN

has indeed this characteristic, as summarized in the following theorem.

Theorem 1 (Corollary 1 of [71]). Assume that, for any extraction of δ(1),

. . . , δ(N), the scenario problem RCPN attains a unique optimal solution θ̂N .
Fix two real numbers ε ∈ (0, 1) (level parameter) and β ∈ (0, 1) (confidence

parameter) and let

N ≥ Nlin(ε, β)
.
=

⌊
nθ

εβ

⌋
(5.4)

(� denotes integer rounding towards zero). Then, with probability no smaller

than 1 − β, θ̂N is ε-level robustly feasible.

In this theorem, probability 1−β refers to the probability P
N (=P×P · · ·×P,

N times) of extracting a ‘bad’ multisample, i.e. a multisample δ(1), . . . , δ(N)

such that θ̂N does not meet the ε-level feasibility property. Figure 5.1 gives a
visual interpretation of the result in Theorem 1.

The inequality (5.4) provides the minimum number of sampled constraints
that are needed in order to attain the desired probabilistic levels of robustness
in the solution. The function Nlin(ε, β) gives therefore a bound on the gen-
eralization rate of the scenario approach, which relates to the ability of the
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∆

∆ N

Ξ

 < ε

 < β 

satisfaction
set

θN

bad sample set

(δ
(1)

,δ
(2)

,..., δ
(N)

)

Figure 5.1. Interpretation of the scenario approach to robust convex programming:
With probability at least 1−β the sampled scenarios δ(1), . . . , δ(N) lead to an optimal
solution θ̂N which is feasible for all but at most a set of measure ε of the uncertainties

scenario solution of being feasible (with high probability) also with respect
to constraints that were not explicitly taken into account in the solution of
RCPN (unseen scenarios). In formula (5.4), the suffix ‘lin’ underlines the fact
that N grows linearly with respect to β−1.

5.1.2 Related Works

The idea of seeking optimal designs that are robust in a probabilistic sense is
of course not new. In the stochastic optimization literature, for instance, un-
certainty in optimization is typically dealt with by introducing expectations,
i.e. by attempting to solve a problem of the form minθ∈Θ Eδ[f(θ, δ)] (cfr. the
min-max problem formulation in (5.2)). Monte Carlo sampling techniques are
commonly used in this context to numerically determine an approximate so-
lution, see for instance [332]. More closely related to the RCP approach is the
so-called chance-constrained optimization problem (CCP), where one seeks to
optimize the objective under a constraint explicitly expressed in the form of
a probability:
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CCP(ε) : min
θ∈Θ

cT θ subject to (5.5)

P{δ ∈ ∆ : f(θ, δ) > 0} ≤ ε.

It should be remarked that an exact numerical solution of the above probabil-
ity constrained optimization problem is in general hopeless, see for instance
the monograph [280]. A further negative news is that the probability con-
strained problem (5.5) is in general non-convex, even when the function f(θ, δ)
is convex in θ for all δ ∈ ∆. We direct the reader to the survey [281] and to
Chapters 1 and 2 of this book for recent results related to chance-constrained
optimization. Chapter 1, in particular, discusses numerically efficient sampling
approximations of the chance-constrained problem, in the case when f(θ, δ)
is a bi-affine mapping. The relation between CCP(ε) and RCPN is discussed
in Section 5.2.1 of this chapter.

The use of probabilistic robustness techniques in the domain of control
design is instead relatively recent. The recent monograph [359] provides an
historical perspective on the topic and a thorough survey of currently available
randomized algorithms for approximately solving probabilistically constrained
design problems in control. However, the randomized approach that we pro-
pose in this chapter is distinctively different from those discussed in [359]
and in other related works such as [76, 129, 176, 249, 252, 273]. These latter
references propose sequential stochastic algorithms for determining an ap-
proximately feasible design, based on random gradient descent or ellipsoidal
iterations. The methodology described here is instead based on a one-shot
solution of the sampled convex program by means, e.g., of interior point tech-
niques, and it is tailored to optimization. We shall not discuss sequential
methods further here, but direct the reader to [359] and to the introduction
in [71] for additional details on this subject.

5.2 An Improved Bound on the Generalization Rate

We next show that a better bound than (5.4) in fact holds for scenario con-
vex problems. The new bound (Theorem 2 below) has both theoretical and
practical importance. From the theoretical side, it shows that generalization
is achieved with a number of samples that grows essentially as O(nθ

ε ln 1
β ).

This implies that a much lower number of constraints is needed with respect
to (5.4), which is important in practice when solving RCPN numerically.

We start with a simplifying assumption that is made in order to avoid
mathematical cluttering.

Assumption 5.1. For all possible extractions δ(1), . . . , δ(N), the optimization
problem (5.3) is either unfeasible, or, if feasible, it attains a unique optimal
solution.

This assumption could actually be removed (i.e. we may allow for non-
existence or non-uniqueness of the optimal solution) without harming the
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result, at the expense of complications in the proofs. These refined results
may be obtained following a technique similar to the one developed in [71].
We now state the main result of this chapter.

Lemma 1 (Generalization rate of RCPN). Let Assumption 5.1 be satis-

fied, and let θ̂N be the optimal solution of (5.3), when the problem is feasible.
Given probability level ε ∈ (0, 1), define the event B

B .
=
{

(δ(1), . . . , δ(N)) : RCPN is feasible, and V (θ̂N ) > ε
}

⊆ ∆N .

Then, it holds that

P
N (B) <

(
N
nθ

)
(1 − ε)N−nθ (5.6)

where nθ is the number of decision variables in problem (5.3). In words, the
probability of RCPN being feasible and providing a ‘bad’ solution (i.e. a so-
lution with violation greater that ε) is bounded from above by the right hand
side of (5.6).

In Lemma 1 and elsewhere, the measurability of B, as well as that of other
sets in ∆N , is taken as an assumption. The proof of Lemma 1 needs some
preliminaries, and it is hence reported in Section 5.6, to avoid breaking the
continuity of discourse.

The following theorem is based on Lemma 1, and provides an explicit
bound on the number of sampled scenarios that are needed to solve a robust
convex problem to given probabilistic levels of accuracy and confidence.

Theorem 2. Let Assumption 5.1 be satisfied. Fix two real numbers ε ∈ (0, 1)
(level parameter) and β ∈ (0, 1) (confidence parameter). If

N ≥ Ngen(ε, β)
.
= (5.7)⌈

infν∈(0,1)
1

1−ν

(
1
ε ln 1

β + nθ + nθ

ε ln 1
νε + 1

ε ln (nθ/e)nθ

nθ !

)⌉
(	
 denotes the smallest integer greater than or equal to the argument) then,
with probability no smaller than 1 − β, either the scenario problem RCPN is
unfeasible, and hence also RCP is unfeasible; or, RCPN is feasible, and then
its optimal solution θ̂N is ε-level robustly feasible.

In this theorem, probability 1 − β refers to the N -fold probability P
N (=

P × · · · × P, N times). In other words, Theorem 2 states that if N (specified
by (5.7)) random scenarios are drawn, the optimal solution of RCPN is ε-level
feasible according to Definition 2, with high probability 1 − β.

Proof. We prove that, if N is chosen according to (5.7), then(
N
nθ

)
(1 − ε)N−nθ ≤ β (5.8)
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and hence, by Lemma 1,

P
N
({

(δ(1), . . . , δ(N)) : RCPN is feasible, and V (θ̂N ) > ε
})

< β.

Taking the complementary event, we would have

P
N
({

(δ(1), . . . , δ(N)) :

RCPN is unfeasible, or it is feasible and V (θ̂N ) ≤ ε
})

≥ 1 − β

which is the claim of the theorem. Notice that the fact that if RCPN is un-
feasible then RCP is also unfeasible is obvious, since RCPN exhibits only a
subset of the constraints of RCP.

To prove that (5.7) implies (5.8), we proceed by simple algebraic manipu-
lations. Any of the following inequality implies the next in a top-down fashion,
where the first one comes from (5.7) where ν is a number in (0, 1):

N ≥ 1

1 − ν

(
1

ε
ln

1

β
+ nθ +

nθ

ε
ln

1

νε
+

1

ε
ln

((nθ

e

)nθ 1

nθ!

))
(1 − ν)N ≥ 1

ε
ln

1

β
+ nθ +

nθ

ε
ln

1

νε
+

1

ε
ln

((nθ

e

)nθ 1

nθ!

)
(1 − ν)N ≥ 1

ε
ln

1

β
+ nθ +

nθ

ε

(
ln
nθ

νε
− 1

)
− 1

ε
ln(nθ!)

N ≥ 1

ε
ln

1

β
+ nθ +

nθ

ε

(
ln
nθ

νε
− 1 +

νNε

nθ

)
− 1

ε
ln(nθ!)

N ≥ 1

ε
ln

1

β
+ nθ +

nθ

ε
lnN − 1

ε
ln(nθ!), (5.9)

where the last implication can be justified by observing that lnx ≥ 1− 1
x , for

x > 0, and applying this inequality with x = nθ

νNε . Proceeding from (5.9), the
next inequalities in the chain are

lnβ ≥ −εN + εnθ + nθ lnN − ln(nθ!)

β ≥ Nnθ

nθ!
e−ε(N−nθ)

β ≥ N(N − 1) · · · (N − nθ + 1)

nθ!
(1 − ε)N−nθ ,

where, in the last implication, we have used the fact that

e−ε(N−nθ) ≥ (1 − ε)N−nθ ,

as it follows by taking logarithm of the two sides and further noting that
−ε ≥ ln(1 − ε). The last inequality can be rewritten as
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β ≥
(

N
nθ

)
(1 − ε)N−nθ ,

which is (5.8). �

Bound (5.7) can be simplified and made explicit, as stated in the following
corollary.

Corollary 1. The results in Theorem 2 hold for

N ≥ Nlog(ε, β)
.
=

⌈
2

ε
ln

1

β
+ 2nθ +

2nθ

ε
ln

2

ε

⌉
. (5.10)

Proof. Observe that (nθ/e)
nθ ≤ nθ!, and hence the last term in (5.7) is

non-positive and can be dropped, leading to

Ngen(ε, β) ≤
⌈

1

1 − ν

(
1

ε
ln

1

β
+ nθ +

nθ

ε
ln

1

νε

)⌉
, (5.11)

where ν can be freely selected in (0, 1). The statement of the corollary is then
obtained by selecting ν = 1/2 in (5.11). We also note that further optimizing
(5.11) with respect to ν always leads to a ν ≤ 1/2, with a corresponding
improvement by at most of a factor 2. �

Remark 1 (sample complexity). Notice that bound (5.10) – and hence (5.7),
which is tighter – substantially improves upon (5.4) in that dependence on 1/β
is now logarithmic. This means that, in practice, confidence in the solution
is not an issue in the scenario design approach, since values of β of the order
of 10−10 or even smaller can be attained without substantially increasing
the necessary number of samples. Table 5.1 shows a comparison of the these
bounds for several values of ε and β.

Remark 2 (the role of convexity). Theorem 2 says that if we extract a finite
number N of constraints, then the solution of the randomized problem, if
feasible, satisfies most of the other unseen constraints. As we mentioned, this
is a generalization property: the explicit satisfaction of some ‘training’ sce-
narios generalizes automatically to the satisfaction of other unseen scenarios.
It is interesting to note that generalization calls for some kind of structure,
and the only structure used here is convexity. So, convexity in the scenario
approach is fundamental in two different respects: on the computational side,
it allows for an efficient solution of the ensuing optimization problem, and on
the theoretical side it allows for generalization.

Remark 3 (VC-dimension). Bound (5.10) depends on the problem structure
through nθ, the number of optimization variables, only. It is not difficult
to conceive situations where the class of sets {δ ∈ ∆ : f(θ, δ) > 0} ⊆ ∆,
parameterized in θ, has infinite VC-dimension (see, e.g., [375] for a definition),
even for small nθ. Then, estimating P{δ ∈ ∆ : f(θ, δ) > 0} = V (θ) uniformly
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Table 5.1. Comparison of sample-size bounds, for nθ = 10

ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001

β = 0.01
Nlin = 104

Nlog = 712
Ngen = 533

Nlin = 105

Nlog = 11538
Ngen = 7940

Nlin = 106

Nlog = 161249
Ngen = 105142

Nlin = 107

Nlog = 2072821
Ngen = 1303039

β = 0.001
Nlin = 105

Nlog = 758
Ngen = 562

Nlin = 106

Nlog = 11999
Ngen = 8203

Nlin = 107

Nlog = 165854
Ngen = 107683

Nlin = 108

Nlog = 2118873
Ngen = 1327959

β = 0.0001
Nlin = 106

Nlog = 804
Ngen = 589

Nlin = 107

Nlog = 12459
Ngen = 8465

Nlin = 108

Nlog = 170459
Ngen = 110219

Nlin = 109

Nlog = 2164925
Ngen = 1352842

β = 0.00001
Nlin = 107

Nlog = 850
Ngen = 617

Nlin = 108

Nlog = 12920
Ngen = 8725

Nlin = 109

Nlog = 175064
Ngen = 112748

Nlin = 1010

Nlog = 2210977
Ngen = 1377687

with respect to θ is impossible and the VC-theory is of no use. Theorem 2 says
that, if attention is restricted to θ̂N , then estimating V (θ̂N ) becomes possible
at a low computational cost.

Remark 4 (A-priori and a-posteriori assessments). It is worth noticing that a
distinction should be made between the a-priori and a-posteriori assessments
that one can make regarding the probability of constraint violation. Indeed,
before running the optimization, it is guaranteed by Theorem 2 that if N ≥
Ngen(ε, β) samples are drawn, the solution of the randomized program will
be ε-level robustly feasible, with probability no smaller than 1 − β. However,
the a-priori parameters ε, β are generally chosen to be not too small, due
to technological limitations on the number of constraints that one specific
optimization software can deal with.

On the other hand, once a solution has been computed (and hence θ =

θ̂N has been fixed), one can make an a-posteriori assessment of the level of
feasibility using standard Monte Carlo techniques. In this case, a new batch
of Ñ independent random samples of δ ∈ ∆ is generated, and the empirical
probability of constraint violation, say V̂Ñ (θ̂N ), is computed according to the

formula V̂Ñ (θ̂N ) = 1
Ñ

∑Ñ
i=1 1(f(θ̂N , δ

(i)) > 0), where 1(·) is the indicator

function. Then, the classical Hoeffding’s inequality, [162], guarantees that

|V̂Ñ (θ̂N ) − V (θ̂N )| ≤ ε̃

holds with confidence greater than 1 − β̃, provided that

Ñ ≥ ln 2/β̃

2ε̃2
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test samples are drawn. This latter a-posteriori verification can be easily per-
formed using a very large sample size Ñ , because no numerical optimization
is involved in such an evaluation.

5.2.1 Chance-Constrained and Sampled Convex Programs

Consider the probability-constrained problem (5.5) The distinctive feature
of CCP(ε) is that it is required that the neglected constraint set is chosen in
an optimal way, i.e. among all sets of constraints with probability no larger
than ε, the removed one is the one that allows for the greatest reduction in
the design objective. In the optimization literature, this problem is called a
‘chance-constrained’ optimization problem, see, e.g., [280,374].

As we have already seen, RCPN returns with high probability a feasible
solution of CCP(ε). In the next theorem, we establish a further connection
between CCP(ε) and RCPN .

Theorem 3. Let ε, β ∈ (0, 1) be given probability levels. Let JCCP(ε) denote
the optimal objective value of the chance-constrained problem CCP(ε) in (5.5)
when it is feasible (i.e. JCCP(ε)

.
= infθ∈Θ cT θ subject to V (θ) ≤ ε) and let

JRCPN
be the optimal objective value of the scenario problem RCPN in (5.3)

when it is feasible (notice that JRCPN
is a random variable, while JCCP(ε) is

a deterministic value), with N any number satisfying (5.10). Then:

1. With probability at least 1 − β, if RCPN is feasible it holds that

JRCPN
≥ JCCP(ε);

2. Assume CCP(ε1) is feasible, where ε1 = 1 − (1 − β)1/N . With probability
at least 1 − β, it holds that

JRCPN
≤ JCCP(ε1).

Proof. The first claim is immediate, since from Theorem 2, with probability
at least 1 − β, if RCPN is feasible, then its optimal solution θ̂N satisfies
V (θ̂N ) ≤ ε, i.e. it is a feasible, albeit possibly not optimal, solution for problem
CCP(ε), and hence JRCPN

≥ JCCP(ε).
To prove the second claim, notice that if θ is feasible for problem CCP(ε1)

with ε1 = 1 − (1 − β)1/N , i.e.

P{δ ∈ ∆ : f(θ, δ) > 0} ≤ 1 − (1 − β)1/N ,

then for each of N independent extractions δ(1), . . . , δ(N) of δ it holds that

P{δ(i) ∈ ∆ : f(θ, δ(i)) ≤ 0} ≥ (1 − β)1/N , i = 1, . . . , N,

and hence, by independence, the joint event {(δ(1), . . . , δ(N)) ∈ ∆N : f(θ, δ(i)) ≤
0, i = 1, . . . , N} holds with probability at least 1 − β. This means that, with
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probability at least 1− β, a feasible point for CCP(ε1) is also a feasible point
for RCPN . We now have two possibilities, depending on whether CCP(ε1)

attains an optimal solution (i.e. a θ̂ feasible for CCP(ε1) exists such that

cT θ̂ = JCCP(ε1)) or not. In the first situation (θ̂ exists), taking θ = θ̂ in the
previous reasoning immediately implies that JRCPN

≤ JCCP(ε1), as desired.

In the second situation (θ̂ does not exist), consider a point θ̄ which is
feasible for CCP(ε1) and such that cT θ̄ ≤ JCCP(ε1) + ρ, for some ρ > 0 (such
a θ̄ exists since JCCP(ε1) = inf cT θ over θ’s that are feasible for CCP(ε1)). By
the previous reasoning, this implies that, with probability at least 1 − β, the
point θ̄ is also feasible for problem RCPN , entailing

P

{
(δ(1), . . . , δ(N)) ∈ ∆N : JRCPN

≤ JCCP(ε1) + ρ
}

≥ 1 − β. (5.12)

For the purpose of contradiction, suppose now that result 2 in the theorem is
violated so that JRCPN

> JCCP(ε1) with probability larger than β. Since{
(δ(1), . . . , δ(N)) ∈ ∆N : JRCPN

> JCCP(ε1)

}
=

⋃
ν>0

{
(δ(1), . . . , δ(N)) ∈ ∆N : JCCPN

> JCCP(ε1) +
1

ν

}
,

then

β < P
N
{

(δ(1), . . . , δ(N)) ∈ ∆N : JRCPN
> JCCP(ε1)

}
= lim

ν→∞
P

N

{
(δ(1), . . . , δ(N)) ∈ ∆N : JRCPN

> JCCP(ε1) +
1

ν

}
and we conclude that there exists a ν̄ such that JRCPN

> JCCP(ε1) + 1
ν̄ with

probability larger than β. But this contradicts (5.12) for ρ = 1
ν̄ , so concluding

the proof. �

A few words help clarify result 2 in Theorem 3. First notice that JCCP(ε)

is a non-increasing function of ε. Result 2 states that the optimal value JRCPN

(where N has been selected so that the optimal solution is ε-level feasible with
probability 1− β) is, with probability at least 1 − β, no worse than JCCP(ε1),
for a certain ε1 ≤ ε explicitly given. For a ready comparison between ε and ε1,
observe that relation as ≤ sa+ (1 − s) holds for any a ≥ 0 and 0 ≤ s ≤ 1 (as
it easily follows by observing that the two sides coincide for s = 0 and s = 1
and that as is convex in s). Then, with the position a

.
= 1 − β; s

.
= 1/N , we

have

ε1 = 1 − (1 − β)1/N ≥ 1 −
[

1

N
(1 − β) +

(
1 − 1

N

)]
=

β

N
,

which, used in result 2 of the theorem, gives JRCPN
≤ JCCP(β/N), with N any

number satisfying (5.10). For a crude evaluation, note that if nθ > 1 and β
is assumed to be of the same order of ε, then the dominant term in (5.10) is
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2nθ

ε ln 2
ε , leading to ε1 ≈ β

N ≈ β
2nθ ln 2

ε

ε, where β
2nθ ln 2

ε

is the rescaling factor

between ε and ε1.

5.3 Sampled Convex Programs in Robust Control

In this section, we consider design problems in control as an illustration of
the robust optimization set-up discussed in the previous sections.

A wide variety of robust analysis and synthesis problems in control can
be formulated as determining a vector of controller (or more generally ‘de-
sign’) parameters such that some performance specifications on the controlled
system are satisfied, as the plant varies over a specified family of admissible
plants. More precisely, many robust control problems can be expressed as op-
timization problems subject to closed-loop constraints that are parameterized
by the uncertainties affecting the plant. In formal terms, if θ ∈ Θ ⊆ R

nθ is
the ‘design parameter’ (which includes the actual controller parameters, plus
possibly other additional variables such as parameters of Lyapunov functions,
slack variables and scalings), and the family of admissible plants is parame-
terized by an ‘uncertainty vector’ δ ∈ ∆ ⊆ R

nδ , then the prototype control
problem we refer to consists of minimizing a linear objective cT θ, subject to
f(θ, δ) ≤ 0, δ ∈ ∆, where f(θ, δ) : Θ × ∆ → (−∞,∞] is a function that
specifies the closed-loop constraints. To make things more concrete, consider
e.g. a robust H∞ or H2 control problem. If the closed-loop system is denoted
as Gcl(ξ, δ) (where ξ are design parameters), then we can take θ = (ξ, γ) and
minimize γ subject to the constraints ψ(ξ, δ) ≤ γ, where

ψ(ξ, δ) =

{
‖Gcl(ξ, δ)‖, if Gcl(ξ, δ) is stable
∞, otherwise,

and the norm is either the H∞ or H2 norm. Here, f(θ, δ) = ψ(ξ, δ) − γ, and
cT θ = γ. When the function f is convex in θ (which happens in several, albeit
not all practical control design cases) we are faced with an RCP problem of
the kind discussed in the previous sections.

We shall discuss next several relevant control analysis and synthesis prob-
lems that can be naturally cast in the RCP format, and for which no deter-
ministic polynomial-time algorithm is known that computes an exact solution.
For these problems, the solution approach that we propose is to first relax the
problem in a probabilistic sense and then solve the probabilistic problem via
the sampled scenario approach.

5.3.1 Stability Analysis Using Parameter-Dependent Lyapunov
Functions

Consider the family of linear systems described in state-space form as
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{ẋ = A(δ)x, δ ∈ ∆}, (5.13)

where x ∈ R
nx is the state variable, and the parameter δ ∈ ∆ ⊆ R

nδ parame-
terizing the system family is unknown, but constant in time. In the sequel, we
shall refer to system families of the type (5.13) simply as ‘uncertain systems’.

Let a symmetric matrix function P (ξ, δ) be chosen in a family parame-
terized by a vector of parameters ξ ∈ R

nξ , and assume that P (ξ, δ) is linear
in ξ, for all δ ∈ ∆. The dependence of P (ξ, δ) on the uncertainty δ, as well
as the dependence of A(δ) on δ, are otherwise left generic. We introduce the
following sufficient condition for robust stability, which follows directly from
the standard Lyapunov theory.

Definition 3 (generalized quadratic stability – GQS). Given a sym-
metric matrix function P (ξ, δ), linear in ξ ∈ R

nξ for all δ ∈ ∆, the uncertain
system (5.13) is said to be quadratically stable with respect to P (ξ, δ) if there
exists ξ ∈ R

nξ such that[
−P (ξ, δ) 0

0 AT (δ)P (ξ, δ) + P (ξ, δ)A(δ)

]
≺ 0, ∀δ ∈ ∆ (5.14)

(≺ means negative definite). Such a P (ξ, δ) is called a Lyapunov matrix for
the uncertain system (5.13).

For specific choices of the parameterization P (ξ, δ), the above GQS criterion
clearly encompasses the popular quadratic stability (QS, [59, 61]) and affine
quadratic stability (AQS, [131]) criteria, as well as the biquadratic stability
condition of [367]. For instance, the quadratic stability condition is recovered
by choosing P (ξ, δ) = P (i.e. ξ contains the free elements of P = PT , and
there is no dependence on δ), which amounts to determining a single Lyapunov
matrix P that simultaneously satisfies (5.14). The AQS condition is instead
obtained by choosing

P (ξ, δ) = P0 + δ1P1 + · · · + δnδ
Pnδ

, (5.15)

where ξ represents the free elements in the matrices Pi = PT
i , i = 0, . . . , nδ.

Notice that QS, AQS and GQS constitute a hierarchy of sufficient conditions
for robust stability having decreasing conservatism. However, even the sim-
plest (and most conservative) QS condition is hard to check numerically. Only
in the case when the set {A(δ), δ ∈ ∆} is a polytope, the QS condition is
exactly checkable numerically via convex optimization, [59, 61]. As a matter
of fact, in this case a classical vertex result holds which permits to convert the
infinite number of constraints entailed by (5.14) into a finite number of LMIs
involving the vertices of the polytope. Notice however that in the classical
case when A(δ) is an interval matrix, the number of vertices of the polytope

grows as 2n2
x , which means that QS cannot be checked with a computational

effort that is polynomial in the problem size nx.
The AQS condition is computationally hard even in the polytopic case

with a fixed number of vertices, and therefore convex relaxations that lead
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to numerically tractable sufficient conditions for AQS have been proposed in
the literature. For instance, in [131] a further multiconvexity requirement is
imposed in order to obtain LMI sufficient conditions when ∆ is a hypercube
and A(δ) is affine, while in [124] the so-called S-procedure is used for the same
purpose. More recently, a generalization of the method, based on a class of
Lyapunov functions that depend quadratically (instead of affinely) on δ has
been proposed in [367], while the case of linear-fractional (LFT) dependence
in A(δ) is studied in [264]. All these extensions are again particular cases of
the GQS criterion defined above.

Now, notice that a key feature of condition (5.14) is that, for any fixed
δ ∈ ∆ it represents a convex LMI condition in ξ, and therefore finding a fea-
sible parameter ξ amounts indeed to solving a robust convex program. This
is the key observation that makes the scenario paradigm well-suited for prob-
abilistic analysis within the context of generalized quadratic stability. With
pre-specified confidence, a matrix P (ξ, δ) generated by a scenario solution
would be a Lyapunov matrix for all but a small fraction of the systems in the
family (5.13).

Formalization as RCPN

Notice that condition (5.14) is a feasibility condition expressed by a strict ma-
trix inequality, while both problems RCP and RCPN are minimization prob-
lems subject to a non-strict inequality condition (in (5.1) we have f(θ, δ) ≤ 0
as opposed to f(θ, δ) < 0). The precise formalization of the GQS problem
within the scenario setting can be done in more than one way and it is to a
certain extent a matter of taste. Here, as an illustration, we further develop
this first example to indicate a possible way to cast it in the RCPN format. It
is tacitly understood that similar formalizations apply to all other examples.

First, set an optimization program with the format of (5.1) as follows:

RCP : minα subject to

−I �
[
−P (ξ, δ) 0

0 AT (δ)P (ξ, δ) + P (ξ, δ)A(δ)

]
� αI, ∀δ ∈ ∆.

Then, assume a probability measure P over the uncertainties is given, and
build the scenario counterpart of the problem

RCPN : minα subject to

−I �
[
−P (ξ, δ(i)) 0

0 AT (δ(i))P (ξ, δ(i)) + P (ξ, δ(i))A(δ(i))

]
� αI,

i = 1, . . . , N,

where the scenarios δ(i) are independently extracted at random according to
P. Here, the optimization variable is θ

.
= (ξ, α). Note also that the lower

bound −I has been introduced without loss of generality since, otherwise, the
solution may escape to infinity due to homogeneity of the constraint.
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Applying Theorem 2 we can then conclude that, with probability at least
1 − β, either RCPN is unfeasible, so that RCP and the original GQS is un-
feasible, or the solution (ξ̄, ᾱ) of RCPN is a ε-level solution for RCP. In the
latter case, if ᾱ ≥ 0, it is easily seen that GQS is again unfeasible. Finally, if
ᾱ < 0, then P (ξ̄, δ) is a ε-level solution for GQS.

5.3.2 Generalized Quadratic Synthesis for Uncertain Systems

Consider the uncertain system

ẋ = A(δ)x+B1(δ)w +B2(δ)u (5.16)

z = C(δ)x, (5.17)

where x ∈ R
nx is the state variable, w ∈ R

nw is the exogenous input, u ∈ R
nu

is the control input, z ∈ R
nz is the performance output, and all matrices are

generic functions of δ ∈ ∆.

State-feedback stabilization

Suppose we want to stabilize (5.16) by means of a state-feedback control law
u = Kx, where K ∈ R

nu,nx is a static feedback gain. The resulting closed-loop
system is robustly stable if and only if Acl(δ)

.
= A(δ) + B2(δ)K is Hurwitz

for all δ ∈ ∆. Using the enhanced LMI characterization proposed in [13]
(Theorem 3.1), robust stabilizability of (5.16) is equivalent to the existence of
matrices V ∈ R

nx,nx , R ∈ R
nu,nx , and a Lyapunov symmetric matrix function

P (δ) ∈ R
nx,nx such that⎡⎣−(V + V T ) V TAT (δ) +RTBT

2 (δ) + P (δ) V T

∗ −P (δ) 0
∗ ∗ −P (δ)

⎤⎦ ≺ 0, ∀δ ∈ ∆ (5.18)

(asterisks denote entries that are easily inferred from symmetry). If a feasible
solution is found, the robustly stabilizing feedback gain is recovered as K =
RV −1. A sufficient condition for robust stabilizability is hence readily obtained
by considering a specific parameterized matrix function family P (ξ, δ) (linear
in the parameter ξ, for any fixed δ ∈ ∆) in the above condition. The resulting
problem is convex in the decision variable θ

.
= (ξ, V,R), for any fixed δ ∈ ∆,

and it is therefore a robust convex problem. Notice again that this robust
problem is hard to solve in general. As an exception, in the special case when
[A(δ) B2(δ)] is affine in δ, ∆ is a hypercube, and P (δ) is chosen in the affine
form (5.15), the above robust condition can be transformed by a standard
‘vertexization’ argument into a finite set of LMIs involving the vertex matrices,
and hence solved exactly (this latter special case is indeed the one presented in
[13]). We remark however again that the number of vertices (and hence of LMI
constraints) grows exponentially with the number of uncertain parameters nδ,
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which makes this standard approach practically unviable in cases when nδ is
large.

This robust state-feedback stabilization problem is amenable to the sce-
nario randomization approach similarly to the problem in Section 5.3.1. When
P (δ) = P (i.e. we look for a parameter-independent Lyapunov matrix), we
can alternatively use a standard Lyapunov inequality instead of (5.18). This
is indeed the case shown in the numerical example presented in Section 5.4.1.

State-feedback robust H2 synthesis

For system (5.16)–(5.17), consider the problem of designing a state-feedback
law u = Kx such that the closed loop is robustly stable, and has guaranteed
H2 performance level γ on the w − z channel.

Adopting the LMI characterization of H2 performance proposed in [13,
Theorem 3.3], we have that the closed-loop system with controller K = RV −1

is robustly stable and has guaranteed H2 performance less than γ if there exist
Z = ZT ∈ R

nw,nw , R ∈ R
nu,nx and V ∈ R

nx,nx and a Lyapunov symmetric
matrix function P (δ) ∈ R

nx,nx such that⎡⎢⎢⎣
−(V + V T ) V TAT (δ) +RTBT

2 (δ) + P (δ) V TC(δ) V T

∗ −P (δ) 0 0
∗ ∗ −γI 0
∗ ∗ ∗ −P (δ)

⎤⎥⎥⎦ ≺ 0, ∀δ ∈ ∆

[
P (δ) B1(δ)
∗ Z

]
� 0, trZ < 1, ∀δ ∈ ∆.

Again, we can recast the problem within the randomized setting by considering
symmetric parameter-dependent Lyapunov matrix P (ξ, δ) linear in ξ ∈ R

nξ .
Notice also that the above matrix inequalities are linear in γ, and therefore
the H2 level can also be minimized subject to these constraints.

5.3.3 Controller Synthesis for LPV Systems

Consider a linear parameter-varying (LPV) system of the form⎡⎣ ẋz
y

⎤⎦ =

⎡⎣ A(δ(t)) B1(δ(t)) B2(δ(t))
C1(δ(t)) 0 D12(δ(t))
C2(δ(t)) D21(δ(t)) 0

⎤⎦⎡⎣ x
w
u

⎤⎦ ,
where x ∈ R

nx is the state, w ∈ R
nw is the exogenous input, u ∈ R

nu is the
control input, z ∈ R

nz is the performance output, y ∈ R
ny is the measured

output, and δ(t) ∈ R
nδ is a time-varying parameter, usually referred to as

the scheduling parameter. In the LPV setting, the parameter δ(t) is known to
be contained in a set ∆, whereas its actual value at time t, δ(t), is a-priori
unknown but can be measured online. The LPV formulation has recently
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received considerable attention, since it forms the basis of systematic gain-
scheduling approaches to nonlinear control design, see for instance [31,48,49,
320] and the survey [310].

The design objective is to determine a controller that processes at time t
not only the measured output y(t) but also the measured scheduling parameter
δ(t), in order to determine the control input u(t) for the system.

Quadratic control of LPV systems

Here, we consider a controller of the form[
ẋk

u

]
=

[
Ak(δ(t)) Bk(δ(t))
Ck(δ(t)) 0

] [
xk

y

]
.

Suppose the controller has to be designed so that exponential stability is en-
forced while achieving a quadratic performance specification on the w − z
channel. The main difficulty of the problem resides in the fact that in natural
applications of the LPV methodology the dependence of the matrices on the
scheduling parameter is nonlinear. To address this issue, two main approaches
have been proposed in the literature. One approach is based on embedding the
nonlinear dependence into a simpler one (such as affine or linear-fractional),
and then reduce the problem to some tractable finite-dimensional convex opti-
mization problem, see for instance [18] and the references therein. Of course,
this approach generally involves conservatism in the approximation. A sec-
ond methodology is instead based on ‘gridding’ the parameter set, and hence
transforming the solvability conditions of the original problem into a finite
set of convex constraints, see for instance [10, 31, 400]. The problem with
this approach is that the number of grid points (and of constraints, conse-
quently) increases exponentially with the number of scheduling parameters,
and may lead to numerically critical implementations. Recently, an alternative
randomization-based technique for LPV design has been proposed in [129].
The motivation for this section comes from this latter approach. Indeed, the
parameter-dependent inequalities derived in [129] are there solved using se-
quential stochastic gradient methods, while the same inequalities are here
viewed as an instance of a robust convex feasibility problem, and hence di-
rectly amenable to the scenario solution.

To be specific, let the following (rather standard) assumptions (see [31, 129])
hold:

(i)
[
DT

12(δ(t))C1(δ(t)) D
T
12(δ(t))D12(δ(t))

]
=
[
0 I

]
,

[
B1(δ(t))

D21(δ(t))D
T
21(δ(t))

]
=[

0
I

]
, hold for all δ(t) ∈ ∆;

(ii) δ(t) is a piecewise continuous function of t, with a finite number of discon-
tinuities in any interval.
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Then, formalize the quadratic LPV control problem as follows: Given γ > 0,
find matrices Ak(δ(t)), Bk(δ(t)), Ck(δ(t)) such that the closed-loop system is
exponentially stable, and

sup
w∈L2\0

∫∞
0

zT (t)z(t)dt∫∞
0

wT (t)w(t)dt
< γ,

for all δ(·) such that δ(t) ∈ ∆, ∀t. The solvability conditions for this problem
are directly stated in terms of robust feasibility of three LMIs in [31] (Theo-
rem 4.2). The synthesis LMIs reported below are an equivalent modification
of those in [31].

The quadratic LPV L2 control problem is solvable if and only if there exist
P = PT ∈ R

nx,nx and Q = QT ∈ R
nx,nx such that⎡⎣A(δ)P + PAT (δ) − γB2(δ)B

T
2 (δ) PCT

1 (δ) B1(δ)
∗ −γI 0
∗ ∗ −I

⎤⎦ ≺ 0, ∀δ ∈ ∆

⎡⎣AT (δ)Q+QA(δ) − CT
2 (δ)C2(δ) QB1(δ) CT

1 (δ)
∗ −I 0
∗ ∗ −γI

⎤⎦ ≺ 0, ∀δ ∈ ∆

[
P I
∗ Q

]
� 0.

Moreover, if feasible P � 0, Q � 0 exist, then the LPV controller matrices are
recovered as

Ak(δ) = A(δ) −Q−1CT
2 (δ)C2(δ) −B2(δ)B

T
2 (δ)Z−1 + γ−1Q−1CT

1 (δ)C1(δ) +

+γ−1Q−1(AT (δ)Q+QA(δ) + γ−1CT
1 (δ)C1(δ) − CT

2 (δ)C2(δ) +

+QB1(δ)B
T
1 (δ)Q)Q−1Z−1,

Bk(δ) = Q−1CT
2 (δ),

Ck(δ) = −BT
2 (δ)Z−1,

where Z
.
= (P −Q−1)/γ.

Again, this LPV design problem (either finding a feasible design for fixed level
γ, or minimizing γ subject to the above constraints) is stated in the form of
an RCP, and it is hence amenable to the randomized scenario solution. In this
specific context, the scenario approach can be viewed as a kind of gridding
technique, where the grid points are randomly selected. The advantage resides
in the fact that bound (5.10) can be used to determine the number of grid
points, and this number is independent of the dimension of δ.

State-feedback synthesis for LPV systems

Similar to the approach in the previous section, we next consider a state-
feedback design problem for a LPV system with guaranteed decay rate. Con-
sider the LPV system
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ẋ = A(δ(t))x+B(δ(t))u

and assume that the state is measured, and that the controller is of the form

u = K(δ(t))x,

where

K(δ(t)) = K0 +

nδ∑
i=1

Kiδi(t).

The control objective is to determine the matrices Ki, i = 0, . . . , nδ, such that
the controlled system has a guaranteed exponential decay rate ν > 0. Specif-
ically, defining the closed loop matrix Acl(δ(t)) = A(δ(t)) + B(δ(t))K(δ(t)),
the control objective is met if there exists a symmetric matrix P � 0 such
that the matrix inequality

Acl(δ)P + PAT
cl(δ) + 2νP ≺ 0 (5.19)

holds for all δ ∈ ∆. Introducing the new variables Yi
.
= KiP , i = 0, . . . , nδ,

the design requirements are satisfied if⎡⎢⎢⎣
A(δ)P +B(δ)Y0 +

∑nδ

i=1 B(δ)Yiδi

+PAT (δ) + Y T
0 BT (δ) +

∑nδ

i=1 Y
T
i BT (δ)δi + 2νP

0

0 −P

⎤⎥⎥⎦ ≺ 0, ∀δ ∈ ∆.

5.4 Numerical Examples

We next report the results of some numerical experiments of control design
performed using the scenario approach.

5.4.1 Robust State-Feedback Stabilization

Given the uncertain system

ẋ = A(δ)x+Bu

we wish to design a state-feedback control law u = Kx such that the closed-
loop is quadratically stable, for all δ in the allowable uncertainty set ∆. This
design specification is satisfied if and only if there exist P � 0 and Y such
that

A(δ)P + PAT (δ) +BY + Y TBT ≺ 0, ∀δ ∈ ∆ (5.20)

(see for instance [59]). Due to homogeneity in these conditions, we can refor-
mulate the problem in minimization form as the RCP
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min
P,Y,α

α subject to

−I �
[
−P 0
0 A(δ)P + PAT (δ) +BY + Y TBT

]
� αI. (5.21)

If the optimal α is negative, then the original design conditions are satisfied,
and the controller is retrieved as K = Y P−1.

We here consider a simple numerical example, with

A(δ) =

[
ρ2δ2 1 + ρ1δ1

−(1 + ρ1δ1)
2 2(0.1 + ρ2δ2)(1 + ρ1δ1)

]
B =

[
10
15

]
ρ1 = 0.9, ρ2 = 0.5, with |δ1| ≤ 1, |δ2| ≤ 1. The scenario counterpart of the
problem is

min
P,Y,α

α subject to

−I �
[
−P 0
0 A(δ(i))P + PAT (δ(i)) +BY + Y TBT

]
� αI, i = 1, . . . , N.

where δ(1), . . . , δ(N) are i.i.d. uncertainty samples.
In this example we have nθ = 3 + 2 + 1 = 6 design variables (the free

entries of symmetric P , plus the two entries of Y , and α). Setting ε = 0.1
and β = 0.01, bound (5.7) requires at least N = 336 uncertainty samples.
Assuming uniform probability measure over ∆, and solving numerically one
instance of the scenario problem (by means of LMILab toolbox in Matlab) we
obtained α = −0.0073,

P =

[
0.0143 0.0312
0.0312 0.1479

]
, Y =

[
−0.0093 −0.0133

]
and hence the controller

K = Y P−1 = [−0.8414 0.0879]. (5.22)

This controller was then tested a-posteriori via Monte Carlo. The estimated
empirical probability of P, Y violating the design LMI (5.21) was 0.0145. A
plot of the violation set is shown in Figure 5.2.



5 Sampled Convex Programs 181

violation set 

Figure 5.2. Violation set: the filled areas denote values of δ for which the LMI
(5.21) with controller (5.22) is violated

violation set 

Figure 5.3. Violation set: the filled area denotes values of δ for which the LMI
(5.20) with controller (5.22) is violated
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Notice that it might also be meaningful to test a-posteriori the controller
(5.22) against the original Lyapunov inequality (5.20). In this case, the a-
posteriori Monte Carlo test yielded an estimated probability of 0.0065 of vi-
olating (5.20). A plot of this second violation set is shown in Figure 5.3.

Setting instead the a-priori probability levels to ε = 0.01 and β = 0.001,
bound (5.7) would require at least N = 5170 uncertainty samples. Solving
one instance of the scenario problem, we found an optimal solution with α =
−0.0055 and

P =

[
0.0094 0.0218
0.0218 0.1292

]
,

Y =
[
−0.0102 −0.0147

]
and hence the controller

K = Y P−1 = [−1.3581 0.1147]. (5.23)

This controller was again tested a-posteriori via Monte Carlo. The a-posteriori
estimated probability of P, Y violating the design LMI (5.21) was 2.49×10−4.
This means in practice that the computed P is a Lyapunov matrix for all but a
very small fraction of the closed-loop plants, see the violation set in Figure 5.4.
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Figure 5.4. Violation set of LMI (5.21) with controller (5.23)



5 Sampled Convex Programs 183

5.4.2 Synthesis of LPV Controller

We next present a numerical example of LPV state-feedback stabilization with
guaranteed decay rate (see Section 5.3.3).

We consider a multivariable model given in [5] (see also the original paper
[370] for a slightly different model and set of data) of the dynamics of the
lateral motion of an aircraft. The state space equation is given by

ẋ =

⎡⎢⎢⎣
0 1 0 0
0 Lp Lβ Lr

g/V 0 Yβ −1
Nβ̇(g/V ) Np Nβ +Nβ̇Yβ Nr −Nβ̇

⎤⎥⎥⎦x+

⎡⎢⎢⎣
0 0
0 −3.91

0.035 0
−2.53 0.31

⎤⎥⎥⎦u,
where x1 is the bank angle, x2 its derivative, x3 the sideslip angle, x4 the yaw
rate, u1 the rudder deflection, u2 the aileron deflection, and the coefficients in
the A matrix have a physical interpretation as discussed in [5] and are subject
to time variability.

The following nominal values for the parameters are taken: Lp = −2.93,
Lβ = −4.75, Lr = 0.78, g/V = 0.086, Yβ = −0.11, Nβ̇ = 0.1, Np = −0.042,
Nβ = 2.601 and Nr = −0.29. The actual values of the parameters fluctuate
in time with a maximum variation of 15% from the nominal (central) values
and are measured on-line.

Setting the desired decay rate to ν = 0.5, and assuming uniform proba-
bility distribution over ∆, we applied the proposed scenario approach for the
solution of this design problem. Similarly to Section 5.3.1, we introduced the
RCP

min α subject to (5.24)

−I �

⎡⎢⎢⎣
A(δ)P +B(δ)Y0 +

∑nδ

i=1 B(δ)Yiδi

+PAT (δ) + Y T
0 BT (δ) +

∑nδ

i=1 Y
T
i BT (δ)δi + 2νP

0

0 −P

⎤⎥⎥⎦ � αI,

∀δ ∈ ∆.

and then solved its scenario counterpart with N computed as follows: the
number of uncertainty terms is nδ = 9, so that nθ = 83. The probability
levels were selected to be ε = 0.1 and β = 0.01, yielding N = 5232 according
to Theorem 2.

The solution of one instance of the scenario problem yielded optimal values
α = −0.2294, and

P =

⎡⎢⎢⎣
0.4345 −0.3404 −0.0014 −0.0061
−0.3404 0.7950 −0.0053 −0.0007
−0.0014 −0.0053 0.4787 0.3604
−0.0061 −0.0007 0.3604 0.7507

⎤⎥⎥⎦
K0 =

[
2.3689 3.0267 0.2346 −0.2593
−0.0268 −0.0028 1.6702 −2.1804

]
× 103
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K1 =

[
−1.9052 −2.4343 −0.1896 0.2091
0.0221 0.0021 −1.3443 1.7538

]
× 104

K2 =

[
1.5467 1.9763 0.1539 −0.1698
−0.0179 −0.0017 1.0914 −1.4238

]
× 104

K3 =

[
−1.8403 −2.3515 −0.1831 0.2020
0.0213 0.0020 −1.2985 1.6944

]
× 103

K4 =

[
−269.0519 −343.8210 −26.8210 29.5593

3.1197 0.2849 −190.1478 247.8405

]
K5 =

[
−325.6902 −416.1430 −31.9206 35.5400

3.7771 0.3475 −229.8091 299.8153

]
K6 =

[
−0.7610 −1.0314 −0.3023 0.4185
−2.1024 −2.6955 −0.5855 0.7303

]
× 104

K7 =

[
8.4788 11.2324 1.2490 −0.9159
−0.0983 −0.0090 5.9940 −7.8125

]
K8 =

[
−0.8506 −1.0279 0.1419 −0.2416
2.1211 2.6972 −0.5517 0.7533

]
× 104

K9 =

[
−1.7472 −2.2325 −0.1738 0.1922
0.0203 0.0019 −1.2328 1.6084

]
× 103.

Different a-posteriori tests can be conducted on the computed solution. For
instance, we may estimate by Monte Carlo the probability of violation of
the constraint used in problem (5.24). This estimated empirical probability
resulted to be equal to 8.65 × 10−5.

Alternatively (and perhaps more meaningfully), we may test the solution
against the original design inequality (5.19). In this case, using again Ñ =
6.103×106 parameter samples, we obtained an estimated empirical probability
of violating (5.19) equal to zero, i.e. our design satisfied all the a-posteriori
random tests.

5.5 Conclusions

In this chapter we presented a novel approach to robust control design, based
on the concept of uncertainty scenarios. Within this framework, if the robust-
ness requirements are imposed in a probabilistic sense, then a wide class of
control analysis and synthesis problems are amenable to efficient numerical
solution. This solution is computed solving a convex optimization problem
having a finite number N of sampled constraints. An efficient lower bound is
determined on the number N of scenarios that are required to obtain a design
that guarantees an a-priori specified probabilistic robustness level.

The methodology is illustrated by several control design examples that
present difficulties when tackled by means of standard worst-case techniques.
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We believe that, due to its intrinsic simplicity, the scenario approach will
be an appealing solution technique for many practical engineering design prob-
lems, also beyond the control applications mentioned in this chapter.

5.6 Appendix: Proof of Lemma 1

5.6.1 Preliminaries

We first recall a classical result due to Helly, see [298].

Lemma 2 (Helly). Let {Xi}i=1,...,p be a finite collection of convex sets in R
n.

If every sub-collection consisting of n + 1 sets has a non-empty intersection,
then the entire collection has a non-empty intersection.

Next, we prove a key instrumental result. Consider the convex optimization
program

P : min
x∈Rn

cTx subject to

x ∈
⋂

i∈{1,...,m}
Xi,

where Xi, i = 1, . . . ,m, are closed convex sets, and define the convex programs
Pk, k = 1, . . . ,m, obtained from P by removing the k-th constraint:

Pk : min
x∈Rn

cTx subject to

x ∈
⋂

i∈{1,...,m}\k

Xi.

In the following, we assume existence and uniqueness of the optimal solution
x∗ of P, and of the optimal solution x∗k of Pk, k = 1, . . . ,m.

We have the following definition.

Definition 4 (support constraint). The k-th constraint Xk is a support
constraint for P if cTx∗k < cTx∗.

The following theorem holds.

Theorem 4. The number of support constraints for problem P is at most n.

A proof of this result was first given by the authors of the present contri-
bution in [71]. We here report an alternative and more compact proof based
on an idea suggested to us by professor A. Nemirovski in a personal commu-
nication.

Proof. Let problem P have q support constraints Xs1
, . . . ,Xsq

, where S .
=

{s1, . . . , sq} is a subset of q indices from {1, . . . ,m}. We next prove (by con-
tradiction) that q ≤ n.
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Let J∗ = cTx∗ and J∗
k = cTx∗k denote the optimal objective values of P

and Pk, respectively. Consider the smallest objective improvement obtained
by removing a support constraint

ηmin
.
= min

k∈S
(J∗ − J∗

k )

and, for some η with 0 < η < ηmin, define the hyperplane

H .
= {x : cTx = J∗ − η}.

By construction, the q points x∗k, k ∈ S, lie in the half-space {x : cTx < J∗−η},
while x∗ lies in the half-space {x : cTx > J∗ − η}, and therefore H separates
x∗k, k ∈ S, from x∗. Next, for all indices k ∈ S, we denote with x̄∗k the point
of intersection between the line segment x∗kx∗ and H.

Since x∗k ∈
⋂

i∈{1,...,m}\k Xi, k ∈ S, and x∗ ∈
⋂

i∈{1,...,m} Xi, then by

convexity we have that x̄∗k ∈
⋂

i∈{1,...,m}\k Xi, k ∈ S, and therefore (since, by

construction, x̄∗k ∈ H)

x̄∗k ∈

⎛⎝ ⋂
i∈{1,...,m}\k

Xi

⎞⎠⋂
H, k ∈ S.

For i = 1, . . . ,m, define the convex sets Ωi
.
= Xi

⋂
H, and consider any

collection {Ωi1 , . . . , Ωin
} of n of these sets.

Suppose now (for the purpose of contradiction) that q > n. Then, there
must exist an index j �∈ {i1, . . . , in} such that Xj is a support constraint,
and by the previous reasoning, this means that there exists a point x̄∗j such

that x̄∗j ∈
(⋂

i∈{1,...,m}\j Xi

)⋂
H. Thus, x̄∗j ∈ Ωi1 ∩ · · · ∩ Ωin

, that is the

collection of convex sets {Ωi1 , . . . , Ωin
} has at least a point in common. Now,

since the sets Ωi, i = 1, . . . ,m, belong to the hyperplane H (i.e. to R
n−1,

modulo a fixed translation) and all collections composed of n of these sets
have a point in common, by Helly’s lemma (Lemma 2) there exists a point x̃
such that x̃ ∈

⋂
i∈{1,...,m}Ωi. Such a x̃ would therefore be feasible for problem

P; moreover, it would yield an objective value J̃ = cT x̃ < cTx∗ = J∗ (since
x̃ ∈ H). This is a contradiction, because x∗ would no longer be an optimal
solution for P, and hence we conclude that q ≤ n. �

Remark 5 (Support constraints and active constraints). Notice that the set Xs

of support constraints of problem P does not in general coincide with the set
Xa of constraints that are active at the optimum. By active constraints, we
mean those Xk for which x∗ ∈ ∂Xk, where ∂Xk denotes the boundary of the
convex set Xk. However, support constraints must be active constraints, i.e.
Xs ⊆ Xa.

We are now ready to present a proof of Lemma 1.
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5.6.2 Proof of Lemma 1

For clarity of exposition, we first assume that problem RCPN is feasible for any
selection of δ(1), . . . , δ(N). The case where infeasibility can occur is obtained
as an easy extension as indicated at the end of the proof.

Given N scenarios δ(1), . . . , δ(N), select a subset I = {i1, . . . , inθ
} of nθ

indices from {1, . . . , N} and let θ̂I be the optimal solution of the program

min
θ∈Θ

cT θ subject to

f(θ, δ(ij)) ≤ 0, j = 1, . . . , nθ.

Based on θ̂I we next introduce a subset ∆N
I of the set ∆N defined as

∆N
I

.
= {(δ(1), . . . , δ(N)) : θ̂I = θ̂N} (5.25)

(θ̂N is the optimal solution with all N constraints δ(1), . . . , δ(N) in place).
Let now I range over the collection I of all possible choices of nθ indices

from {1, . . . , N} (I contains
(

N
nθ

)
sets). We want to prove that

∆N =
⋃
I∈I

∆N
I . (5.26)

To show (5.26), take any (δ(1), . . . , δ(N)) ∈ ∆N . From the set of constraint
δ(1), . . . , δ(N) eliminate a constraint which is not a support constraint (this
is possible in view of Theorem 4, since N > nθ). The resulting optimization

problem with N − 1 constraints admits the same optimal solution θ̂N as the
original problem with N constraints. Consider now the set of the remaining
N−1 constraints and, among these, remove a constraint which is not a support
constraint for the problem with N−1 constraints. Again, the optimal solution
does not change. If we keep going this way until we are left with nθ constraints,
in the end we still have θ̂N as optimal solution, showing that (δ(1), . . . , δ(N)) ∈
∆N

I , where I is the set containing the nθ constraints remaining at the end of
the process. Since this is true for any choice of (δ(1), . . . , δ(N)) ∈ ∆N , (5.26)
is proven.

Next, let
B

.
= {(δ(1), . . . , δ(N)) : V (θ̂N ) > ε}

and
BI

.
= {(δ(1), . . . , δ(N)) : V (θ̂I) > ε}.

We now have

B = B ∩∆N

= B ∩ (∪I∈I∆N
I ) (apply (5.26))

= ∪I∈I(B ∩∆N
I )

= ∪I∈I(BI ∩∆N
I ). (because of (5.25)) (5.27)
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A bound for P
N (B) is now obtained by bounding P(BI ∩∆N

I ) and then sum-
ming over I ∈ I.

Fix any I, e.g. I = {1, . . . , nθ} to be more explicit. The set BI = B{1,...,nθ}
is a cylinder with base in the cartesian product of the first nθ constraint do-
mains (this follows from the fact that condition V (θ̂{1,...,nθ}) > ε only involves

the first nθ constraints). Fix (δ̄(1), . . . , δ̄(nθ)) ∈ base of the cylinder. For a point
(δ̄(1), . . . , δ̄(nθ), δ(nθ+1), . . . , δ(N)) to be in B{1,...,nθ} ∩ ∆N

{1,...,nθ}, constraints

δ(nθ+1), . . . , δ(N) must be satisfied by θ̂{1,...,nθ}, for, otherwise, we would not

have θ̂{1,...,nθ} = θ̂N , as it is required in ∆N
{1,...,nθ}. But, V (θ̂{1,...,nθ}) > ε in

B{1,...,nθ}. Thus, by the fact that the extractions are independent, we conclude
that

P
N−nθ{(δ(nθ+1), . . . , δ(N)) : (δ̄(1), . . . , δ̄(nθ), δ(nθ+1), . . . , δ(N))

∈ B{1,...,nθ} ∩∆N
{1,...,nθ}} < (1 − ε)N−nθ .

The probability on the left hand side is nothing but the conditional probability
that (δ(1), . . . , δ(N)) ∈ B{1,...,nθ} ∩ ∆N

{1,...,nθ} given δ(1) = δ̄(1), . . . , δ(nθ) =

δ̄(nθ). Integrating over the base of the cylinder B{1,...,nθ}, we then obtain

P
N (B{1,...,nθ}∩∆N

{1,...,nθ}) < (1−ε)N−nθ ·Pnθ (base of B{1,...,nθ}) ≤ (1−ε)N−nθ .

From (5.27), we finally arrive to the desired bound for P
N (B)

P
N (B) ≤

∑
I∈I

P
N (BI ∩∆N

I ) <
(

N
nθ

)
(1 − ε)N−nθ . (5.28)

So far, we have assumed that RCPN is feasible for any selection of
δ(1), . . . , δ(N). Relax now this assumption and call ∆N

F ⊆ ∆N the set where
RCPN is indeed feasible. The same derivation can then be worked out by
only focusing on the event ∆N

F leading to the conclusion that (5.28) holds

with B
.
=
{

(δ(1), . . . , δ(N)) ∈ ∆N
F : V (θ̂N ) > ε

}
. �
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Summary. Approximate Dynamic Programming is a means of synthesizing near-
optimal policies for large scale stochastic control problems. We examine here the LP
approach to approximate Dynamic Programming [98] which requires the solution
of a linear program with a tractable number of variables but a potentially large
number of constraints. Randomized constraint sampling is one means of dealing
with such a program and results from [99] suggest that in fact, such a scheme is
capable of producing good solutions to the linear program that arises in the context
of approximate Dynamic Programming. We present here a summary of those results,
and a case study wherein the technique is used to produce a controller for the game of
Tetris. The case study highlights several practical issues concerning the applicability
of the constraint sampling approach. We also demonstrate a controller that matches
- and in some ways outperforms - controllers produced by other state of the art
techniques for large-scale stochastic control.

6.1 Introduction

Randomized constraint sampling has recently been proposed as an approach
for approximating solutions to optimization problems when the number of
constraints is intractable – say, a googol or even infinity. The idea is to define
a probability distribution ψ over the set of constraints and to sample a subset
consisting of some tractable number N of independent identically distributed
constraints. Then, a relaxed problem, in which the same objective function is
optimized but only the sampled constraints are imposed, is solved.

An immediate question raised is whether solutions to the relaxed problem
provide meaningful approximations to solutions of the original optimization
problem. This question is partially addressed by recent theory developed first
in the context of linear programming [99] and then convex programming [71].
In particular, it has been shown that, for a problem with K variables, given
a number of samples

N = O

(
1

ε

(
K ln

1

ε
+ ln

1

δ

))
,
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with probability at least 1 − δ, any optimal solution to the relaxed problem
violates a set of constraints V with measure ψ(V) ≤ ε. Hence, given a rea-
sonable number of samples, one can ensure that treating the relaxed problem
leads to an ‘almost feasible’ solution to the original problem. One interesting
aspect of this result is that N does not depend on the number of constraints
associated with the original optimization problem.

The aforementioned theoretical result leads to another question:

In order that a solution to the relaxed problem be useful, does it
suffice to know that the measure of the set V of constraints it violates,
ψ(V), is small?

It is not possible to address this question without more specific context. In
some problems, every constraint is critical. In others, violating a small fraction
of the constraints may be acceptable. Further, the context should influence
the relative importance of constraints and therefore how the distribution ψ is
selected.

Approximate dynamic programming offers one context in which random-
ized constraint sampling addresses a pressing need. The goal is to synthesize
a suboptimal control policy for a large scale stochastic control problem. One
approach that has received much recent attention entails solving a linear pro-
gram with an intractable number of constraints [98,324,365]. For certain spe-
cial cases, the linear program can be solved exactly [148,322] while [365,366]
study constraint generation heuristics for general problems. Most generally,
constraint sampling can be applied [99]. The linear programming approach to
approximate dynamic programming provides a suitable context for assessing
the effectiveness of constraint sampling. In particular, violation of constraints
can be translated to a tangible metric – controller performance. The relation-
ship is studied in [99], which offers motivation for why violation of a small
fraction of constraints should not severely degrade controller performance.
However, the theory is inconclusive. In this chapter, we present experimental
results that further explore the promise of constraint sampling in this context.

Our study involves a specific stochastic control problem: the game of
Tetris. In principle, an optimal strategy for playing Tetris might be computed
via dynamic programming algorithms. However, because of the enormity of the
state space, this is computationally infeasible. Instead, one might synthesize
a suboptimal strategy using methods of approximate dynamic programming,
as has been done in [43, 174, 369]. In this chapter, we experiment with the
linear programming approach, which differs from others that have previously
been applied to Tetris. This study sheds light on the effectiveness of both
the linear programming approach to approximate dynamic programming as a
means of producing controllers for hard stochastic control problems, and ran-
domized constraint sampling as a way of dealing with an intractable number
of constraints.

The remainder of this chapter is organized as follows: in Section 6.2, we
make precise the notion of a stochastic control problem and present Tetris as
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an example of such a problem. In Section 6.3, we introduce the linear pro-
gramming approach to dynamic programming. In the following section, we
discuss how this linear programming approach might be extended to approx-
imate dynamic programming and in doing so, discuss results from [98,99] on
the quality of approximation such an approach might achieve, and a prac-
tically implementable constraint sampling scheme. Finally in Section 6.5 we
describe how a controller for Tetris was constructed using the LP approach
for approximate dynamic programming along with constraint sampling.

6.2 Stochastic Control and Tetris

Consider a discrete-time dynamic system which, at each time t, takes on a
state xt ∈ S and takes as input an action at ∈ Axt

. We assume that the state
space S is finite and that for each x ∈ S, the set of actions Ax is finite. Let
pa(x, y) denote the probability that the next state is y given that the current
state is x and the current action is a.

A policy is a mapping π : S → A from state to action. A cost function
g : S × A → R assigns a cost g(x, a) to each state-action pair (x, a). We
pose as the objective to select a policy π that minimizes the expected sum of
discounted future costs:

E

[ ∞∑
t=0

αtg(xt, at)
∣∣∣x0 = x, at = π(xt)

]
, (6.1)

where α ∈ (0, 1) is the discount factor.
Tetris is a popular video game in which falling pieces are positioned by

rotation and translation as they fall onto a wall made up of previously fallen
pieces. Each piece is made up of four equally-sized bricks, and the Tetris
board is a two-dimensional grid, ten-bricks wide and twenty-bricks high. Each
piece takes on one of seven possible shapes. A point is received for each row
constructed without any holes, and the corresponding row is cleared. The game
terminates once the height of the wall exceeds 20. The objective is to maximize
the expected number of points accumulated over the course of the game. A
representative mid-game board configuration is illustrated in Figure 6.1.

Indeed, Tetris can be formulated as a stochastic control problem:

• The state xt encodes the board configuration and the shape of the falling
piece.

• The action at encodes the rotation and translation applied to the falling
piece.

• It is natural to consider the reward (i.e., negative cost) associated with
a state-action pair to be the number of points received as a consequence
of the action, and to consider as the objective maximization of the ex-
pected sum of rewards over the course of a game. However, we found that,
with this formulation of reward, our approach (Section 6.5) did not yield
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Figure 6.1. A representative Tetris board configuration

reasonable policies. We found that a different cost function, together with
discounting, lead to effective policies. In particular, we set the cost g(xt, at)
to be the height of the current Tetris wall, and let the objective be to min-
imize the expected sum of discounted future costs (6.1), with a discount
factor α = 0.9. Further, we set the cost of a transition to a termination
state at 20

1−α which is a trivial upper bound on the cost-to-go for a state
under any policy. With this formulation, an optimal policy maximizes the
number of rows cleared prior to termination with a greater emphasis on
the immediate future, due to discounting.

Several interesting observations have been documented in the literature
on Tetris. It was shown in [67] that the game terminates with probability
one, under any policy. In terms of complexity, it is proven in [117] that for an
off-line version of Tetris, where the player is offered knowledge of the shapes
of the next K pieces to appear, optimizing various simple objectives is NP-
complete, even to approximate. Though there is no formal connection between
such results and the on-line model we consider, the results suggest that finding
an optimal policy for on-line Tetris might also be difficult.

6.3 Dynamic Programming

For each policy π, define a cost-to-go function,
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Jπ(x) = E

[ ∞∑
t=0

αtg(xt, at)
∣∣∣x0 = x, at = π(xt)

]
.

Given the optimal cost-to-go function

J∗(x) = min
π

Jπ(x),

an optimal policy can be generated according to

π(x) ∈ argmina∈Ax

⎛⎝g(x, a) + α
∑
y∈S

pa(x, y)J∗(y)

⎞⎠ .

Define the dynamic programming operator T : R
|S| → R

|S|:

(TJ)(x) = min
a∈Ax

⎛⎝g(x, a) + α
∑
y∈S

pa(x, y)J(y)

⎞⎠ .

It is well-known that the optimal cost-to-go function J∗ is the unique solu-
tion to Bellman’s equation: TJ = J . Dynamic programming offers a suite of
algorithms for solving this equation. One example involves a linear program:

maxJ cTJ
s.t. TJ ≥ J

Note that, as written above, the constraints are nonlinear. However, they can
be converted to linear constraints since each constraint (TJ)(x) ≥ J(x) is
equivalent to a set of linear constraints:

g(x, a) + α
∑
y∈S

pa(x, y)J(y) ≥ J(x) ∀a ∈ Ax.

It is well-known that for any |S|-dimensional vector c > 0, J∗ is the unique
optimal solution to this linear program (see, e.g., [41]).

In principle, stochastic control problems like Tetris can be solved by dy-
namic programming algorithms. However, the computational requirements are
prohibitive. For example, the above linear program involves one variable per
state and one constraint per state-action pair. Clearly, Tetris presents far too
many states (∼ 21400!) for such a solution method to be viable. One must
therefore resort to approximations.

6.4 Approximate Dynamic Programming

In order to deal with an intractable state space, one might consider approxi-
mating the optimal cost-to-go function J∗ by fitting a parameterized function
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approximator, in a spirit similar to statistical regression. A number of meth-
ods for doing this are surveyed in [44]. We will consider here cases where
the approximator depends linearly on the parameters. Such an approxima-
tor can be thought of as a linear combination of pre-selected basis functions
φ1, . . . , φK : S �→ R, taking the form

∑K
k=1 rkφk, where the parameters are

weights r1, . . . , rK ∈ R. Generating such an approximation involves two steps:

1. Selecting basis functions φ1, . . . , φK .
2. Computing weights r1, . . . , rK so that

∑K
k=1 rkφk ≈ J∗.

In our study of Tetris we will select basis functions based on problem spe-
cific intuition and compute weights by solving a linear program that with a
reasonably small number of parameters but an intractable number of con-
straints. In this section, we discuss this linear program approach and the use
of randomized constraint sampling in this context.

6.4.1 A Linear Program for Computing Basis Function Weights

It is useful to define a matrix Φ ∈ R
|S|×K by

Φ =

⎡⎣ | |
φ1 · · · φK

| |

⎤⎦
The linear program presented in Section 6.3, which computes J∗, motivates
another linear program for computing weights r ∈ R

K :

maxr c
TΦr

s.t. TΦr ≥ Φr.

To distinguish the two, we will call this linear program the ALP (approximate
linear program) and the one from Section 6.3 the ELP (exact linear program).
Note that, while the ELP involves one variable per state, the ALP only has
one variable per basis function. However, the ALP has as many constraints
as the ELP. We will later discuss the use of constraint sampling to deal with
this. For now, we will discuss results from [98] that support the ALP as a
reasonable method for approximating the optimal cost-to-go function.

Let r̃ be an optimal solution to the ALP, and ‖J‖1,c =
∑

x c(x)J(x) denote
a weighted �1-norm. One result from [98] asserts that r̃ attains the minimum
of ‖J∗ − Φr‖1,c within the feasible region of the ALP.

Lemma 1. A vector r solves

maxr c
TΦr

s.t. TΦr ≥ Φr

if and only if it solves
minr ‖J∗ − Φr‖1,c

s.t. TΦr ≥ Φr.
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Recall that J∗ is the optimal solution to the ELP for any c > 0. In the case of
the ALP, however, the choice of c determines relative emphasis among states,
with states corresponding to higher values of c likely to benefit from smaller
approximation errors.

J(1)

J*

J(2)

TJ J�

J= r�

�r*

�r

Figure 6.2. Graphical interpretation of the ALP

It is easy to see that if J∗ is in the range of Φ then Φr̃ = J∗. One might
hope that if J∗ is close to the range of Φ then the Φr̃ will be close to J∗. This
is not promised by the above result, because of the restriction to the feasible
region of the ALP. In particular, as illustrated in Figure 6.2, one might imagine
Φr̃ being close to or far from J∗ even though there is some (infeasible) r∗ for
which Φr∗ ≈ J∗. The following theorem (Theorem 4.1 from [98]) offers some
assurance through a bound on how far Φr̃ can be from J∗ in terms of the
proximity of J∗ to the range of Φ. The result requires that e, the vector with
every component equal to 1, is in the range of Φ.

Theorem 1. Let e be in the range of Φ and let c be a probability distribution.
Then, if r̃ is an optimal solution to the approximate LP,

‖J∗ − Φr̃‖1,c ≤ 2

1 − α
min

r
‖J∗ − Φr∗‖∞.

As discussed in [98], this bound is rather loose. In particular, for large
state-spaces, ‖J∗ − Φr∗‖∞ is likely to be very large. Further, the bound does
not capture the fact, that the choice of c has a significant impact on the
error ‖J∗ − Φr̃‖1,c. More sophisticated results in [98] address these issues by
refining the above bound. To keep the discussion simple, we will not present
those results here.
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After computing a weight vector r̃, one might generate decisions according
to a policy

π̃(x) = argmaxa∈Ax

⎛⎝g(x, a) + α
∑
y∈S

pa(x, y)(Φr̃)(y)

⎞⎠ .

Should this policy be expected to perform reasonably? This question is ad-
dressed by another result, adapted from Theorem 3.1 in [98].

Theorem 2. Let J be such that TJ ≥ J . Then

νT (Jπ̃ − J∗) ≤ 1

1 − α
‖J − J∗‖1,c,

where ν(y) = 1
1−α (c(y) − α

∑
x c(x)pπ(x)(x, y)).

For each state x, the difference Jπ̃(x) − J∗(x) is the excess cost associated
with suboptimal policy π̃ if the system starts in state x. It is easy to see that
ν sums to 1. However, νT (Jπ̃ − J∗) is not necessarily a weighted average of
excess costs associated with different states. Depending on the choice of c,
individual elements of ν may be positive or negative. As such, the choice of c
influences performance in subtle ways. [98] motivates choosing c to reflect the
relative frequencies with which states are visited by good policies.

6.4.2 Randomized Constraint Sampling

If there are a reasonably small number of basis functions, the ALP involves a
manageable number of variables but an intractable number of constraints. To
deal with these constraints, we will use randomized constraint sampling, as
proposed in [99]. In particular, consider the following relaxed linear program
(RLP):

max cTΦr
s.t. ga(x) + α

∑
y∈S Pa(x, y)(Φr)(y) ≥ (Φr)(x), ∀(x, a) ∈ X ,

where X is a set of N constraints each sampled independently according to a
distribution ψ.

The use of constraint sampling is motivated to some extent by the fol-
lowing result from [98]. (An important generalization that applies to convex
programs has been established in [71], see also the improved result in [70] and
in Chapter 5 of this book.)

Theorem 3. Consider a linear program with K variables and any number
of constraints. Let ψ be a probability distribution over the constraints and
let X be a set of N constraints sampled independently according to ψ, with
N ≥ 4

ε

(
K ln 12

ε + ln 2
δ

)
, ε ∈ (0, 1) and δ ∈ (0, 1). Let r ∈ R

K be an optimal
solution to the linear program with all constraints relaxed except for those in
X , and let V be the set of constraints violated by r. Then, ψ(V) ≤ ε with
probability at least 1 − δ.
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Figure 6.3. Graphical interpretation of the ALP

In spite of the above result, it is not clear whether the RLP will yield
solutions close to those of the ALP. In particular, it might be the case that a
few constraints affect the solution dramatically as Figure 6.3 amply illustrates.
Fortunately, the structure of the ALP precludes such undesirable behavior,
and we have the following result, which is adapted from [99].

Theorem 4. Let ε and δ be scalars in (0, 1). let π∗ be an optimal policy and
X be a random set of N state-action pairs sampled independently according
to the distribution

ψ∗
α(x) = (1 − α)E

[ ∞∑
t=0

αt1{xt = x}
∣∣∣x0 ∼ c, at = π∗(xt)

]
.

Let r̂ be a solution to the RLP. If

N ≥ 16‖J∗ − Φr̂‖∞
(1 − α)εcTJ∗

(
K ln

48‖J∗ − Φr̂‖∞
(1 − α)εcTJ∗ + ln

2

δ

)
,

then, with probability at least 1 − δ, we have

‖J∗ − Φr̂‖1,c ≤ ‖J∗ − Φr̃‖1,c + ε‖J∗‖1,c
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In the proof of this error bound, sampling according to ψ∗
α ensures that

with high probability, ‖J∗ −Φr̂‖1,c ≈ ‖J∗ −Φr̃‖1,c+ a term that can be made
arbitrarily small with N large. As such this is a weakness; sampling according
to ψ∗

α requires knowledge of the optimal policy. Nevertheless, one might hope
that for a distribution sufficiently ‘close’ to ψ∗

α, the bound of Theorem 4 still
holds for a reasonable value of N . In any case, Theorem 4 offers some hope
that the RLP is a tractable means for finding a meaningful approximation
to J∗.

6.5 Synthesis of a Tetris Strategy

We’ve already seen that playing Tetris optimally is an example of a stochastic
control problem with an intractable state-space. As a first step to coming
up with a near-optimal controller for Tetris we select a linear approximation
architecture for the tetris cost-to-go function. In particular, we will attempt
to approximate the cost-to-go for a state using a linear combination of the
following K = 22 basis functions:

• Ten basis functions, φ0, . . . , φ9, mapping the state to the height hk of each
of the ten columns.

• Nine basis functions, φ10 . . . φ18, each mapping the state to the absolute
difference between heights of successive columns: |hk+1−hk|, k = 1, . . . , 9.

• One basis function, φ19 that maps state to the maximum column height:
maxk hk .

• One basis function, φ20 that maps state to the number of ‘holes’ in the
wall.

• One basis function, φ21 that is equal to one at every state.

Such an approximation architecture has been used with some success in
[43, 174]. For example, in [43], the authors used an approximate dynamic
programming technique – approximate policy iteration – to generate policies
that averaged 3183 points a games which is comparable to an expert human
player. The controller presented surpasses that performance.

In the spirit of the program presented in Section 6.4.2, we formulate the
following RLP:

max
∑

x∈X (Φr)(x)
s.t. (TΦr)(x) ≥ (Φr)(x), ∀x ∈ X .

where X is a sample of states. Observe that in the above RLP, the sampling
distribution takes on the role of c.

In our most basic set-up, we make use of a heuristic policy generated
by guessing and adjusting weights for the basis functions until reasonable
performance is achieved. The intent is to generate nearly i.i.d. samples of
states, distributed according to the relative frequencies with which states are
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visited by the heuristic policy. To this end, some number N of games are
played using the heuristic policy, and for some choice of M , states visited
at times that are multiples of M are incorporated in the set X . Note that
time, here, is measured in terms of the number of time-steps from the start of
the first of the N games, rather than from the start of a current game. The
reason for selecting states that are observed some M time-steps apart is to
obtain samples that are near-independent. When consecutively visited states
are incorporated in X , samples exhibit a high degree of statistical dependence.
Consequently, a far greater total number of samples |X | is required for the
RLP to generate good policies. This is problematic, as computer memory
limitations become an obstacle in solving linear programs with large numbers
of constraints.

Now recall that in light of the results of Sections 6.4.1 and 6.4.2, we would
like c to mimic the state distribution induced by the optimal policy as closely
as possible. Thus, in addition to the basic set-up we have described above,
we have also experimented with a bootstrapped version of the RLP. To un-
derstand the motivation for bootstrapping, suppose that the policy generated
as an outcome of the RLP is superior to the initial heuristic used to sample
states. Then, it is natural to consider producing a new sample of states based
on the improved policy and solving the RLP again with this new sample.
But why stop there? This procedure might be iterated to repeatedly amplify
performance. This idea leads to our bootstrapping algorithm:

1. Begin with a simulator that uses a policy u0.
2. Generate a sample X k of states using policy uk.
3. Solve the RLP based on the sample X k, to generate a policy uk+1.
4. Increment k and go to step 2.

Other variants to this may include a more guarded update of the state-
sampling distribution, wherein the sampling distribution used in a given iter-
ation is the average of the distribution induced by the latest policy and the
sampling distribution used in the previous iteration. That is, in Step 2 we
might randomize between using samples generated by the current policy uk,
and the samples used in the generation of the previous collection, X k−1.

In the next section, we discuss results generated by the RLP and boot-
strapping.

6.5.1 Numerical Results

Our numerical experiments may be summarized as follows. All RLPs were
limited to two million constraints, this figure being determined by available
physical memory. Initial experiments with the simple implementation helped
determine a suitable sampling interval, M . All subsequent RLPs were gener-
ated with a sampling interval of M = 90.

For a fixed simulator policy, five RLPs were generated, of which the best
was picked for the next bootstrap iteration.
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Table 6.1. Comparison with other algorithms

Algorithm Performance Computation time

TD-Learning 3183 Hours
Policy Gradient 5500 ?
LP w/ Bootstrap 4274 hours

Figure 6.4 summarizes the performance of policies obtained from our ex-
periments with the bootstrapping methodology. The ‘median’ figures are illus-
trative of the variance in the quality of policies obtained at a given iteration,
while the ‘best policy’ figures correspond to the best performing policy at that
iteration. Table 6.1 compares the performance of the best policy obtained in
this process to that of other approaches used in the past [43,174].
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Figure 6.4. Bootstrapping performance

We now make some comments on the computation time required for our
experiments. As mentioned previously, every RLP in our experiments had two
million constraints. For general LPs this is a very large problem size. However,
the RLP has special structure in that it has a small number of variables (22 in
our case). We take advantage of this structure by solving the dual of the RLP.
The dual has number of constraints equal to the number of basis functions
(22 in our case) and so is effectively solved using a barrier method whose
complexity is dominated by the number of constraints [60]. Using this, we are
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able to solve an RLP in minutes. Hence, the computation time is dominated
by the time taken in generating state samples, which in our case translates
to several hours for each RLP. These comments apply, of course, to RLPs for
general large scale problems since the number of basis functions is typically
several orders of magnitude smaller than the number of sampled states. We
have found that solving smaller RLPs leads to larger variance in policy quality,
and lower median policy performance.

Finally, one might expect successive iterations of the bootstrapping method-
ology to yield continually improving policies. However, in our experiments, we
have observed that beyond three to four iterations, median as well as best pol-
icy performance degrade severely. Use of a more guarded update to the state
sampling distribution as described in Section 4, does not seem to alleviate this
problem. We are unable to explain this behavior.

6.6 Concluding Remarks

We have presented what we believe is a successful application of an exciting
new technique for approximate dynamic programming that uses a ‘constraint
sampling’ technique in a central way. Our experiments accentuate the impor-
tance of the question asked in the introduction, namely, what is the effect
of the (small) number of violated constraints? The approximate LP of Sec-
tion 6.4.1 provided an interesting setting in which we attempted to answer
this question, and we concluded that the answer (in the case of approximate
dynamic programming via the LP method) was intimately related to the sam-
pling distribution used for sampling constraints. This connection was strongly
borne out in our Tetris experiments; naive sampling distributions led to rela-
tively poor policies.

As such, theorems in the spirit of Theorem 3, while highly interesting rep-
resent only a first step in the design of an effective constraint sampling scheme;
they need to be complemented by results and schemes along the lines of those
in Section 6.4.2 that assure us that the violated constraints cannot hurt us
much. In the case of approximate dynamic programming, strengthening those
results and developing an understanding of schemes that sample constraints
effectively is an immensely interesting direction for future research.
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Summary. In this chapter, we consider least-squares problems where the regression
data is affected by stochastic uncertainty. In this setting, we study the problem of
minimizing the expected value with respect to the uncertainty of the least-squares
residual. For general nonlinear dependence of the data on the uncertain parameters,
determining an exact solution to this problem is known to be computationally pro-
hibitive. Here, we follow a probabilistic approach, and determine a probable near
optimal solution by minimizing the empirical mean of the residual. Finite sample
convergence of the proposed method is assessed using statistical learning methods.
In particular, we prove that, if one constructs the empirical approximation of the
mean using a finite number N of samples, then the minimizer of this empirical
approximation is, with high probability, an ε-suboptimal solution for the original
problem. Moreover, this approximate solution can be efficiently determined numer-
ically by a standard recursive algorithm. Comparisons with gradient algorithms for
stochastic optimization are also discussed in this contribution and some numerical
examples illustrate the proposed methodology.

7.1 Introduction

In the standard least-squares (LS) framework, the goal is to determine a solu-
tion vector x∗ such that the squared Euclidean norm ‖Ax−y‖2 of the residual
of a (usually over-determined) system of linear equations is minimized. How-
ever, in many practical applications the data matrices A, y are not exactly
known. This uncertainty in the data can be modeled assuming A, y to be
generic, possibly nonlinear functions of a vector of uncertain real parameters

A(δ) ∈ R
m,n, y(δ) ∈ R

m, δ = [δ1 δ2 · · · δ�]
T
,

where the uncertain parameter δ is assumed to belong to a given bounded set
∆ ⊂ R

�.



204 G. Calafiore, F. Dabbene

To solve the least-squares problem in the face of uncertainty, two main
approaches are possible. In the deterministic, or worst-case, approach one
looks for a min/max solution: let

f(x, δ)
.
= ‖A(δ)x− y(δ)‖2, (7.1)

then a robust least-squares (RLS) solution is one that minimizes the worst-
case residual against the uncertainty, i.e.

x∗wc = arg min
x

max
δ∈∆

f(x, δ). (7.2)

This worst-case framework is discussed for instance in the papers [79,121,319],
and is closely related to Tikhonov-type regularization [361].

Alternatively, one can take a probabilistic viewpoint, and assume a stochas-
tic nature of the uncertainty. In this case, a probability distribution pδ(δ) is
assumed on the set ∆, and one looks for a solution minimizing the expected
value of the residual

x∗E = arg min
x

Eδ[f(x, δ)]. (7.3)

We refer to problem (7.3) as the least-squares with stochastic uncertainty
(LSSU) problem. Unfortunately, both problems (7.2) and (7.3) are numeri-
cally hard to solve. In [121] it is shown that the deterministic problem (7.2)
is in general NP-hard. When the uncertainty enters the data in a rational
manner, it is possible to compute a suboptimal solution that minimizes an
upper bound on the optimal worst-case residual, using semi-definite relax-
ations, see [121]. In [79, 319] a solution with lower computational complexity
is derived for the case of unstructured uncertainty entering in a simple addi-
tive form in the data A, y. However, no exact efficient method is known for the
general structured nonlinear case. Similarly, in the stochastic problem (7.3),
even the mere evaluation of the objective function, for fixed x, can be numer-
ically prohibitive, since it amounts to the computation of a multi-dimensional
integral.

In this chapter, we focus on the solution to the LSSU problem (7.3). Indeed,
this problem falls in the general family of stochastic optimization programs,
see for instance the survey [393]. Since, in general, one cannot compute exact
expectations, a usual initial step in stochastic optimization is to use random
sampling to construct an approximation of the original objective, and then
compute a candidate solution with respect to this approximation. Known
methods for stochastic programming then provide convergence results and
confidence intervals for the optimal solution [159, 186, 211, 330]. A drawback
of these results is that they are of asymptotic nature and do not provide
explicit bounds on the number of samples (which impacts on the number of
iterations) needed to reach a satisfactory solution.

In the sequel, we propose a new solution concept based on probabilistic
levels. In particular, we show that a solution obtained by minimizing an em-
pirical version of the mean, constructed using a finite number N of samples,
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results to be ε-suboptimal with high probability, for the minimization of the
actual unknown expectation.

The chapter is organized as follows. In Section 7.1.1 the notation is set and
the main assumptions used throughout the chapter are stated. To illustrate the
LSSU framework, in Section 7.2 we discuss a particular case of this problem
where the expected value can be explicitly computed, and observe that the
LSSU problem reduces to regularized deterministic LS, which can be solved
via standard methods. The general case, when the expectation cannot be
computed explicitly, is discussed in Section 7.3. In this section, we present
the Learning Theory approach to stochastic optimization, and state the main
result of this contribution in Theorem 2. Section 7.3.1 discusses a simple
technique for numerical computation of the approximate solution. Section 7.4
discusses an alternative approach to confidence level solutions for LSSU, based
on the stochastic gradient methods, recently proposed in [242]. Section 7.5
presents some numerical examples and comparisons. Conclusions are drawn
in Section 7.6.

7.1.1 Notation and Assumptions

Given a function g(δ) : ∆ → R, and a probability density pδ(δ), the expected
value operator on g(δ) is defined as

Eδ[g(δ)] =

∫
δ∈∆

g(δ)pδ(δ)dδ.

Given N independent identically distributed (i.i.d.) samples δ(1), . . . , δ(N)

drawn according to pδ(δ), the empirical expectation operator on g(δ) is de-
fined as

ÊN [g(δ)] =
1

N

N∑
i=1

g(δ(i)).

Consider the function
φ(x)

.
= Eδ[f(x, δ)], (7.4)

where f(x, δ) = ‖A(δ)x− y(δ)‖2, and let ∆ ⊂ R
� be a bounded set. Further-

more, denote by x∗ a minimizer of φ(x), i.e.

x∗ .
= arg min

x∈Rn
φ(x). (7.5)

We assume that we know a-priori that the solution x∗ is localized in a ball
X ⊂ R

n of center x0 and radius R < ∞

X .
= {x ∈ R

n : ‖x− x0‖ ≤ R} ,

and define the achievable minimum as φ∗ = minx∈X φ(x).
Let f∗(δ) .

= minx∈X f(x, δ), and assume that the total variation of f is
bounded by a constant V > 0, i.e.
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f(x, δ) − f∗(δ) ≤ V, ∀x ∈ X ,∀δ ∈ ∆.

This implies that the total variation of the expected value is also bounded by
V , i.e.

φ(x) − φ∗ ≤ V, ∀x ∈ X .

Notice that we only assume that there exist a constant V such that the above
holds, but do not need to actually know its numerical value.

In this chapter, R(X) denotes the linear subspace span by the columns of
matrix X, and N (X) denotes the nullspace of X. For a square matrix P , the
notation P � 0 (resp. P � 0) means that P is symmetric and positive definite
(resp. positive semidefinite).

7.2 Closed-Form Solutions for Affine Uncertainty

In this section, to illustrate the framework of least-squares with stochastic un-
certainty, we consider the special case when the uncertain parameter δ enters
the data affinely. It can be easily shown that in this situation the expected
value of the least-squares residual can be computed in closed-form. Therefore,
the LSSU problem can be recast as a standard regularized LS problem. The
case of generic nonlinear dependence of the data on the uncertain parameters,
which is the key focus of this chapter, is then treated in Section 7.3.

To simplify the discussion, we consider the case when only the matrix A
is uncertain, i.e.

A(δ) = A0 +

�∑
i=1

δiAi, y(δ) = y.

Assume further that pδ(δ) = pδ1
(δ1)pδ2

(δ2) · · · pδ�
(δ�) and that Eδ[δ] = 0, that

is the parameters δi are zero-mean, independent random variables. For the
sequel, only the knowledge of the covariances

σ2
i
.
= Eδi

[δ2i ], i = 1, . . . , �

is required. Then, a standard computation leads to the following closed-form
expression for the expected value of f(x, δ) = ‖A(δ)x− y‖2

φ(x) = Eδ[f(x, δ)] = ‖A0x− y‖2 + xTQx, (7.6)

where

Q
.
=

�∑
i=1

σ2
iA

T
i Ai. (7.7)

The objective function in (7.6) has the form of a regularized LS objective,
and a minimizing solution (which always exists) can be easily computed in
closed-form as detailed in the following theorem.
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Theorem 1. Let A(δ) = A0 +
∑�

i=1 δiAi, where Ai ∈ R
m,n, i = 0, . . . , �

are given matrices, and δi, i = 1, . . . , � are independent random uncertain
parameters having zero mean and given covariance σ2

i . Let y ∈ R
m be given.

Then, the minimizing solutions of

φ(x) = Eδ[‖A(δ)x− y‖2]

are the solutions of the modified normal equations

(AT
0 A0 +Q)x = AT

0 y, (7.8)

where Q � 0 is given in (7.7). A minimizing solution always exists. In par-
ticular, when AT

0 A0 +Q � 0 the solution is uniquely given by

x∗ = (AT
0 A0 +Q)−1AT

0 y.

Proof. Differentiating the convex quadratic objective (7.6) with respect to x,
the first order optimality conditions yield immediately (7.8). The only thing
that needs to be proved is that these linear equations always admit a solution.
Clearly, (7.8) has a solution if and only if AT

0 y ∈ R(AT
0 A0 + Q), which is

implied by R(AT
0 ) ⊆ R(AT

0 A0 + Q). Now, since R(AT
0 ) = R(AT

0 A0) (see
for instance [173], Chapter 2), solvability of (7.8) is implied by the condition
R(AT

0 A0) ⊆ R(AT
0 A0 +Q). In turn, this latter condition is equivalent to

N (AT
0 A0 +Q) ⊆ N (AT

0 A0).

This inclusion is readily proved as follows: for any x ∈ N (AT
0 A0 +Q), we have

that
xT (AT

0 A0 +Q)x = xTAT
0 A0x+ xTQx = 0.

Since both terms in the sum cannot be negative, it must hold that xTAT
0 A0x =

xTQx = 0, which implies that x ∈ N (AT
0 A0), and this concludes the proof.

�

We remark that this result is quite standard, and can be easily extended
to the case when the independence assumption on the δi’s is removed, and the
term y is considered uncertain too, see for instance [160]. However, in the case
of generic nonlinear functional dependence of A, y on the uncertainty δ, and
for generic density pδ(δ), the expectation of the residual cannot be computed
in an efficient numerical way (nor in closed-form, in general). This motivates
the developments of the next section.
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7.3 Learning Theory Approach to Expected Value
Minimization

Since the minimization of the expected value φ(x) is in general numerically
difficult (and indeed, as already remarked, even the evaluation of φ(x) for
fixed x may be prohibitive), we proceed in two steps. First, we compute an
empirical version of the mean, and then compute a minimizer of this empirical
expectation.

A fundamental question at this point is whether the minimum of the em-
pirical expectation converges in some suitable sense to the minimum of the
true unknown expectation. Several asymptotic results of convergence are avail-
able in the stochastic optimization literature, see for instance [186, 330, 331].
Here, however, we depart from these usual approaches, typically based on cen-
tral limit arguments, and use the Learning Theory framework [375] to provide
both asymptotic and finite sample convergence results. This approach relies
on the law of uniform convergence of empirical means to their expectations.
These results are summarized below.

Suppose N i.i.d. samples δ(1), . . . , δ(N) extracted at random according to
pδ(δ) are collected, and the empirical mean is computed:

φ̂(x)
.
= ÊN [f(x, δ)]. (7.9)

The number N of uncertainty samples used to construct φ̂(x) is here referred
to as the sample size of the empirical mean. Let x̂N denote a minimizer of the
empirical mean:

x̂N
.
= arg min

x∈Rn
φ̂(x).

We are interested in assessing quantitatively how close φ(x̂N ) is to the actual
unknown minimum φ(x∗). To this end, notice first that as x varies over X ,
f(x, ·) spans a family F of measurable functions of δ, namely

F .
= {f(x, δ) : x ∈ X} , f(x, δ) = ‖A(δ)x− y(δ)‖2. (7.10)

A first key step is to bound (in probability) the relative deviation between
the actual and the empirical mean

|Eδ[f(·, δ)] − ÊN [f(·, δ)]|
V

for all f(·, δ) belonging to the family F . In other words, for given relative scale
error ε ∈ (0, 1), we require that

Psup
x∈X

|φ(x) − φ̂(x)|
V

> ε ≤ α(N), (7.11)

with α(N) → 0 as N → ∞. Notice that the uniformity of bound (7.11)
with respect to x is crucial, since x is not fixed and known in advance: the
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uniform ‘closeness’ of φ̂(x) to φ(x) is the feature that allows us to perform the

minimization on φ̂(x) instead of on φ(x). Property (7.11) is usually referred
to as the Uniform Convergence of the Empirical Mean (UCEM) property.
A fundamental result of Learning Theory states that the UCEM property
holds for a function class F whenever a particular measure of the complexity
of the class, called the P-dimension of F (P-dim(F)), is finite. Moreover,
this property holds independently of the probability distribution of the data.
The interested reader can refer to the monographs [359, 375, 380] for formal
definitions and further details.

The next lemma shows that the function class (7.10) under considera-
tion has indeed finite P-dimension, and explicitly provides an upper bound
on P-dim(F).

Lemma 1 (P-dimension of F). Consider the function family F defined in
(7.10). Then

P-dim(F) ≤ 9n.

Proof. Let M = supx∈X ,δ∈∆ f(x, δ), and define the family of binary valued

functions F̄ , whose elements are the functions

f̄(x, δ, c)
.
=

{
1, if f(x, δ) ≥ c
0, otherwise,

for c ∈ [0,M ]. Then, from Lemma 10.1 in [380], we have that P-dim(F) =
VC-dim(F̄), where VC-dim(F̄) denotes the Vapnik-Chervonenkis dimension
of the class F̄ . Notice that the functions in F̄ are quadratic in the parameter
vector x ∈ R

n, therefore a bound on the VC-dimension can be derived from
a result of Karpinski and Macintyre [181]:

VC-dim(F̄) ≤ 2n log2(8e) < 9n.

�

With the above premises, we are in position to state the key result of this
chapter, which provides an explicit bound on the sample size N needed to
obtain a reliable estimate of the minimum of φ(x).

Theorem 2. Let α, ε ∈ (0, 1), and let

N ≥ 128

ε2

[
ln

8

α
+ 9n

(
ln

32e

ε
+ ln ln

32e

ε

)]
. (7.12)

Let x∗ be a minimizer of φ(x) defined in (7.5), and let x̂N be a minimizer of

the empirical mean φ̂(x). Then, if x̂N ∈ X , it holds with probability at least
(1 − α) that

φ(x̂N ) − φ(x∗)
V

≤ ε,

that is, x̂N is an ε-suboptimal solution (in the relative scale), with high prob-
ability (1 − α). A solution x̂N such that the above holds is called an (1 − α)-
probable ε-near minimizer of φ(x), in the relative scale V .
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Proof. Consider the function family G generated by the functions

g(x, δ)
.
=
f(x, δ) − f∗(δ)

V
,

as x varies over X . The family G is a simple rescaling of F and maps ∆ into
the interval [0, 1], therefore the P-dimension of G is the same as that of F .
Define

φg(x)
.
= Eδ[g(x, δ)] =

φ(x) −K

V
,

and

φ̂g(x)
.
= ÊN [g(x, δ)] =

1

N

N∑
i=1

g(x, δ(i)) =
φ̂(x) − K̂

V
, (7.13)

where

K
.
= Eδ[f

∗(δ)], K̂
.
= ÊN [f∗(δ)] =

1

N

N∑
i=1

f∗(δ(i)).

Notice that a minimizer x̂ of φ̂(x) is also a minimizer of φ̂g(x). Then, Theo-
rem 2 in [381] guarantees that, for α, ν ∈ (0, 1),

Psup
g∈G

∣∣∣Eδ[g(δ)] − ÊN [g(δ)]
∣∣∣ > ν ≤ α,

holds irrespective of the underlying distribution of δ, provided that

N ≥ 32

ν2

[
ln

8

α
+ P-dim(G)

(
ln

16 e

ν
+ ln ln

16 e

ν

)]
.

Applying this theorem with ν = ε/2, and using the bound P-dim(G) =
P-dim(F) ≤ ∃\ obtained in Lemma 1, we have that, for all x ∈ X , it holds
with probability at least (1 − α) that

|φg(x) − φ̂g(x)| ≤ ε

2
. (7.14)

From (7.14), evaluated in x = x∗ it follows that

φg(x
∗) ≥ φ̂g(x

∗) − ε

2
≥ φ̂g(x̂N ) − ε

2
, (7.15)

where the last inequality follows since x̂N is a minimizer of φ̂g. From (7.14),
evaluated in x = x̂N it follows that

φ̂g(x̂N ) ≥ φg(x̂N ) − ε

2
,

which substituted in (7.15), gives

φg(x
∗) ≥ φg(x̂N ) − ε.
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From the last inequality and (7.13) it follows that

φ(x̂N ) − φ(x∗) ≤ εV,

which concludes the proof. �

Remark 1. Notice that the quality of the approximate solution x̂N is expressed
relative to the total variation scale V . This latter quantity is dependent on
the choice of the a-priori set X , and it is clearly non-decreasing with respect
to R. This reflects the intuitive fact that the better we can a-priori localize
the solution, the better is the assessment we can make on the absolute-scale
precision to which the solution will actually be computed by the algorithm.

7.3.1 Numerical Computation of x̂N

While Theorem 2 provides the theoretical properties of x̂N , in this section we
briefly discuss a simple numerical technique to compute it.

Notice that the objective function φ̂(x) has a sum-of-squares structure

φ̂(x) =
1

N

N∑
i=1

‖A(δ(i))x− y(δ(i))‖2 =
1

N
‖Ax− Y‖2

where

A .
=

⎡⎢⎢⎢⎣
A(δ(1))
A(δ(2))

...
A(δ(N))

⎤⎥⎥⎥⎦ , Y .
=

⎡⎢⎢⎢⎣
y(δ(1))
y(δ(2))

...
y(δ(N))

⎤⎥⎥⎥⎦ .
Therefore, an exact minimizer of φ̂(x) can be readily computed as x̂N = A†Y,
where A† is the Moore-Penrose pseudo-inverse of A. Remark that, since A,Y
are functions of δ(i), i = 1, . . . , N , the resulting solution x̂N is a random
quantity, whose probability distribution is defined over the product space
∆×∆× · · · ×∆ (N times). The solution x̂N can be alternatively defined as
the result given at the N -th iteration by the following standard recursive form
of the LS algorithm, see, e.g., [173].

Algorithm 7.1 Assuming that A(δ(1)) is full-rank, an exact minimizer x̂N

of the empirical mean (7.9) can be recursively computed as

x̂k+1 = x̂k +K−1
k+1A

T (δ(k+1))
(
y(δ(k+1)) −A(δ(k+1))x̂k

)
, (7.16)

where
Kk+1 = Kk +AT (δ(k+1))A(δ(k+1)),

and the recursion for k = 1, . . . , N is started with K0 = 0, x̂0 = 0.

To summarize, the solution approach that we propose is the following:
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1. Given the a-priori set X , fix the desired probabilistic levels α, ε, and
determine the theoretical bound for N given in (7.12);

2. Compute x̂N . This computation needs random samples δ(i), i = 1, . . . , N
extracted according to pδ(δ) (see further comments on this point in Re-
mark 2);

3. If x̂N ∈ X , then with probability greater than (1 − α) this solution is an
ε-suboptimal minimizer for φ(x), in the relative scale V .

Remark 2. For the implementation of the proposed method, two typical situ-
ations are possible. In a first situation, we explicitly know the uncertainties
distribution pδ(δ) and the functional dependence A(δ), y(δ). In this case one
can generate the appropriate random samples δ(i), i = 1, . . . , N , using stan-
dard techniques for random sample generation (see for instance [359]). The
probabilistic assessments in Theorem 2 are in this case explicitly referred to
the probability measure pδ. In other practical situations, the uncertainty δ is
embedded in the data, and the corrupted dataA(δ(i)), y(δ(i)) are directly avail-
able as observations. In this respect, we notice that the results in Theorem 2
hold irrespective of the underlying probability distribution, and hence they
can be applied also in the cases where the measure pδ exists but is unknown.
In this case, x̂N is computed using directly the corrupted data A(δ(i)), y(δ(i))
relative to the i-th experiment, for i = 1, . . . , N , and the results of Theorem 2
hold with respect to the unknown probability measure pδ.

Remark 3. Notice that, if the iterative Algorithm 7.1 is used for the computa-
tion of x̂N then, in some particular instances of the problem, one may observe
practical convergence in a number of iterations much smaller than N . This
is in the nature of the results based on the Vapnik-Chervonenkis theory of
learning, which provides theoretical bounds that hold a-priori, for any prob-
lem instance, and for all possible probability distributions of the uncertainties.
Therefore, bound (7.12) holds always and a-priori (before even starting the
estimation experiment), while practical convergence can only be assessed a-
posteriori, on a specific instance of the problem. This issue is further discussed
in the numerical examples section.

In the next section, we discuss an alternative approach to an approximate
solution of the LSSU problem, based on stochastic gradient (SG) algorithms
for stochastic optimization [241,242]. In this latter approach, a candidate so-
lution x̂ is computed, with the property that its associated cost is a good
approximation of the optimal value of the original problem, with high prob-
ability. The learning theory approach described previously basically works
in two steps: a first step where the empirical mean φ̂(x) is estimated, and
a successive step where a minimizer for it is computed. In contrast, the SG
method bypasses the empirical mean estimation step, and directly searches for
a near optimal solution iteratively, following random gradient descent steps.
The purpose of the next developments is to specialize the SG approach to the
problem under study, and then use these results for comparison with those
given in Theorem 2.
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7.4 Stochastic Gradient Approach

The gradient of the function f(x, δ) defined in (7.1) is given by

h(x, δ) = ∂xf(x, δ) = 2AT (δ)(A(δ)x− y(δ)).

Assume there exist a constant L > 0 such that the norm of the gradient is
uniformly bounded by L on X ×∆. Consider the following algorithm.

Algorithm 7.2 Let N > 0 be an a-priori fixed number of steps, and let λk,
k = 0, . . . , N − 1 be a finite sequence of stepsizes, such that

λk > 0, λk → 0, and
N−1∑
k=0

λk → ∞ as N → ∞.

Let δ(0), . . . , δ(N−1) be i.i.d. samples drawn according to pδ(δ), and let x0 ∈ X
be an initial guess. Let further x̂0 = 0, m0 = 0, and denote with [x]X the
projection of x onto X , i.e.

[x]X = x0 + β(x− x0), where β = min

(
1,

R

‖x− x0‖

)
.

Let the candidate stochastic solution x̂N be obtained via the following re-
cursion:

xk+1 = [xk − λkh(xk, δ
(k))]X (7.17)

x̂k =
mk−1

mk
x̂k−1 +

λk

mk
xk,

mk = mk−1 + λk,

for k = 0, . . . , N − 1.

From a classical result on stochastic optimization of Nemirowskii and
Yudin [241], we have that for the solution computed by Algorithm 7.2 it
holds that

E[φ(x̂N )] − φ∗ ≤ R2 + L2
∑N−1

k=0 λ2
k

2
∑N−1

k=0 λk

. (7.18)

In particular, if we choose constant stepsizes λk = λ = γ√
N

, then the right

hand side of (7.18) becomes R2+L2γ2

2γ
√

N
, which goes to zero as O(1/

√
N), for

N → ∞. If the constants R,L are known, then the optimal choice for γ is
γ = R/L.

The following result, adapted from [242], gives a precise assessment of
the quality of the solution obtained using the above algorithm, in terms of
probabilistic levels.
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Theorem 3. Let α, ε ∈ (0, 1), and let

N ≥ 1

α2ε2

(
LR

V

)2

. (7.19)

Let x∗ be a minimizer of φ(x) defined in (7.4), and let x̂N be the outcome of
Algorithm 7.2, with stepsizes λk = λ = R

L
√

N
. Then, it holds with probability

at least (1 − α) that
φ(x̂N ) − φ(x∗)

V
≤ ε,

that is, the algorithm returns (1 − α)-probable ε-near minimizer of φ(x), in
the relative scale V .

Notice that the update step (7.16) of Algorithm 7.1 and (7.17) of Algo-
rithm 7.2 have a similar form. In particular, the recursive least-squares algo-
rithm (Algorithm 7.1) can be interpreted as a stochastic gradient algorithm
with matrix stepsizes defined by the gain matrices K−1

k , as opposed to the
scalar stepsizes λk appearing in (7.17). Interestingly however, the theoreti-
cal derivations follow two completely different routes, and lead to different
bounds on the number N of steps required to attain the desired relative scale
accuracy. In particular, bound (7.19) requires the knowledge of the parame-
ters L, V , which can be hard to determine in practice, but does not depend
directly on the problem dimension n. In contrast, bound (7.12) is independent
of the L, V parameters, but depends on n, through the VC-dimension bound.

More importantly, we remark that bound (7.12) is almost independent
of the probabilistic level α, since α appears under a logarithm, while bound
(7.19) has a strong quadratic dependence on α. For this reason, we expect
the bound (7.12) to be better than (7.19), when a high level of confidence is
required.

We also remark that in [242] a modification of Algorithm 7.2 is also con-
sidered, which introduces a mechanism of ‘averaging from a pool of experts’.
With this modified approach, a sample bound

N ≥ 1

2ε4
ln

1

α

(
LR

V

)2

is obtained. However, while this modified bound improves in terms of the
dependence of α, it is considerably worse in terms of the dependence on ε,
which now appears with a fourth power.

7.5 Numerical Examples

In the following sections, we illustrate the proposed approach on three nu-
merical examples, and compare its performance with the stochastic gradient
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approach described in Section 7.4. In particular, Section 7.5.1 presents an ex-
ample on polynomial interpolation, and Section 7.5.2 discusses a case with
affine uncertainty. Also, an application to the problem of receding-horizon
state estimation for uncertain systems is proposed in Section 7.5.3.

7.5.1 Polynomial Interpolation

We consider a problem of robust polynomial interpolation borrowed from
[121]. For given integers n ≥ 1,m, we seek a polynomial of degree n − 1,
p(t) = x1 + x2t + · · · + xnt

n−1 that interpolates given points (ai, yi), i =
1, . . . ,m, that is

p(ai) # yi, i = 1, . . . ,m.

If the data values (ai, yi) were known exactly, we would obtain a linear equa-
tion in the unknown x, with Vandermonde structure⎡⎢⎣1 a1 · · · an−1

1
...

...
...

1 am · · · an−1
m

⎤⎥⎦
⎡⎢⎣ x1

...
xn

⎤⎥⎦ #

⎡⎢⎣ y1

...
ym

⎤⎥⎦
which can be solved via standard LS. Now, we suppose that the interpolation
points are not known exactly. For instance, we assume that the yi’s are known
exactly, while there is interval uncertainty on the abscissae

ai(δ) = ai + δi, i = 1, . . . ,m,

where δi are uniformly distributed in the intervals [−ρ, ρ], i.e.

∆ = {δ = [δ1, . . . , δm]T : ‖δ‖∞ ≤ ρ}.

We therefore seek an interpolant that minimizes the average interpolation
error

Eδ[‖A(δ)x− y‖2],

where

A(δ) =

⎡⎢⎣1 a1(δ) · · · an−1
1 (δ)

...
...

...
1 am(δ) · · · an−1

m (δ)

⎤⎥⎦ .
For a numerical example, we considered the data

(a1, y1) = (1, 1), (a2, y2) = (2,−0.5), (a3, y3) = (4, 2),

with uncertainty level ρ = 0.2.
The standard LS solution (obtained setting δ = 0) is

xLS =

⎡⎣ 4.333
−4.250
0.917

⎤⎦ .



216 G. Calafiore, F. Dabbene

We assume the a-priori search set X to be the ball of radius R = 10 centered
in x0 = xLS .

We wish to obtain a solution having relative scale error ε = 0.1 with high
confidence (1 − α) = 0.999, using Algorithm 7.1. In this case, the theoretical
bound (7.12) would require N ≥ 3, 115, 043 samples of the uncertainty. How-
ever, as already remarked, while this is the a-priori bound, we can expect
practical convergence for much smaller sample sizes. Indeed, in the exam-
ple at hand, we observe practical convergence of Algorithm 7.1 already for
N # 10, 000, see Figure 7.1.
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Figure 7.1. Convergence of Algorithm 7.1 for N = 10, 000 iterations. Solution after
N iterations: x̂N = [3.926 − 3.840 0.837]T .
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Figure 7.2. Evolution of Algorithm 7.2 for N = 100, 000 iterations, λ = 10−3.
The algorithm has not yet converged. Solution after N iterations: x̂N = [3.961 −
3.876 0.844]T .

We then compared the above results to the ones that can be obtained
using the stochastic gradient approach of Algorithm 7.2. To this end, we first
performed a preliminary step in order to obtain reasonable estimates of the
parameters L, V . With the above choice of X , we obtained the approximate
bound L/V ≤ 0.25. Therefore, the theoretical bound (7.19) would imply the
(prohibitive) number of samples N ≥ 625, 000, 000 to achieve the desired
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probabilistic levels. Also, from a practical point of view, we observed slower
convergence with respect to Algorithm 7.1. Moreover, the behavior of the
algorithm appeared to be very sensitive to the choice of the stepsize λ.

The evolution of the estimate for N = 100, 000, and with λ = 10−3 is
shown in Figure 7.2.

7.5.2 An Example with Affine Uncertainty

We next consider a numerical example with affine uncertainty on the matrixA.
Since in this case the solution can be computed exactly as shown in Theorem
1, we can directly test the quality of the randomized solution x̂N against the
exact solution. Let

A(δ) = A0 +
3∑

i=1

δiAi, yT =
[
0 2 1 3

]
,

with

A0 =

⎡⎢⎢⎣
3 1 4
0 1 1
−2 5 3
1 4 5.2

⎤⎥⎥⎦ , A1 =

⎡⎢⎢⎣
0 0 0
0 0 0
0 0 0
0 0 1

⎤⎥⎥⎦ , A2 =

⎡⎢⎢⎣
0 0 1
0 1 0
0 0 0
0 0 0

⎤⎥⎥⎦ , A3 =

⎡⎢⎢⎣
0 0 0
0 0 0
1 0 0
0 0 0

⎤⎥⎥⎦ ,
and let δi be Gaussian random perturbations,3 with zero mean and standard
deviations σ1 = 0.067, σ2 = 0.1, σ3 = 0.2. In this case, the exact solution
from Theorem 1 is unique and results in

x∗ =

⎡⎣−2.352
−2.076
2.481

⎤⎦ .
The standard LS solution (obtained neglecting the uncertainty terms, i.e.
setting A(δ) = A0) results in

xLS =

⎡⎣ −10
−9.728
9.983

⎤⎦ ,
which is quite ‘far’ from x∗, being ‖xLS − x∗‖ = 13.166. We fix the a-priori
search set X to have center x0 = xLS , and radius R = 20.

To seek a randomized solution having a-priori relative error ε = 0.1 with
high confidence (1 − α) = 0.999, the theoretical bound (7.12) would require

3To be precise, truncated Gaussian distributions should be considered in our con-
text, since the set ∆ is assumed to be bounded. However, from a practical point of
view, there is very little difference in considering a genuine zero-mean Gaussian ran-
dom variable with standard deviation σ, or a truncated Gaussian bounded between,
say, −4σ and 4σ.
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N ≥ 3, 115, 043 samples. Figure 7.3 shows the first N = 20, 000 iterations of
Algorithm 7.1, which resulted in the final solution

x̂N =

⎡⎣−2.342
−2.067
2.472

⎤⎦ .
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Figure 7.3. Evolution of Algorithm 7.1 for N = 20, 000 iterations. Solution after
N iterations: x̂N = [−2.342 − 2.067 2.472]T .
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Figure 7.4. Evolution of Algorithm 7.2 for N = 400, 000 iterations, λ = 10−2.
Solution after N iterations: x̂N = [−2.390 − 2.114 2.519]T .

We next compared the performance of Algorithm 7.1 with that of Al-
gorithm 7.2. For the above choice of X , an estimated bound for the ratio
L/V is L/V ≤ 0.11, and therefore the theoretical bound (7.19) would imply
N ≥ 484, 000, 000 iterations to guarantee the desired probabilistic levels.

Numerical experiments showed that approximate convergence could be
reached for N = 400, 000, with the choice λ = 10−2, yielding the solution

x̂N =

⎡⎣−2.390
−2.114
2.519

⎤⎦ .
We notice that the SG algorithm failed to converge for larger values of λ. The
evolution of the estimate is shown in Figure 7.4.
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7.5.3 Receding-Horizon Estimation for Uncertain Systems

As a last example, we consider a problem of finite-memory state estimation
for discrete-time uncertain linear systems. For systems without uncertainty, a
least-squares solution framework for this problem has been recently proposed
in [3]. The basic idea of this method is the following: assume that at a certain
time t a prediction x̄t for the state xt ∈ R

n of the linear system

xk+1 = Fxk + ξk

is available, along with measurements zt, . . . , zt+h of the output of the system
up to time t+ h, where the assumed output model is

zk = Cxk + ηk,

and the process and measurement noises ξk, ηk, as well as the state xt are
assumed to have unknown statistics. The objective is to determine estimates
x̂t, . . . , x̂t+h of the system states. In [3], the key assumption is made that these
estimates should satisfy the nominal state recursions (without noise), i.e. be
of the form

x̂t+k = F kx̂t, k = 0, . . . , h. (7.20)

From this assumption, it clearly follows that the only quantity that one needs
to estimate is x̂t, since all the subsequent state estimates are then determined
by (7.20). From (7.20), the estimated outputs are in turn given by

ẑt+k = CF kx̂t, k = 0, . . . , h,

and therefore the natural criterion proposed in [3] is to minimize a least-
squares error objective that takes into account the deviations of the estimates
ẑt+k from the actual measurements zt+k, as well as an additional term that
takes into account one’s belief in the accuracy of the initial prediction x̄t.
Collecting the output measurement in vector Zt

.
= [zT

t , . . . , z
T
t+h]T , and the

output estimates in vector Ẑt(x̂t)
.
= [ẑT

t , . . . , ẑ
h
t+T ]T , the optimization criterion

is hence written as

Jt(x̂t)
.
= µ2‖x̂t − x̄t‖2 + ‖Ẑt(x̂t) − Zt‖2,

where µ > 0 is a scalar weighting parameter. Determining x̂t such that the
above criterion is minimized is a standard LS problem.

Notice that all the above holds under the hypothesis that the model matri-
ces F,C are perfectly known. Here, we now relax this assumption and consider
the case where F,C are arbitrary functions of a vector δ ∈ ∆ ⊂ R

� of random
uncertain parameters, having probability density pδ(δ). The system hence be-
comes

xk+1 = F (δ)xk + ξk

yk = C(δ)xk + ηk,
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and the objective Jt(x̂t) explicitly writes

Jt(x̂t, δ) = ‖A(δ)x̂t − y‖2,

where we defined

A(δ)
.
=

[
µI
K(δ)

]
; y

.
=

[
µx̄t

Zt

]
; K(δ)

.
=

⎡⎢⎢⎢⎢⎢⎣
C(δ)

C(δ)F (δ)
C(δ)F 2(δ)

...
C(δ)Fh(δ)

⎤⎥⎥⎥⎥⎥⎦ .

In presence of uncertainty, a sensible estimation approach would therefore
amount to determining x̂t such that the expectation with respect to δ of
Jt(x̂t, δ) is minimized, i.e.

x̂∗t = arg min
x∈Rn

φ(x), φ(x) = Eδ[Jt(x, δ)].

A probable ε-near solution for this problem can be determined according to
Theorem 2. Notice that, to the best of the authors’ knowledge, no efficient
exact method is available for solving this problem. Notice also that even when
the uncertainty enters the system matrices F (δ), C(δ) in a simple form (such as
affine), the data matrix A(δ) has a very structured and nonlinear dependence
on δ. Finally, we remark that applying the estimation procedure in a sliding-
window fashion we obtain a finite-memory smoothing filter, in the sense that
measurements over the forward time window t, t + 1, . . . , t + h are used to
determine an estimate x̂t of the state at the initial time instant t.

To make a simple numerical example, we modified the model presented
in [3], introducing uncertainty. Let therefore

F (δ) =

[
0.9950 + δ1 0.0998 + δ2
−0.0998 − δ2 0.9950 + δ3

]
(7.21)

C(δ) =
[
1 + δ4 1

]
(7.22)

with δT .
= [δ1, . . . , δ4] and δ1, . . . , δ4 independent and uniformly distributed in

the intervals δ1 ∈ [−0.1, 0], δ2 ∈ [−0.01, 0.01], δ3 ∈ [−0.1, 0], δ4 ∈ [−0.1, 0.1].
We selected estimation window h = 10, µ = 1 and run Algorithm 7.1 up to
N = 10, 000 iterations, for each time instant t. Smoothed estimates have been
computed over simulation time t from zero to 40. The simulation is run with
initial state and initial prediction x0 = x̄0 = [1 1]T , and process and measure-
ments noises are set to independent Gaussian with standard deviations equal
to 0.02 and 0.01, respectively. Figure 7.5 shows the results obtained by the
robust smoothing filter on this example. Notice the net improvement gained
over the LS estimates of [3] which neglected uncertainty.
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Figure 7.5. Smoothing estimates on the states of the uncertain system (7.21)–
(7.22), obtained by means of the randomized robust filter. Bold lines show the state
estimates obtained by the robust filter, light lines show a simulation of the actual
states of the system, and dotted lines show the estimates obtained by the LS filter
of [3] that neglects uncertainty. Left figure: first state; textitright figure: second state.

7.6 Conclusions

This chapter presented a solution approach to stochastic uncertain least-
squares problems based on minimization of the empirical mean. From the
computational side, a probable near optimal solution may be efficiently de-
termined by means of a standard recursive least-squares algorithm that pro-
cesses at each iteration a randomly extracted instance of the uncertain data.
From the theoretical side, a departure is taken with respect to the standard
asymptotic convergence arguments used in stochastic approximation, in that
the convergence properties of the method are assessed for finite sample size,
within the framework of statistical learning theory. As a result, the numerical
complexity of computing an approximate solution can be a-priori bounded
by a function of the desired accuracy ε and probabilistic level of confidence α.

The proposed method is compared with existing techniques based on
stochastic gradient descent and it is shown to outperform these methods in
terms of theoretical sample complexity and practical convergence, as illus-
trated in the numerical examples.
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Summary. In this chapter a randomized ellipsoid algorithm is described that can
be used for finding solutions to robust Linear Matrix Inequality (LMI) problems.
The iterative algorithm enjoys the property that the convergence speed is indepen-
dent on the number of uncertain parameters. Other advantages, as compared to
the deterministic algorithms, are that the uncertain parameters can enter the LMIs
in a general nonlinear way, and that very large systems of LMIs can be treated.
Given an initial ellipsoid that contains the feasibility set, the proposed approach
iteratively generates a sequence of ellipsoids with decreasing volumes, all containing
the feasibility set. A method for finding an initial ellipsoid is also proposed based on
convex optimization. For an important subclass of problems, namely for constrained
robust least squares problems, analytic expressions are derived for the initial ellip-
soid that could replace the convex optimization. The approach is finally applied to
the problem of robust Kalman filtering.

8.1 Introduction

The linear least squares (LLS) problem arises in a wide variety of engineering
applications, ranging from data fitting to controller and filter design. It is at
the basis of the well-known Model Predictive Control strategy, an industri-
ally very relevant control technique due to its ability to handle constrained
on the inputs and outputs of the controlled system. The problem appears
also in many single- and multi-objective controller design techniques such as
LQR/LQG, pole-placement, H2, H∞, PID etc. The Kalman filtering problem
can also be rewritten as an LLS problem.

The LLS problem basically consists of finding the optimal solution to a
set of equations Ax ≈ b in such a way that the error ‖b−Ax‖2 is minimized,
where A is a given (usually tall) matrix and b is a given vector. Often, there
is underlying structure in the data matrices (A, b), or they depend on some
unknown structured matrix ∆ that represents uncertainty. This is called the
structured robust-least squares (SRLS) problem. It has been shown in [121]
that whenever the data matrices depend in an affine way on uncertainty ∆ the
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SRLS problem is convex and can be solved using semidefinite programming
(SDP). However, if the dependence on ∆ is not affine, the resulting problem
is in general no longer solvable via SPD. In this chapter we consider a general
dependence on the uncertainty in the data matrices. In addition, it is often
desirable to include linear matrix inequality constraints in the SRLS prob-
lem. To this end we consider the structured constraint robust least-squares
(SCRLS) problem

(SCRLS) :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Find x ∈ R
N that achieves

γopt = min
x

max
∆∈∆

‖b(∆) −A(∆)x‖2
2, subject to

F (x,∆) � F0(∆) +

N∑
i=1

Fi(∆)xi ≤ 0, ∀∆ ∈ ∆

(8.1)

where x = [x1, . . . , xN ]T denotes the vector of unknowns, b(∆) ∈ R
p, A(∆) ∈

R
p×N , and Fi(∆) are known functions of the uncertainty ∆ that

1. Belong to some known uncertainty set ∆, and
2. Are coupled with some probability density function (p.d.f.) f∆(∆) inside

the uncertainty set ∆.

The matrices b(∆), A(∆), and Fi(∆) may depend on the uncertainty ∆ in a
general nonlinear way; it is only assumed that they remain bounded.

Remark 1. Whenever the uncertainty is fully deterministic or no a-priori in-
formation is available about its statistical properties, uniform distribution
could be selected, i.e.

f∆(∆) =
1

vol(∆)
, ∀∆ ∈ ∆.

where vol(∆) =
∫
∆
dx denotes the volume of the uncertainty set.

Many practical controller/observer design problems are captured by the
SCRLS problem (8.1). One such design problem, discussed in this chapter, is
the Kalman filter design for uncertain systems.

For some specific uncertainty structures (e.g. in cases when A, b and F
are all affine in ∆ and the uncertainty set is a polyhedron), the problem
of finding a deterministic solution to the optimization problem (8.1) can be
converted to an LMI optimization problem that can be solved numerically
very efficiently. For general uncertainty structures, however, this problem is
NP-hard, in which case one might be satisfied with computing an approximate
solution in a probabilistic framework [359]. In this setting, given some desired
accuracy and confidence, one computes near-optimal solutions in an iterative
fashion using a randomized algorithm (RA). A RA basically generates at
each iteration a random uncertainty sample from ∆ with the selected p.d.f.
f∆(∆), for which the optimization variable x is updated. In this framework
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it is assumed that it is possible to generate samples of ∆ according to the
selected p.d.f. f∆(∆). The reader is referred to [74] for more details on the
available algorithms for uncertainty generation. An important property of
these algorithms is their guaranteed convergence to a near-optimal solution for
any desired accuracy and confidence in a finite number of iterations. Recently,
improved bounds on the maximum number of iterations, that the RA can
perform before convergence, have been derived. For more details on this topic,
see [249,359] and Chapter 11 of this book.

In this chapter the randomized ellipsoid algorithm (EA) [176] will be used
to finding an approximate solution to (8.1). In summary, at each iteration the
randomized EA performs two steps. In the first step a random uncertainty
sample ∆(i) ∈ ∆ is generated according to the given probability density func-
tion f∆(∆). With this generated uncertainty a suitably defined scalar convex
function is parameterized so that at the second step of the algorithm an el-
lipsoid is computed, in which the solution set is guaranteed to lie. In this way
the algorithm produces a sequence of ellipsoids with decreasing volumes, all
containing the solution set. Using some existing facts, and provided that the
solution set has a non-empty interior, it is established that this algorithm con-
verges to a feasible solution in a finite number of iterations with probability
one. It is also shown that even if the solution set has a zero volume, the EA
converges to the solution set when the iteration number tends to infinity.

To initialize the algorithm an initial ellipsoid containing the solution set
is needed. For general robust LMI problems a method is suggested for finding
such an ellipsoid based on convex optimization. Furthermore, it is shown that
for SCRLS problems one can derive analytic expression for the initial ellipsoid
by making use of the structure of the problem.

8.2 Preliminaries

8.2.1 Notation

The notation used in the chapter is as follows. In denotes the identity matrix
of dimension n × n, In×m is a matrix of dimension n × m with ones on its
main diagonal. A vector of dimension n with all elements equal to zero will be
denoted as 0n. The dimensions will often be omitted in cases where they can be
implied from the context. For two matrices A and B of appropriate dimension,
〈A,B〉 .

= tr(ATB). ‖.‖F denotes the Frobenius norm. The Frobenius norm for
a matrix A ∈ R

m×n has the following useful properties:

‖A‖2
F = 〈A,A〉 =

min{n,m}∑
i=1

σ2
i (A) =

n∑
i=1

λi(A
TA),

where σi(A) are the singular values of the matrix A and λi(A
TA) are the

eigenvalues of the matrix (ATA). In addition to that, for any two matrices A
and B of equal dimensions it holds that
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‖A+B‖2
F = ‖A‖2

F + 2〈A,B〉 + ‖B‖2
F . (8.2)

A � 0 (A � 0) means that A is positive definite (positive semi-definite). We
also introduce the notation ‖x‖2

Q
.
= xTQx for x ∈ R

n and Q ∈ R
n×n with

Q � 0, which should not be mistaken with the standard notation for the vector
p-norm (‖x‖p). In LMIs, the symbols $ will be used to indicate entries readily
implied from symmetry. Futher, the volume of a closed set A is denoted as
vol(A)

.
=
∫
A dx.

The notation x ∼ N (x̄, S) will be used to make clear that x is a random
Gaussian vector with mean x̄ and covariance SST . Finally, for a random
variable xk, x̂k+i|k will denote the prediction of xk+i made at time instant k
(i.e. by using the input-output measurements up to time instant k).

Let C+
n denote the cone of n-by-n symmetric non-negative definite matri-

ces, i.e.
C+

n
.
= {A ∈ R

n×n : A = AT , A � 0}.

For a symmetric matrix A we define the projection onto C+
n as follows:

Π+A
.
= arg min

X∈C+
n

‖A−X‖F .

Similarly, denoting

C−
n

.
= {A ∈ R

n×n : A = AT , A � 0},

the projection onto the cone of symmetric negative-definite matrices is defined
as

Π−A .
= arg min

X∈C−
n

‖A−X‖F . (8.3)

These two projections have the following properties [76].

Lemma 1 (Properties of the projection). For a symmetric matrix A, the
following properties hold

(P1) Π+A+ Π−A = A.
(P2) 〈Π+A,Π−A〉 = 0.
(P3) Let A = UΛUT , where U is an orthogonal matrix containing the eigen-

vectors of A, and Λ is a diagonal matrix with the eigenvalues λi, i =
1, . . . , n, of A appearing on its diagonal. Then

Π+A = Udiag{λ+
1 , . . . , λ

+
n }UT ,

with λ+
i

.
= max(0, λi), i = 1, . . . , n. Equivalently,

Π−A = Udiag{λ−1 , . . . , λ−n }UT ,

with λ−i
.
= min(0, λi), i = 1, . . . , n.

(P4) Π+A and Π−A are continuous in A.
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8.2.2 Problem Formulation

Consider the (SCRLS) optimization problem (8.1). Since for any γ{
x : max

∆
‖b(∆) −A(∆)x‖2

2 ≤ γ
}

⇔
{
x :

[
I b(∆) −A(∆)x
$ γ

]
� 0, ∀∆

}
the (SCRLS) problem can equivalently be rewritten in the form

(PO) :

⎧⎪⎪⎨⎪⎪⎩
min
x,γ

γ

s.t. Uγ(x,∆)
.
=

⎡⎣F (x,∆) 0 0
$ −I b(∆) −A(∆)x
$ $ −γ

⎤⎦ � 0, ∀∆ ∈ ∆

(8.4)
For a fixed γ > 0, the feasibility problem is defined as

(PF ) :

{
Find x ∈ R

N

such that Uγ(x,∆) � 0, ∀∆ ∈ ∆
(8.5)

Note that Uγ(x,∆) is affine in x and can be written in the form

Uγ(x,∆) = Uγ,0(∆) +

N∑
i=1

Uγ,i(∆)xi.

We will first concentrate on the feasibility problem (PF ). Once we have an
algorithm for solving it, the optimization problem (PO) would only require a
bisection algorithm on γ where at each iteration (PF ) is solved for a fixed γ.

8.3 The Randomized Ellipsoid Algorithm

This section presents the randomized ellipsoid algorithm, originally proposed
in [176].

8.3.1 Feasibility Problem (PF)

Since the randomized algorithm presented here relies on the availability of
algorithms for random uncertainty generation, the following assumption needs
to be imposed.

Assumption 8.1. It is assumed that random samples of ∆ can be generated
inside ∆ with the specified probability density f∆(∆).

For certain probability density functions there exist algorithms in the litera-
ture for generation of random samples of ∆. For instance, in [73] the authors
consider the problem of generating (real and complex) vectors samples uni-
formly in the ball B(r) = {x : ‖x‖p ≤ r}. This is consequently extended for
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the matrix case, but only the 1-norm and the ∞-norm are considered. The
important case of matrix 2-norm is considered later on in [74]. The reader is
referred to [73,74] for more details on the available algorithms for uncertainty
generation.

The set of all feasible solutions to (PF ) is called the solution set, and is
denoted as

Sγ
.
= {x ∈ R

N : Uγ(x,∆) � 0, ∀∆ ∈ ∆}.

Further, define the following function

vγ(x,∆)
.
= ‖Π+[Uγ(x,∆)]‖2

F , (8.6)

which is clearly non-negative for any x ∈ R
N and ∆ ∈ ∆. The usefulness of

the so-defined function vγ(x,∆) stems from the following fact.

Lemma 2. For a given pair (x̄, ∆̄) ∈ R
N × ∆ it holds that Uγ(x̄, ∆̄) ∈ C−

q if

and only if vγ(x̄, ∆̄) = 0.

Proof. Using the third property in Lemma 1 we note that Uγ(x̄, ∆̄) ∈ C−
q

holds if and only if
Π−[Uγ(x̄, ∆̄)] = Uγ(x̄, ∆̄)

Making use of the first property in Lemma 1 we then observe that

Π+[Uγ(x̄, ∆̄)] = 0,

or equivalently, that vγ(x̄, ∆̄) = 0. �

Using the result from Lemma 2 it follows that

{x ∈ R
N : vγ(x,∆) = 0, ∀∆ ∈ ∆} ≡ Sγ

holds. In this way the initial feasibility problem is reformulated as the problem
of checking whether the solution to the following optimization problem

min
x∈RN

sup
∆∈∆

vγ(x,∆)

is equal to zero.
In the randomized ellipsoid algorithm, presented in this chapter, the gradi-

ent of the function vγ(·, ·) is needed. The following result, which is also stated
in [76], provides an analytic expression for it.

Lemma 3. The function vγ(x,∆), defined in equation (8.6), is convex and
differentiable in x and its gradient is given by

∇vγ(x,∆) = 2

⎡⎢⎣ tr (Uγ,1(∆)Π+[Uγ(x,∆)])
...

tr (Uγ,N (∆)Π+[Uγ(x,∆)])

⎤⎥⎦ (8.7)
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Proof. By using the properties of the projection in Lemma 1 we observe that
for some symmetric matrices R and ∆R it can be written that

‖Π+[R+∆R]‖2
F

(P1)
= ‖R+∆R− Π−[R +∆R]‖2

F
(P1)
= ‖Π+R+ Π−R+∆R− Π−[R+∆R]‖2

F
(8.2)
= ‖Π+R‖2

F + 2 〈Π+R,∆R〉 + 2
〈
Π+R,Π−R

〉︸ ︷︷ ︸
=0

+‖Π−R+∆R− Π−[R +∆R]‖2
F

+2
〈
Π+R,−Π−[R+∆R]

〉︸ ︷︷ ︸
≥0

(P2),(P3)

≥ ‖Π+R‖2
F + 〈2Π+R,∆R〉

In addition to that, noting that from (8.3) it follows that

‖A− Π+A‖2
F = min

X∈C−
n

‖A−X‖2
F , (8.8)

we can write that

‖Π+[R +∆R]‖2
F

(P1)
= ‖R+∆R− Π−[R+∆R]‖2

F
(8.8)
= min

S∈C−
n

‖R+∆R− S‖2
F

≤ ‖R +∆R− Π−R‖2
F

(P1)
= ‖Π+R+∆R‖2

F
(8.2)
= ‖Π+R‖2

F + 〈2Π+R,∆R〉 + ‖∆R‖2
F .

It thus follows that

‖Π+[R +∆R]‖2
F = ‖Π+R‖2

F +
〈
2Π+R,∆R

〉
+O(‖∆R‖2

F ).

Now, substitute R = Uγ(x,∆) and ∆R =
∑N

i=1 Uγ,i(∆)∆xi to obtain

vγ(x+∆x,∆) ≥ vγ(x,∆) +
N∑

i=1

〈
2Π+[Uγ(x,∆)]Uγ,i(∆),∆xi

〉
(8.9)

vγ(x+∆x,∆)

= vγ(x,∆) +

N∑
i=1

〈
2Π+[Uγ(x,∆)], Uγ,i(∆)

〉
∆xi +O(‖∆x‖2

2),
(8.10)

The convexity follows from inequality (8.9), while the differentiability follows
from equation (8.10). The gradient of vγ(x,∆) is then given by (8.7). �

Now that the gradient of the function vγ(x,∆) is derived analytically we
are ready to proceed to the randomized approach that is based on the Ellipsoid
Algorithm (EA) [59]. The starting point in EA is the computation of an initial
ellipsoid that contains the solution set Sγ . Then at each iteration of the EA two



230 S. Kanev, M. Verhaegen

steps are performed. In the first step a random uncertainty sample ∆(i) ∈ ∆
is generated according to the given probability density function f∆(∆). With
this generated uncertainty the convex function Uγ(x,∆(i)) is parameterized
and used at the second step of the algorithm where an ellipsoid is computed,
in which the solution set is guaranteed to lie. In this way the EA produces
a sequence of ellipsoids with decreasing volumes, all containing the solution
set. Using some existing facts, and provided that the solution set has a non-
empty interior, it will be established that this algorithm converges to a feasible
solution in a finite number of iterations with probability one. It is also shown
that even if the solution set has a zero volume, the EA converges to the solution
set when the iteration number tends to infinity. To initialize the algorithm,
some methods are proposed for obtaining an initial ellipsoid that contains the
solution set.

Define the ellipsoid

E(x̄, P̄ ) = {x ∈ R
N : (x− x̄)T P̄−1(x− x̄) ≤ 1}

with center x̄ ∈ R
N and matrix P̄ ∈ C+

N describing its shape and orientation.
Assume that an initial ellipsoid E(x(0), P0) is given that contains the solution
set Sγ .

We further assume that the dimension N of the vector of unknowns is
is larger than one1. The problem of finding such an initial ellipsoid will be
discussed in the next section. Define

H(0) .
= {x ∈ R

N : ∇T vγ(x(0),∆)(x− x(0)) ≤ 0}.

Due to the convexity of the function vγ(x,∆) we know that H(0) also contains
the solution set Sγ , and therefore Sγ ⊆ H(0) ∩ E(x(0), P0). We can then con-
struct a new ellipsoid, E(x(1), P1), as the minimum volume ellipsoid such that
E(x(1), P1) ⊇ H(0) ∩E(x(0), P0) ⊇ Sγ , and such that the volume of E(x(1), P1)
is less than the volume of E(x(0), P0). This, repeated iteratively, represents
the main idea behind the Ellipsoid Algorithm [59].

Algorithm 8.1 (Randomized Ellipsoid Algorithm for (PF))
Initialization: i = 0, x(0), P0 = PT

0 � 0, ε > 0 small, integer L > 0.

Step 1. Set i ← i+ 1.
Step 2. Generate a random sample ∆(i) with probability distribution f∆.
Step 3. If vγ(x(i),∆(i)) �= 0 then take

x(i+1) = x(i) − 1

N + 1

Pi∇vγ(x(i),∆(i))√
∇T vγ(x(i),∆(i))Pi∇vγ(x(i),∆(i))

Pi+1 =
N2

N2 − 1

(
Pi −

2

N + 1

Pi∇vγ(x(i),∆(i))∇T vγ(x(i),∆(i))PT
i

∇T vγ(x(i),∆(i))Pi∇vγ(x(i),∆(i))

)
else take x(i+1) = x(i), Pi+1 = Pi.

1With N = 1 the algorithm simplifies to a bisection algorithm.
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Step 4. Form the ellipsoid

E(x(i+1), Pi+1) = {x : (x− x(i+1))TP−1
i+1(x− x(i+1)) ≤ 1} ⊇ Sγ .

Step 5. If
(√

det(P ) < ε
)

or
(
vγ(x(i+j−L),∆(i+j−L)) = 0 for j = 0, 1, . . . , L

)
then Stop else Goto Step 1.

The randomized EA is summarized in Algorithm 8.1. The algorithm ter-
minates when the value of the function vγ(x(·),∆(·)) remains equal to zero for
L successive iterations or when the volume of the ellipsoid (which is propor-
tional to det(P )1/2) becomes smaller than a pre-defined small positive number
ε. In the latter case no feasible solution is found (for instance due to the fact
that the solution set has an empty interior, i.e. vol(Sγ) = 0). In such case γ
has to be increased in the feasibility problem (8.5) and Algorithm 8.1 has to
be started again until a feasible solution is found. Note that if the feasibility
problem (8.5) is feasible for some γ∗, then it is also feasible for any γ > γ∗.
It should also be noted that, due to the probabilistic nature of the algorithm,
the fact that the algorithm terminates due to the cost function being equal
to zero for a finite number L of successive iterations does not necessarily im-
ply that a feasible solution is found (see also Remark 2 below). In practice,
however, choosing L sufficiently large ensures the feasibility of the solution.

For proving the convergence of the algorithm, the following technical as-
sumption needs to be additionally imposed.

Assumption 8.2. For any x(i) �∈ Sγ there is a non-zero probability to gener-
ate a sample ∆(i) for which vγ(x(i),∆(i)) > 0, i.e.

P{vγ(x(i),∆(i)) > 0} > 0.

This assumption is standard in the literature on randomized algorithms (see,
e.g., [76,273]) and is not restrictive in practice. Note that a sufficient condition
for the assumption to hold is that the density function f∆ is non-zero every-
where. The assumption implies that for any x(i) �∈ Sγ there exists a non-zero
probability for the execution of a correction step (i.e. there is a non-zero prob-
ability for generation of ∆(i) ∈ ∆ such that vγ(x(i),∆(i)) > 0). Correction
step means an iteration with vγ(x(i),∆(i)) �= 0.

The convergence of the approach is established immediately, provided that
Assumption 8.2 holds.

Lemma 4 (Convergence of Algorithm 8.1). Consider Algorithm 8.1
without the stopping condition in Step 5 (or with ε = 0 and L → ∞), and
suppose that Assumption 8.2 holds. Suppose also that

(i) vol(Sγ) > 0. Then a feasible solution will be found in a finite number of
iterations with probability one.

(ii) vol(Sγ) = 0. Then

lim
i→∞

x(i) = x∗ ∈ Sγ

with probability one.
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Proof. Suppose that at the i-th iteration of Algorithm 8.1 k(i) correction steps
have been performed. Algorithm 8.1 generates ellipsoids with geometrically
decreasing volumes so that for the i-th iteration we can write [59]

vol(E(x(i), Pi)) ≤ e−
k(i)
2N vol(E(x(0), P0)),

Due to Assumption 8.2, for any x(i) �∈ Sγ there exists a non-zero proba-
bility for the execution of a correction step. Therefore, at any infeasible point
xk(i) the algorithm will execute a correction step after a finite number of
iterations with probability one. This implies that

lim
i→∞

vol(E(x(i), Pi)) = 0. (8.11)

(i) If we then suppose that the solution set Sγ has a non-empty interior, i.e.
vol(S) > 0, then from equation (8.11) and due to the fact that E(x(i), Pi) ⊇
Sγ for all i = 0, 1, . . . , it follows that in a finite number of iterations with
probability one the algorithm will terminate at a feasible solution.
(ii) If we now suppose that vol(S) = 0, then due to the convexity of the

function, and due to equation (8.11), the algorithm will converge to a point
in Sγ with probability one. �

Remark 2. It needs to be noted, however, that Lemma 4 considers Algorithm
8.1 with L → ∞, which in practice is never the case. For finite L the solution
found by the algorithm can only be analyzed in a probabilistic sense. To be
more specific, let some scalars ε ∈ (0, 1) and δ ∈ (0, 1) be given, and let x∗ be
the output of Algorithm 8.1 for ε = 0 and L ≥ ln 1

δ /ln
1

1−ε . Then [130,359]

P{P{vγ(x∗,∆) > 0} ≤ ε} ≥ 1 − δ.

Therefore, if we want with high confidence (e.g. δ = 0.01) that the probability
that x∗ is an optimal solution is very high (1 − ε = 0.999) then we need to
select L larger than 4603. In practice, however, a much smaller value for L
suffices.

The next lemma provides an upper bound on the maximum number of
correction steps that can be executed by the randomized ellipsoid algorithm
before a feasible solution is found.

Lemma 5. Consider Algorithm 8.1, and suppose that Assumption 8.2 holds.
Suppose further that the solution set has a non-empty interior, i.e. vol(Sγ) >
0. Then the number

IEA = 2N

⌈
ln

vol(E(x(0), P0))

vol(Sγ)

⌉
(8.12)

is an upper bound on the maximum number of correction steps that can be
performed starting from any ellipsoid E(x(0), P0) ⊇ Sγ , where 	a
, a ∈ R,
denotes the minimum integer number larger than or equal to a.
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Proof. It is shown in [59] that for the k(i)-th correction step one can write

vol(E(x(k(i)), Pk(i))) ≤ e−
k(i)
2N vol(E(x(0), P0)).

Since the volume of the consecutive ellipsoids tends to zero, and since
vol(Sγ) > 0, there exists an correction step number IEA such that

e−
k(i)
2N vol(E(x(0), P0)) ≤ vol(Sγ), for {∀i : k(i) ≥ IEA}.

Therefore, we could obtain the number IEA from the following relation

vol(Sγ)

vol(E(x(0), P0))
≥ e−

k(i)
2N ⇐= {∀i : k(i) ≥ IEA}.

Now, by taking the natural logarithm on both sides one obtains

ln
vol(Sγ)

vol(E(x(0), P0))
≥ −k(i)

2N
⇐= {∀i : k(i) ≥ IEA}

or

k(i) ≥ 2N ln
vol(E(x(0), P0))

vol(Sγ)
⇐= {∀i : k(i) ≥ IEA}

Therefore, equation (8.12) is proven. �

8.3.2 Optimization Problem (PO)

Above we focused our attention on the feasibility problem for a fixed value of
γ in (8.5). Once we have developed an algorithm for the feasibility problem
(PF ), a bisection algorithm on γ can be used to solve the initial optimization
problem (8.4). This is summarized in Algorithm 8.2.

Algorithm 8.2 (Randomized Ellipsoid Algorithm for (PO))
Initialization: real numbers Tol > 0 and γmax > 0 (sufficiently large), accu-
racy ε ∈ (0, 1) and confidence δ ∈ (0, 1). Set γ1 = 1, γLB = 0, γUB ← ∞, and
k = 1.

Step 1. Find initial ellipsoid E(0)
k (x

(0)
k , P

(0)
k ) for (8.5) with γ = γk using the

methods of Section 8.4.

Step 2. Set Eopt(xopt, Popt) = E(0)
k (x

(0)
k , P

(0)
k ).

Step 3. Run Algorithm 8.1 on problem (8.5) with γ = γk and with initial
ellipsoid Eopt(xopt, Popt).

Step 4. Denote E∗
k (x∗k, P

∗
k ) as the ellipsoid at the final iteration of Algorithm

8.1.
Step 5. If (P{P{vγ(x∗k,∆) > 0} ≤ ε} ≥ 1 − δ) then (γLB = γ)

else (γUB = γ and Eopt(xopt, Popt) = E∗
k (x∗k, P

∗
k )).

Step 6. Set k ← k + 1.
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Step 7. If (γUB = ∞) then (γk = 10γk−1 and goto Step 1.)
else (if γLB = 0 then γk = 0.1γk−1 else γk = γLB+γUB

2 )

Step 8. If (γUB−γLB)
γUB

> Tol and γLB < γmax goto Step 3.
Step 9. Exit the algorithm with γopt = γUB achieved by xopt.

The algorithm begins by checking whether a feasible solution to (8.5) for γ = 1
can be found by means of Algorithm 8.1. If not, γ is increased ten times to
γ = 10 and Algorithm 8.1 is run again. In this way Algorithm 8.2 iterates
between Step 1 and Step 7 until a feasible solution for some γ is found. After
that Algorithm 8.2 begins to iterate between Step 3 and Step 8, so that at
each cycle either γUB or γLB is set equal to the current γ, depending on
whether this γ turns out to be feasible or not. In this way [γLB , γUB ] is a
constantly decreasing interval inside which the optimal γ lies. The algorithm is
terminated once the length of this interval becomes smaller than the selected
tolerance.

We next focus on the problem of computing an initial ellipsoid containing
Sγ , needed in the initialization of Algorithms 8.1 and 8.2.

8.4 Finding an Initial Ellipsoid E(x(0), P0)

In this section we consider the problem of finding initial ellipsoid that contains
the solution set Sγ . The idea that is exploited here is that for any fixed value

∆̂ of the uncertainty set ∆ it holds that the set

Sγ(∆̂)
.
= {x : Uγ(x, ∆̂) ≤ 0, ∆̂ ∈ ∆} ⊆ Sγ .

Therefore, a reasonable option would be to search for the minimum volume
ellipsoid (known as the outer Löwner-John ellipsoid) E(x(0), P ) that contains
the set Sγ(∆̂). This could be achieved by solving the optimization problem

min
x(0),Z

log detZ−1

subject to sup
x∈Sγ(∆̂)

‖Zx− Zx(0)‖ ≤ 1

and then taking P = Z−2. However, as stated in [154], this is in general an NP-
hard problem. For that reason we will not be interested here with finding any
outer Löwner-John ellipsoid, but will rather propose a fast algorithm capable
of finding some other outer ellipsoidal approximation of the set Sγ(∆̂).

We will first concentrate on general LMI optimization problems. In such
cases one can find an ellipsoidal approximation of Sγ(∆̂) by means of solving
a convex optimization problem. Subsequently the SCRLS problem will be
considered and an analytical expression will be derived for E(x(0), P ) in the
case when the matrix A(∆̂) has full column rank.
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8.4.1 General Case

Here we consider the general case of finding an ellipsoid E(x(0), P0) that con-
tains the set Uγ(x, ∆̂) � 0 without making use of its structure in (8.4), i.e.
Uγ is first allowed to be any matrix function affine in x.

The following additional assumption needs to be imposed.

Assumption 8.3. It is assumed that the set Sγ(∆̂) is bounded.

Assumption 8.3 could be restrictive for some problems. If it does not hold,
one can enforce it by including in Uγ(x,∆) ≤ 0 additional hard constraints
on the elements of the vector of unknowns x.

One way to find an outer approximation of the set Sγ(∆̂) is as follows [58].

Define the following barrier function for Sγ(∆̂)

φ(x)
.
=

{
log det(−Uγ(x, ∆̂))−1, if x ∈ Sγ(∆̂)
∞, otherwise

Denote the analytic center of Sγ(∆̂) as

x∗ = arg min
x

φ(x).

Note that computing the analytic center is a convex optimization problem.
It is then shown in [58] that an outer approximating ellipsoid E(x(0), P0)

of the set Sγ(∆̂) is given by

x(0) = x∗, P0 = N(N − 1)H−1(x∗),

where H(x) = [hij(x)] ∈ C+
N is the Hessian of φ(x) with elements

hij(x) = tr[U−1
γ (x, ∆̂)Uγ,i(∆̂)U−1

γ (x, ∆̂)Uγ,j(∆̂)], i, j = 1, 2, . . . , N.

8.4.2 The SCRLS Case

Let us now consider the SCRLS problem defined in (8.1). In this case we can
reduce the computational complexity of the algorithm for finding an initial
ellipsoid by making use of the structure of the least-squares problem. In par-
ticular, an initial ellipsoid can be found in this case by making use the fact
that any ellipsoid that contains the set{

x : max
∆∈∆

‖b(∆) −A(∆)x‖2
2 ≤ γ

}
(8.13)

also contains the solution set

Sγ =

{
x : max

∆∈∆
‖b(∆) −A(∆)x‖2

2 ≤ γ, F (x,∆) � 0, ∀∆ ∈ ∆

}
.
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On the other hand we note that for any ∆̂ ∈ ∆ the set

J (∆̂)
.
=
{
x : ‖b(∆̂) −A(∆̂)x‖2

2 ≤ γ
}

contains the set defined in equation (8.13). Therefore, it will suffice to find an
initial ellipsoid such that

E(x(0), P0) ⊇ J (∆̂)

for some ∆̂ ∈ ∆ in order to ensure that E(x(0), P0) will also contain Sγ . One

possible choice for ∆̂ is ∆̂ = 0 (provided that 0 ∈ ∆, of course), but in practice
any other (e.g. randomly generated) element ∆̂ from the set ∆ can be used.

The following cases, related to the rank and dimension of the matrix A
can be differentiated.

Case 1. p = N and A(∆̂) is invertible. In this case

J (∆̂) =

{
x :

(
x − A−1(∆̂)b(∆̂)

)T
AT (∆̂)A(∆̂)

γ

(
x − A−1(∆̂)b(∆̂)

)
≤ 1

}
so that E(x(0), P0) = E

(
A−1(∆̂)b(∆̂), AT (∆̂)A(∆̂)

γ

)
.

Case 2. p > N and A(∆̂) is left-invertible.
We can thus factorize A(∆̂) (e.g. by using the singular value decomposi-
tion) as

A(∆̂) = E

[
A1(∆̂)

0

]
,

where E is a unitary matrix and A1(∆̂) is a square non-singular matrix.
Denoting [

b1(∆̂)

b2(∆̂)

]
= ET b(∆̂),

we can then write

‖(b(∆̂) −A(∆̂)x)‖2
2 =

∥∥∥∥E [
b1(∆̂) −A1(∆̂)x

b2(∆̂)

]∥∥∥∥2

2

= ‖b1(∆̂) −A1(∆̂)x‖2
2 + ‖b2(∆̂)‖2

2 ≤ γ.

Therefore,

J (∆̂) =
{
x : ‖b(∆̂) −A(∆̂)x‖2

2 ≤ γ
}

=
{
x : ‖b1(∆̂) −A1(∆̂)x‖2

2 ≤ γ − ‖b2(∆̂)‖2
2

}
=

{
x :

(
x − A−1

1 (∆̂)b1(∆̂)
)T

AT
1 (∆̂)A1(∆̂)

γ−‖b2(∆̂)‖2
2

(
x − A−1

1 (∆̂)b1(∆̂)
)
≤ 1

}
,

so that E(x(0), P0) = E
(
A−1

1 (∆̂)b1(∆̂),
AT

1 (∆̂)A1(∆̂)

γ−‖b2(∆̂)‖2
2

)
.

Case 3. A(∆̂) is not full column rank. In this case we cannot obtain an analytic
expression for the initial ellipsoid, which could be computed by means of
solving the convex optimization problem described in Section 8.4.2.
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8.5 Robust Kalman Filtering as SCRLS Problem

In this section we discuss how the randomized algorithm developed above can
be used to solve the Kalman filtering problem in the presence of parametric
uncertainty. Consider the following discrete-time linear system

S :

{
zk+1 = A∆zk +B∆

u uk +Q∆ξx
k

yk = C∆
y zk +D∆

yuuk +R∆
y ξ

y
k ,

(8.14)

where z ∈ R
n is the state of the system, u ∈ R

m is the control action, y ∈ R
p

is the measured output, and ξx and ξy are white Gaussian noises (i.e. random
zero-mean processes with covariance matrices equal to the identity matrix).

8.5.1 The Kalman Filter

Consider the state-estimation problem from available input-output measure-
ments. In [378], the Kalman filtering problem is formulated as a least-squares
problem. To summarize this, let the system state zk be first written in the gen-
eral covariance representation as zk ∼ N (ẑk|k−1, Sk|k−1), i.e. a random Gaus-
sian process with mean ẑk|k−1 and covariance Pk|k−1 = Sk|k−1S

T
k|k−1 > 0.

ẑk|k−1 = zk + Sk|k−1nk

where nk is a zero-mean stochastic variable with covariance matrix equal to
the identity matrix. It is assumed that ẑ0|−1 and P0|−1 are given. Combining
this representation of the state zk with the system equations (8.14) results in⎡⎣ ẑk|k−1

yk −Dyuuk

−Buuk

⎤⎦
︸ ︷︷ ︸

Y

=

⎡⎣ In 0
Cy 0
A −I

⎤⎦
︸ ︷︷ ︸

F ∆

[
zk

zk+1

]
︸ ︷︷ ︸

b

+

⎡⎣Sk|k−1

Ry

Q

⎤⎦
︸ ︷︷ ︸

L∆

⎡⎣nk

ξy
k

ξx
k

⎤⎦
︸ ︷︷ ︸

Ξ

. (8.15)

Above, the vector Y contains only signals available at time instant k. Given
the state estimate ẑk|k−1 from the previous time instant, and the square-root

covariance matrix Ŝk|k−1, an unbiased estimate of the state then be obtained
by solving [

ẑk|k
ẑk+1|k

]
= arg min

b
max
∆∈∆

‖(L∆)−1(Y − F∆b)‖2
2,

which is clearly a special case of the SCRLS problem (8.1). It can thus be
solved by making use of the proposed randomized ellipsoid algorithm. Hence,
we next concentrate on the problem of computation of the square-root covari-
ance matrix Sk+1|k that will be required for the optimization at time instant
(k + 1).
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8.5.2 Computation of the Square-Root Covariance Matrix Sk+1|k

In this subsection we are concerned with finding the minimum-trace state
covariance matrix Pk+1|k that is compatible, again in a probabilistic sense,
with all possible values of the uncertainty. Its square-root Sk+1|k is then to be
used in the optimization problem at the next time instant (k+1). To this end
we following the same reasoning as in [378]. Assuming that the state estimate
at time instant k is represented as

ẑk|k−1 = zk + Sk|k−1nk,

we want to obtain a similar expression for time instant k + 1

ẑk+1|k = zk+1 + Sk+1|kñk, (8.16)

with ñk zero mean and covariance matrix equal to the identity matrix.
Pre-multiplying equation (8.15) by the non-singular matrix

Tl =

⎡⎣C∆
y −I 0

A∆ 0 −I
I 0 0

⎤⎦ ,
results in the equation⎡⎣C∆

y ẑk|k−1 +D∆
yuuk − yk

A∆ẑk|k−1 +B∆
u uk

ẑk|k−1

⎤⎦

=

⎡⎣ 0 0
0 I
I 0

⎤⎦[ zk

zk+1

]
+

⎡⎣C∆
y Sk|k−1 R

∆ 0
A∆Sk|k−1 0 Q∆

Sk|k−1 0 0

⎤⎦⎡⎣ nk

−ξy
k

−ξx
k

⎤⎦ .
(8.17)

Let now Tr be an orthogonal transformation matrix (i.e. TrT
T
r = I) such that⎡⎣C∆

y Sk|k−1 R
∆ 0

A∆Sk|k−1 0 Q∆

Sk|k−1 0 0

⎤⎦TrT
T
r

⎡⎣ nk

−ξy
k

−ξx
k

⎤⎦ =

⎡⎣ R̃∆ 0 0

G̃∆ S∆
k+1|k 0

• • •

⎤⎦⎡⎣ νk

ñk

ξ̃k

⎤⎦ ,
where the symbols • denote entries of no importance for the sequel. Note that
the first row in (8.17) is independent on the variables zk and zk+1 and νk can
therefore be directly expressed, i.e. νk = (R̃∆)−1(C∆

y ẑk|k−1 + D∆
yuuk − yk).

Substituting this expression in the second row and subsequently moving the
term G̃∆νk to the left side of the equation, one gets an expression of the
form (8.16). Thus S∆

k+1|k is the square-root covariance matrix which, however,
depends on the uncertainty ∆. This motivates us to consider the following
optimization problem for the covariance matrix
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min
γ, Pk+1|k

γ

subject to γ ≥ tr(Pk+1|k)
Pk+1|k � S∆

k+1|k(S∆
k+1|k)T , ∀∆ ∈ ∆.

(8.18)

For simplicity of notations we denote M(∆) = S∆
k+1|k(S∆

k+1|k)T .

To solve the optimization problem (8.18), we will again make use of the
randomized EA approach. To this end we consider the problem of minimizing
γ under the constraint that the matrix inequality[

γ − tr(Pk+1|k)
Pk+1|k −M(∆)

]
� 0, (8.19)

holds for all ∆ ∈ ∆. This problem can be rewritten in the form of the SCRLS
problem, to which Algorithm 8.2 can be applied. The optimization variables
here are the 1

2n(n+1) free entries of the n-by-n matrix Pk+1|k. For its initial-
ization, an initial ellipsoid can be computed using the general (optimization-
based) method described in Section 8.4. In fact, for the problem (8.19) it can
be shown that Assumption 8.3 holds for any ∆∗ ∈ ∆ and γ > tr(M(∆∗)).

Theorem 1. Let mij, i = 1, 2, . . . , n, j = 1, 2, . . . , n, denote the elements of
the matrix M(∆∗) for some ∆∗ ∈ ∆, and suppose that γ > tr(M(∆∗)). Define
the scalars

p
ii

= mii, i = 1, 2, . . . , n,

pii = γ −
∑
j �=i

mjj , for i = 1, 2, . . . , n,

pij = mij + γ − tr(M(∆∗)), i, j = 1, 2, . . . , n, j �= i,

p
ij

= mij − γ + tr(M(∆∗)), i, j = 1, 2, . . . , n, j �= i.

Let also Pk+1|k = [pij ] be any symmetric matrix for which (8.19) holds for all
∆ ∈ ∆. Then

p
ij

≤ pij ≤ pij , (8.20)

for all i = 1, 2, . . . , n and j = 1, 2, . . . , n.

Proof. From (8.19) it follows that Pk+1|k � M(∆) for all ∆ ∈ ∆. Therefore it
must also hold that Pk+1|k � M(∆∗) = [mij ] for any fixed ∆∗ ∈ ∆. Therefore

pii ≥ mii = p
ii
, i = 1, 2, . . . , n,

so that the lower bounds in (8.20) on the diagonal elements pii of Pk+1|k has
been shown.

On the other hand, Pk+1|k should be such that tr(Pk+1|k) ≤ γ. This implies
that
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γ ≥ pii +
∑
j �=i

pjj ≥ pii +
∑

j=1,...,n

mjj , ∀i = 1, 2, . . . , n, (8.21)

so that
pii ≤ γ −

∑
j=1,...,n

mjj = pii, (8.22)

that completes the proof for the upper bounds on the diagonal elements pii

of Pk+1|k.
In order to find lower and upper bounds on the non-diagonal entries we

notice that Pk+1|k � M(∆∗) implies[
pii pij

pji pjj

]
�
[
mii mij

mji mjj

]
, ∀i �= j.

Using the Schur complement the above inequality is equivalent to∣∣∣∣pjj −mjj ≥ 0,
(pii −mii) − (pij −mij)(pjj −mjj)

−1(pji −mji) ≥ 0.

From the second inequality, making use of the symmetry of the matrices
M(∆∗) and Pk+1|k (i.e. mij = mji and pij = pji), it follows that

|pij −mij | ≤
√

(pii −mii)(pjj −mjj)

≤
√

(pii −mii)(pjj −mjj),

Substitution of equation (8.22) then results in

|pij −mij | ≤
√

(pii −mii)(pjj −mjj)

=
√

(γ − tr(M(∆∗)))2

= |γ − tr(M(∆∗))|.

And since γ ≥ tr(M(∆∗)), we have shown that Pk+1|k � M(∆∗) implies

pij ≤ mij + γ − tr(M(∆∗)) = pij ,
pij ≥ mij − γ + tr(M(∆∗)) = p

ij
,

so that also the upper and lower bounds on the non-diagonal elements of
Pk+1|k have been derived. �

A Faster Algorithm for Finding Pk+1|k

A more conservative, but computationally faster way to compute the covari-
ance matrix Pk+1|k so that it is compatible with all possible values of the
uncertainty is to try to find it so that

Pk+1|k � M(∆), ∀∆ ∈ ∆,

i.e. without the minimization over the trace of Pk+1|k in (8.18). To this end
we propose Algorithm 8.3 for computation of Pk+1|k.
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Algorithm 8.3 (A faster algorithm for computation of Pk+1|k)
Initialization: small ε > 0, integer K > 0.

Step 1. Take P
(0)
k+1|k = εI and set i = 1.

Step 2. Set i ← i+ 1.
Step 3. Generate a random sample ∆(i) with probability distribution f∆.
Step 4. Compute

P
(i)
k+1|k = P

(i−1)
k+1|k −

[
P

(i−1)
k+1|k −M(∆(i))

]−
(8.23)

Step 5. If ‖P (i)
k+1|k − P

(i−K)
k+1|k ‖F = 0 then take Pk+1|k = P

(i)
k+1|k Stop else Goto

Step 2.

The following result shows that by computing Pk+1|k using Algorithm

8.3 ensures that Pk+1|k � M(∆(i)) (at least) for the generated uncertainty

samples ∆(i).

Lemma 6. Suppose that L iterations of Algorithm 8.3 are performed. Then

the matrix Pk+1|k = P
(L)
k+1|k is such that

(i) Pk+1|k � 0, and

(ii) Pk+1|k � M(∆(i)), for i = 1, 2, . . . , L.

Proof.
(i) Noting that [

P
(i−1)
k+1|k −M(∆(i))

]−
� 0,

it follows from equation (8.23) that

P
(i)
k+1|k � P

(i−1)
k+1|k (8.24)

for all i = 1, . . . , L, and thus Pk+1|k � P
(0)
k+1|k � 0.

(ii) Note that

P
(i)
k+1|k = P

(i−1)
k+1|k −

[
P

(i−1)
k+1|k −M(∆(i))

]−
= P

(i−1)
k+1|k −M(∆(i)) +M(∆(i)) −

[
P

(i−1)
k+1|k −M(∆(i))

]−
= M∆(i)

+
[
P

(i−1)
k+1|k −M(∆(i))

]+
� M(∆(i))

which, together with (8.24), implies (ii). �

Clearly, here we can also choose the parameter K of Algorithm 8.3 so as
to ensure that

P{P{Pk+1|k < M(∆)} ≤ ε} ≥ 1 − δ

for some desired accuracy ε and confidence δ.
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8.6 Conclusion

This chapter is focused on a very often encountered problem in robust control
design and robust filtering, namely the robust constrained least-squares prob-
lem for general uncertainty structures. Computing deterministic solutions to
such problems may be computationally prohibitive in practice, in which cases
probabilistic, near-optimal solutions might be a good alternative. Such solu-
tions can be computed using randomized algorithm, such as the randomized
ellipsoid algorithm discussed in this chapter. The advantage of using this algo-
rithm over other existing algorithms is, besides its improved convergence [176],
that it can easily be initialized for SCRLS problems: analytic expressions have
been provided for constructing an initial ellipsoid that contains the solution
set. Furthermore, as an example, it has been shown how the robust Kalman
filtering problem can be addressed in this framework by generalizing its least-
squares formulation to the uncertainty case. Additional discussion is provided
on the computation of the minimum-trace state covariance matrix at each
time instant so that it is compatible, in a probabilistic sense, with all possible
vales of the uncertainty.
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Summary. This chapter studies the development of Monte Carlo methods to solve
semi-infinite, nonlinear programming problems. An equivalent stochastic optimiza-
tion problem is proposed, which leads to a class of randomized algorithms based on
stochastic approximation. The main results of the chapter show that almost sure
convergence can be established under relatively mild conditions.

9.1 Introduction

In this chapter, we consider semi-infinite programming problems consisting
of a possibly uncountable number of constraints. As a special case, we also
study the determination of a feasible solution to an uncountable number of
inequality constraints. Computational problems of this form arise in optimal
and robust control, filter design, optimal experiment design, reliability, and
numerous other engineering problems in which the underlying model contains
a parameterized family of inequality constraints. More specifically, these pa-
rameters may represent time, frequency, or space, and hence may vary over
an uncountable set.

The class of problems considered here are known as semi-infinite program-
ming problems since the number of constraints is infinite, but there is a finite
number of variables (see, e.g., [145,270,292] and references cited therein). Sev-
eral deterministic numerical procedures have been proposed to solve problems
of this kind. Standard approach is to approximately solve the optimization
problem through discretization using a deterministic grid (for a recent survey
see [291], and also [158,269]). The algorithms based on this approach typically
suffer from the curse of dimensionality so that their computational complexity
is generally exponential in the problem dimension, see, e.g., [364].
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This chapter explores an alternative approach based on Monte Carlo meth-
ods and randomized algorithms. The use of randomized algorithms has become
widespread in recent years for various problems, and is currently an active
area of research. In particular, see [359] for a development of randomized al-
gorithms for uncertain systems and robust control; [44, 54] for applications
to reinforcement learning, and approximate optimal control in stochastic sys-
tems; [47, 315] for topics in mathematical physics; [234, 238] for applications
in computer science and computational geometry; [144] for a treatment of
Monte Carlo methods in finance; and [297] for a recent survey on Markov
Chain Monte Carlo methods for approximate sampling from a complex prob-
ability distribution, and related Bayesian inference problems.

The main idea of this chapter is to reformulate the semi-infinite program-
ming problem as a stochastic optimization problem that may be solved using
stochastic approximation methods [196, 209]. The resulting algorithm can be
easily implemented, and is provably convergent under verifiable conditions.
The general results on Monte Carlo methods as well as the theoretical re-
sults reported in this chapter suggest that the computational complexity of
the proposed algorithms is considerably reduced in comparison with existing
deterministic methods (see also [296]).

The chapter is organized as follows. Section 9.2 contains a description
of the general semi-infinite programming problems considered in this con-
tribution, and an equivalent stochastic programming representation of these
semi-infinite programming problems is proposed. Randomized algorithms to
solve the stochastic programming problems are introduced in Section 9.3, and
convergence proofs are contained in the Appendix.

9.2 Semi-Infinite Nonlinear Programming

The semi-infinite programming problems studied in this chapter are based on
a given Borel-measurable function g : R

p × R
q → R. This function is used to

define the constraint region,

D = {x ∈ R
p : g(x, y) ≤ 0,∀y ∈ R

q}. (9.1)

The problems considered in this chapter concern computation of a point in
D, and optimization of a given function f over this set. These problems are
now described more precisely.

9.2.1 Two General Computational Problems

Constraint set feasibility

Is D non-empty? And, if so, how do we compute elements of D? That is, we
seek algorithms to determine a solution x∗ ∈ R

p to the following uncountably-
infinite system of inequalities:

g(x, y) ≤ 0, ∀y ∈ R
q (9.2)
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Optimization over D

For a given continuous function f : R
p → R, how do we compute an optimizer

over D? That is, a solution x∗ ∈ R
p to the semi-infinite nonlinear program,

minimize f(x)

subject to g(x, y) ≤ 0, ∀y ∈ R
q.

(9.3)

These two problems cover the following general examples.

Min-max problems

Consider the general optimization problem in which a function f : R
p → R is

to be minimized, of the specific form

f(x) = max
y

g(x, y), x ∈ R
p,

where g : R
p×R

q → R is continuous. Under mild conditions, this optimization
problem can be formulated as a semi-infinite optimization problem (for details
see [270]).

Sup-norm minimization

Suppose that H : R
p → R

r is a given measurable function to be approximated
by a family of functions {Gi : i = 1, . . . , p} and their linear combinations. Let
G = [G1| · · · |Gp] denote the p× r matrix-valued function on R

q, and consider
the minimization of the function

f(x) = sup
y

‖H(y) −G(y)x‖, x ∈ R
p.

A vector x∗ minimizing f provides the best approximation of H in the supre-
mum norm. The components of x∗ are then interpreted as basis weights.
This is clearly a special case of the min-max problem in which g(x, y) =
‖H(y) −G(y)x‖.

Common Lyapunov functions

Consider a set of parameterized real Hurwitz matrices A = {A(y) : y ∈
Y ⊆ R

q}. In this case, the feasibility problem is checking the existence of a
symmetric positive definite matrix P � 0 which satisfies the Lyapunov strict
inequalities

PA(y) +AT (y)P ≺ 0, ∀y ∈ Y ⊆ R
q.

This is equivalent to verify the existence of P � 0 which satisfies

PA(y) +AT (y)P +Q � 0, ∀y ∈ Y ⊆ R
q,
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where Q � 0 is arbitrary. Clearly, the existence of a feasible solution P � 0
implies that the quadratic function V (x) = xTPx is a common Lyapunov
function for the family of asymptotically stable linear systems

ż = A(y)z, ∀y ∈ Y ⊆ R
q.

This feasibility problem can be reformulated as follows: determine the
existence of a symmetric positive definite matrix P � 0 to the system of
scalar inequalities

λmax(PA(y) +AT (y)P +Q) � 0, ∀y ∈ Y ⊆ R
q,

where λmax(A) denotes the largest eigenvalue of a real symmetric matrix A.
This observation follows from the fact that λmax(A) ≤ 0 if and only if A �
0. We also notice that λmax is a convex function and, if λmax is a simple
eigenvalue, it is also differentiable, see details in [206]. In the affirmative case
when this common Lyapunov problem is feasible, clearly the objective is to
find a solution P � 0.

9.2.2 Equivalent Stochastic Programming Representation

Algorithms to solve the semi-infinite programming problems (9.2), (9.3) may
be constructed based on an equivalent stochastic programming representation.
This section contains details on this representation and some key assumptions.

We adopt the following notation throughout the chapter: the standard
Euclidean norm is denoted ‖ · ‖, while d(·, ·) stands for the associated metric.
For an integer r ≥ 1 and z ∈ R

r, ρ ∈ (0,∞), the associated closed balls are
defined as

Br
ρ(z) = {x′ ∈ R

r : ‖z − z′‖ ≤ ρ}, Br
ρ = Br

ρ(0),

while Br denotes the class of Borel-measurable sets on R
r.

Throughout the chapter, a probability measure µ on Bq is fixed, where
q ≥ 1 is the integer used in (9.1). It is assumed that its support is full in the
sense that

µ(A) > 0 for any non-empty open set A ⊂ R
q. (9.4)

In applications one will typically take µ of the form µ(dy) = p(y) dy, y ∈ R
q,

where p is continuous, and strictly positive. A continuous function h : R → R+

is fixed with support equal to (0,∞), in the sense that

h(t) = 0 for all t ∈ (−∞, 0], and h(t) > 0 for all t ∈ (0,∞). (9.5)

For example, the function h(t) = (max{0, t})2, t ∈ R, is a convex, C1 solution
to (9.5).

Equivalent stochastic programming representations of (9.2) and (9.3) are
based on the probability distribution µ, the function h, and the following
condition on the function g that determines the constraint region D:
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g(x, ·) is continuous on R
q for each x ∈ R

p.

The following conditional average of g is the focus of the algorithms and
results in this chapter,

ψ(x) =

∫
h(g(x, y))µ(dy), x ∈ R

p. (9.6)

The equivalent stochastic programming representation of the semi-infinite
problems (9.2) or (9.3) is based on the following theorem.

Theorem 1. Under the assumptions of this section, the constraint region may
be expressed as

D = {x ∈ R
p : ψ(x) = 0}.

Proof. Suppose that x ∈ D. By definition, the following equation then holds
for all y ∈ R

q:
h(g(x, y)) = 0.

This and (9.6) establish the inclusion

D ⊆ {x ∈ R
p : ψ(x) = 0}.

Conversely, if x /∈ D, then there exists y ∈ R
q such that g(x, y) > 0.

Continuity of the functions g and h implies that there exist constants δ, ε ∈
(0,∞) such that

h(g(x, y′)) ≥ ε, for all y′ ∈ Bq
δ (y).

This combined with the support assumption (9.4) implies that

ψ(x) ≥
∫

Bq
δ (y)

h(g(x, y′))µ(dy′) ≥ εµ(Bq
δ (y)) > 0,

which gives the reverse inclusion

Dc ⊆ {x ∈ R
p : ψ(x) �= 0},

where Dc denotes the complement of D. �

Let Y be an R
q-valued random variable defined on a probability space

(Ω,F ,P) whose probability measure is µ, i.e.,

P(Y ∈ B) = µ(B), B ∈ Bq.

It follows that ψ may be expressed as the expectation

ψ(x) = E(h(g(x, Y ))), x ∈ R
p, (9.7)

and the following corollaries are then a direct consequence of Theorem 1.
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Corollary 1. A vector x ∈ R
p solves the semi-infinite problem (9.2) if and

only if it solves the equation

E(h(g(x, Y ))) = 0.

Corollary 2. The semi-infinite optimization problem problem (9.3) is equiv-
alent to the constrained stochastic optimization problem

minimize f(x)

subject to E(h(g(x, Y ))) = 0.

Corollaries 1 and 2 motivate the development of Monte Carlo methods
to solve the semi-infinite problems (9.2) and (9.3). The search for a feasible
or optimal x ∈ D may be performed by sampling R

q using the probability
measure µ. Specific algorithms are proposed in the next section.

9.3 Algorithms

We begin with consideration of the constraint satisfaction problem (9.2).

9.3.1 Systems of Infinitely Many Inequalities

Theorem 1 implies that solutions of (9.2) are characterized as global minima
for the function ψ. If the functions h and g are differentiable, then minimiza-
tion of ψ may be performed using a gradient algorithm, described as follows:
given a vanishing sequence {γn}n≥1 of positive reals, we consider the recursion

xn+1 = xn − γn+1∇ψ(xn), n ≥ 0.

Unfortunately, apart from some special cases (see, e.g., [273]), it is impossible
to determine analytically the gradient ∇ψ.

On the other hand, under mild regularity conditions, (9.7) implies that
the gradient may be expressed as the expectation

∇ψ(x) = E(h′(g(x, Y ))∇xg(x, Y )), x ∈ R
p, (9.8)

where h′ denotes the derivative of h. This provides motivation for the ‘stochas-
tic approximation’ of ∇ψ given by

h′(g(x, Y ))∇xg(x, Y ),

and the following stochastic gradient algorithm to search for the minima of
ψ:

Xn+1 = Xn − γn+1h
′(g(Xn, Yn+1))∇xg(Xn, Yn+1), n ≥ 0. (9.9)
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In this recursion, {γn}n≥1 again denotes a sequence of positive reals. The i.i.d.
sequence {Yn}n≥1 has common marginal distribution µ, so that

P(Yn ∈ B) = µ(B), B ∈ Bq, n ≥ 1.

Depending upon the specific assumptions imposed on the functions h and
g, analysis of the stochastic approximation recursion (9.9) may be performed
following the general theory of, say, [38, 54,196,355].

The asymptotic behavior of the algorithm (9.9) is analyzed under the
following assumptions:

A1 γn > 0 for each n ≥ 1,
∑∞

n=1 γn = ∞, and
∑∞

n=1 γ
2
n < ∞.

A2 For each ρ ∈ [1,∞), there exists a Borel-measurable function φρ : R
q →

[1,∞) such that ∫
φ4

ρ(y)µ(dy) < ∞,

and for each x, x′, x′ ∈ Bp
ρ , y ∈ R

q,

max{|h(g(x, y))|, |h′(g(x, y))|, ‖∇xg(x, y)‖} ≤ φρ(y),

|h′(g(x′, y)) − h′(g(x′, y))| ≤ φρ(y)‖x′ − x′‖,

‖∇xg(x
′, y) − ∇xg(x

′, y)‖ ≤ φρ(y)‖x′ − x′‖.

A3 ∇ψ(x) �= 0 for all x /∈ D.

Assumption A1 holds if the step-size sequence is of the usual form γn =
n−c, n ≥ 1, where the constant c lies in the interval (1/2, 1].

Assumption A2 corresponds to the properties of the functions g and h. It
ensures that ψ is well-defined, finite and differentiable, and that ∇ψ is locally
Lipschitz continuous. This assumption is satisfied under appropriate assump-
tions on the function g, provided the function h is carefully chosen. Consider
the special case in which h is the piecewise quadratic, h(t) = (max{0, t})2,
t ∈ R. Then, Assumption A2 holds under the following general assump-
tions on g: for each ρ ∈ [1,∞), there exists a Borel-measurable function
ϕρ : R

q → [1,∞) such that ∫
ϕ4

ρ(y)µ(dy) < ∞,

and for each x, x′, x′ ∈ Bp
ρ , y ∈ R

q,

max{g2(x, y), ‖∇xg(x, y)‖} ≤ ϕρ(y),

|g(x′, y) − g(x′, y)| ≤ ϕρ(y)‖x′ − x′‖,

‖∇xg(x
′, y) − ∇xg(x

′, y)‖ ≤ ϕρ(y)‖x′ − x′‖.
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In the special case in which g is linear in x, so that there exist Borel-
measurable functions a : R

q → R
p, b : R

q → R, with

g(x, y) = aT (y)x+ b(y), x ∈ R
p, y ∈ R

q,

a bounding function ϕρ may be constructed for each ρ ∈ [1,∞) provided∫
‖a(y)‖4µ(dy) < ∞,

∫
|b(y)|4µ(dy) < ∞.

Assumption A3 corresponds to the properties of the stationary points of
ψ. Consider the important special case in which g(·, y) is convex for each
y ∈ R

q. We may assume that h is convex and non-decreasing (notice that h
is non-decreasing if it is convex and satisfies (9.5)), and it then follows that
the function ψ is also convex in this special case. Moreover, since ψ is non-
negative valued, convex, and vanishes only on D, it follows that ∇ψ(x) �= 0
for x ∈ Dc, so that Assumption A3 holds.

Theorem 2 states that stability of the algorithm implies convergence under
the assumptions imposed here. General conditions to verify stability, so that
sup0≤n ‖Xn‖ < ∞ holds w.p.1., are included in [38,54,196].

Theorem 2. Suppose that Assumptions A1–A3 hold. Then, on the event
{sup0≤n ‖Xn‖ < ∞}, we have convergence:

lim
n→∞

d(Xn, D) = 0 w.p.1.

Proof. A proof of this theorem is included in Appendix 9.5.1.
In many practical situations, a solution to the semi-infinite problem (9.2)

is known to lie in a predetermined bounded set Q. In this case one may replace
the iteration (9.9) with the following projected stochastic gradient algorithm:

Xn+1 = ΠQ(Xn − γn+1h
′(g(Xn, Yn+1))∇xg(Xn, Yn+1)), n ≥ 0. (9.10)

It is assumed that the constraint set Q ⊂ R
p is compact and convex, and

ΠQ(·) is the projection on Q (i.e., ΠQ(x) = arg infx′∈Q ‖x− x′‖ for x ∈ R
p).

The step-size sequence and i.i.d. sequence {Yn}n≥1 are defined as above.
Under additional assumptions on g and h, we can prove that the algorithm

(9.10) converges.

Theorem 3. Let {Xn}n≥0 be generated by (9.10), and suppose that Assump-
tions A1 and A2 hold. Suppose that D ∩ Q �= ∅, h is convex, and g(·, y) is
convex for each y ∈ R

q. Then

lim
n→∞

d(Xn, D) = 0 w.p.1.

Proof. A proof of this theorem is included in Appendix 9.5.2.
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9.3.2 Algorithms for Semi-Infinite Optimization Problems

In this section, algorithms for the semi-infinite programming problem (9.3)
are proposed, and their asymptotic behavior is analyzed.

Suppose that h is differentiable and that g(·, y) is differentiable for each
y ∈ R

q. Due to Theorem 1, the semi-infinite problem (9.3) is equivalent to the
following constrained optimization problem:

minimize f(x)

subject to ψ(x) = 0. (9.11)

Suppose that the gradient ∇ψ could be computed explicitly. Then, under
general conditions on the function f and the set D, the constrained opti-
mization problem (9.3) could be solved using the following penalty-function
approach (see, e.g., [42, 270]). Let {δn}n≥1 be an increasing sequence of pos-
itive reals satisfying limn→∞ δn = ∞. Since ψ(x) ≥ 0 for all x ∈ R

p, this
sequence can be used as penalty parameters for (9.11) in the following gradi-
ent algorithm:

xn+1 = xn − γn+1(∇f(xn) + δn+1ψ(xn)), n ≥ 0,

where {γn}n≥1 is a sequence of positive reals.
However, since the gradient is typically unavailable, we may instead use

(9.8) to obtain the estimate of ∇ψ, given by h′(g(x, Y ))∇xg(x, Y ), and it is
then quite natural to use the following stochastic gradient algorithm to search
for the minima of the function f over D:

Xn+1 = Xn − γn+1(∇f(Xn) + δn+1h
′(g(Xn, Yn+1))∇xg(Xn, Yn+1)), n ≥ 0,

(9.12)
where {γn}n≥1 and {Yn}n≥1 have the same meaning as in the case of the
algorithm (9.9).

The following assumptions are required in the analysis of the algorithm
(9.12):

B1 γn > 0 for each n ≥ 1,
∑∞

n=1 γn = ∞, and
∑∞

n=1 γ
2
nδ

2
n < ∞.

B2 f is convex and ∇f is locally Lipschitz continuous.

B3 h is convex and g(·, y) is convex for each y ∈ R
q. For all ρ ∈ [1,∞),

there exists a Borel-measurable function φρ : R
q → [1,∞) and such that∫

φ4
ρ(y)µ(dy) < ∞,

and, for all x, x′, x′ ∈ Bp
ρ , y ∈ R

q,

max{|h(g(x, y))|, |h′(g(x, y))|, ‖∇xg(x, y)‖} ≤ φρ(y),

|h′(g(x′, y)) − h′(g(x′, y))| ≤ φρ(y)‖x′ − x′‖,

‖∇xg(x
′, y) − ∇xg(x

′, y)‖ ≤ φρ(y)‖x′ − x′‖.
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B4 η∗ .
= infx∈D f(x) > −∞, and the set of optimizers given by D∗ .

= {x ∈
D : f(x) = η∗} is non-empty.

Assumption B3 ensures that ψ is well-defined, finite, convex and differen-
tiable. It also implies that ∇ψ is locally Lipschitz continuous. Assumption B4
is satisfied if D is bounded or f is coercive (i.e. the sublevel set {x : f(x) ≤ N}
is bounded for each N ≥ 1).

Theorem 4. Let {Xn}n≥0 be generated by (9.12), and suppose that Assump-
tions B1–B4 hold. Then, on the event {sup0≤n ‖Xn‖ < ∞},

lim
n→∞

d(Xn, D
∗) = 0 w.p.1.

Proof. A proof of this theorem is included in Appendix 9.5.3.

9.4 Conclusion

The main contribution of this chapter is to reformulate a given semi-infinite
program as a stochastic optimization problem. One can then apply Monte
Carlo and stochastic approximation methods to generate efficient algorithms,
and provide a foundation for analysis. Under standard convexity assumptions,
and additional relatively mild conditions, the proposed algorithms provide a
convergent solution with probability one.

The next step is to test these algorithms in practical, non-trivial applica-
tions. In particular, we are interested in application to specific optimization
problems, and to robust control. It is of interest to see how these randomiza-
tion approaches compare to their deterministic counterparts. We also expect
that the algorithms may be refined and improved within a particular applica-
tion context.

9.5 Appendix

Here we provide proofs of the main results of the chapter. The following nota-
tion is fixed in this Appendix: let F0 = σ{X0}, while Fn = σ{X0, Y1, . . . , Yn}
for n ≥ 1.

9.5.1 Proof of Theorem 2

We begin with the representation

Xn+1 = Xn − γn+1∇ψ(Xn) + ξn+1,

ψ(Xn+1) = ψ(Xn) − γn+1‖∇ψ(Xn)‖2 + εn+1, n ≥ 1,
(9.13)

where the error terms in (9.13) are defined as
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ξn+1 = γn+1(∇ψ(Xn) − h′(g(Xn, Yn+1)∇xg(Xn, Yn+1)),

ε1,n+1
.
= (∇ψ(Xn))T ξn+1,

ε2,n+1
.
=

∫ 1

0

(∇ψ(Xn + t(Xn+1 −Xn)) − ∇ψ(Xn))T (Xn+1 −Xn)dt,

εn+1
.
= ε1,n+1 + ε2,n+1, n ≥ 0.

The first step in our analysis of (9.13) is to establish the asymptotic properties
of {ξn}n≥1 and {εn}n≥1.

Lemma 1. Suppose that Assumptions A1 and A2 hold. Then,
∑∞

n=1 ξn,∑∞
n=1 εn converge w.p.1 on the event {sup0≤n ‖Xn‖ < ∞}.

Fix ρ ∈ [1,∞), and let Kρ < ∞ serve as an upper bound on ‖∇ψ‖, and a
Lipschitz constant for ∇ψ on the set Bp

ρ . Due to A1,

‖ξn+1‖I{‖Xn‖≤ρ} ≤ 2Kργn+1φ
2
ρ(Yn+1)

|ε1,n+1|I{‖Xn‖≤ρ} ≤ Kρ‖ξn+1‖I{‖Xn‖≤ρ},

|ε2,n+1|I{‖Xn‖≤ρ} ≤ Kρ‖Xn+1 −Xn‖2I{‖Xn‖≤ρ}
≤ 2K3

ργ
2
n+1 + 2Kρ‖ξn+1‖I{‖Xn‖≤ρ}, n ≥ 0.

Consequently,

E

( ∞∑
n=0

‖ξn+1‖2I{‖Xn‖≤ρ}

)
≤4K2

ρ

∞∑
n=1

γ2
nE(φ4

ρ(Yn)) < ∞, (9.14)

E

( ∞∑
n=0

|ε1,n+1|2I{‖Xn‖≤ρ}

)
≤K2

ρE

( ∞∑
n=0

‖ξn+1‖2I{‖Xn‖≤ρ}

)
< ∞, (9.15)

E

( ∞∑
n=0

|ε2,n+1|2I{‖Xn‖≤ρ}

)
≤2KρE

( ∞∑
n=0

‖ξn+1‖2I{‖Xn‖≤ρ}

)

+ 2K3
ρ

∞∑
n=1

γ2
n < ∞. (9.16)

Since Xn is measurable with respect to Fn and independent of Yn+1, we have

E
(
ξn+1‖ξn+1‖2I{‖Xn‖≤ρ}|Fn

)
= 0 w.p.1.,

E
(
ε1,n+1‖ξn+1‖2I{‖Xn‖≤ρ}|Fn

)
= 0 w.p.1., n ≥ 0.

Then, Doob’s martingale convergence theorem (see, e.g., [243]) and (9.14)–
(9.16) implies that

∑∞
n=1 ξn,

∑∞
n=1 ε1,n,

∑∞
n=1 ε2,n converge w.p.1 on the

event {sup0≤n ‖Xn‖ ≤ ρ}. Since ρ can be arbitrary large, it can easily be
deduced that

∑∞
n=1 ξn,

∑∞
n=1 εn converge w.p.1 on the event {sup0≤n ‖Xn‖ <

∞}. �
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Proof of Theorem 2. We again fix ρ ∈ [1,∞), and let Kρ < ∞ serve as
an upper bound on ‖∇ψ‖, and a Lipschitz constant for ∇ψ on the set Bp

ρ .
Fix an arbitrary sample ω ∈ Ω from the event on which sup0≤n ‖Xn‖ ≤ ρ,
and both

∑∞
n=1 ξn and

∑∞
n=1 εn are convergent (for the sake of notational

simplicity, ω does not explicitly appear in the relations which follow in the
proof). Due to Lemma 1 and the fact that ∇ψ is continuous, it is sufficient to
show limn→∞ ‖∇ψ(Xn)‖ = 0. We proceed by contradiction.

If ‖∇ψ(Xn)‖ does not vanish as n → ∞, then we may find ε > 0 such that

lim sup
n→∞

‖∇ψ(Xn)‖ > 2ε.

On the other hand, (9.13) yields

n−1∑
i=0

γi+1‖∇ψ(Xi)‖2 = ψ(X0) − ψ(Xn) +

n∑
i=1

ξi ≤ Kρ +

n∑
i=1

ξi, n ≥ 1.

Consequently,
∞∑

n=0

γn+1‖∇ψ(Xn)‖2 < ∞, (9.17)

and A1 then implies that lim infn→∞ ‖∇ψ(Xn)‖ = 0. Otherwise, there would
exist δ ∈ (0,∞) and j0 ≥ 1 (both depending on ω) such that ‖∇ψ(Xn)‖ ≥ δ,
n ≥ j0, which combined with A1 would yield

∞∑
n=0

γn+1‖∇ψ(Xn)‖2 ≥ δ2
∞∑

n=j0+1

γn = ∞.

Let m0 = n0 = 0 and

mk+1 = {n ≥ nk : ‖∇ψ(Xn)‖ ≥ 2ε},

nk+1 = {n ≥ mk+1 : ‖∇ψ(Xn)‖ ≤ ε}, k ≥ 0.

Obviously, {mn}k≥0, {nk}k≥0 are well-defined, finite, and satisfy mk < nk <
mk+1 for k ≥ 1. Moreover,

‖∇ψ(Xmk
)‖ ≥ 2ε, ‖∇ψ(Xnk

)‖ ≤ ε, k ≥ 1,

and
‖∇ψ(Xn)‖ ≥ ε, for mk ≤ n < nk, k ≥ 1. (9.18)

Due to (9.17), (9.18),

ε2
∞∑

k=1

nk−1∑
i=mk

γi+1 ≤
∞∑

k=1

nk−1∑
i=mk

γi+1‖∇ψ(Xi)‖2 ≤
∞∑

n=0

γn+1‖∇ψ(Xn)‖2 < ∞.

Therefore,
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lim
k→∞

nk∑
i=mk+1

γi = 0, (9.19)

while (9.13) yields, for each k ≥ 1,

ε ≤ ‖∇ψ(Xnk
) − ∇ψ(Xmk

)‖ ≤ Kρ‖Xnk
−Xmk

‖

= Kρ

∥∥∥∥∥−
nk−1∑
i=mk

γi+1∇ψ(Xi) +

nk∑
i=mk+1

ξi

∥∥∥∥∥
≤ K2

ρ

nk∑
i=mk+1

γi +

∥∥∥∥∥
nk∑

i=mk+1

ξi

∥∥∥∥∥ .
(9.20)

However, this is not possible, since (9.19) and the limit process k → ∞ applied
to (9.20) yield ε ≤ 0. Hence, limn→∞ ‖∇ψ(Xn)‖ = 0. This completes the
proof.

9.5.2 Proof of Theorem 3

Let C = D ∩ Q, and let ΠC(·) denote the projection operator onto the set
C. Moreover, the sequence {ξn}n≥0 has the same meaning as in the previous
section, while

Zn+1 = Xn − γn+1h
′(g(Xn, Yn+1))∇xg(Xn, Yn+1),

ε1,n+1 = 2(Xn −ΠC(Xn))T ξn+1,

ε2,n+1 = ‖Zn+1 −Xn‖2,

εn+1 = ε1,n+1 + ε2,n+1, n ≥ 0.

Since ψ is convex (under the conditions of Theorem 3) and ΠC(·), ΠQ(·)
are non-expansive, we have

(Xn −ΠC(Xn))T∇ψ(Xn) ≥ ψ(Xn) − ψ(ΠC(Xn)) = ψ(Xn),

‖Xn+1 −ΠC(Xn+1)‖ ≤ ‖Xn+1 −ΠC(Xn)‖
= ‖ΠQ(Zn+1) −ΠQ(ΠC(Xn))‖
≤ ‖Zn+1 −ΠC(Xn)‖

for n ≥ 0. Then, it is straightforward to demonstrate that for all n ≥ 0,

Zn+1 = Xn − γn+1∇ψ(Xn) + ξn+1, (9.21)

and moreover,
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‖Xn+1−ΠC(Xn+1)‖2

≤‖(Xn −ΠC(Xn)) + (Zn+1 −Xn)‖2

=‖Xn −ΠC(Xn)‖2 + 2(Xn −ΠC(Xn))T (Zn+1 −Xn)

+ ‖Zn+1 −Xn‖2

=‖Xn −ΠC(Xn)‖2 − 2γn+1(Xn −ΠC(Xn))T∇ψ(Xn) + εn+1

≤‖Xn −ΠC(Xn)‖2 − 2γn+1ψ(Xn) + εn+1.

(9.22)

Lemma 2. Suppose that Assumptions A1 and A2 hold. Then,
∑∞

n=1 ξn,∑∞
n=1 εn converge w.p.1.

Proof. Let K ∈ [1,∞) denote an upper bound of ‖ · ‖, ‖ΠC(·)‖, ‖∇ψ‖ on Q.
Due to A2,

‖ξn+1‖ ≤ 2Kφ2
K(Yn+1),

|ε1,n+1| ≤ 4K‖ξn+1‖,
|ε2,n+1| ≤ 2K2γ2

n+1 + 2K‖ξn+1‖2, n ≥ 0,

and this implies the following bounds:

E

( ∞∑
n=1

‖ξn‖2

)
≤ 4K2

∞∑
n=1

γ2
nE(φ2

K(Yn)) < ∞,

E

( ∞∑
n=1

‖ε1,n‖2

)
≤ 16K2

E

( ∞∑
n=1

‖ξn‖2

)
< ∞,

E

( ∞∑
n=1

‖ε2,n‖2

)
≤ 2K2

∞∑
n=1

γ2
n + 2E

( ∞∑
n=1

‖ξn‖2

)
< ∞.

Then, using the same arguments as in the proof of Lemma 1, it can easily be
deduced that

∑∞
n=1 ξn,

∑∞
n=1 εn converge w.p.1. �

Proof of Theorem 3. Let K ∈ [1,∞) denote a simultaneous upper bound
for ‖ · ‖, ‖ΠC(·)‖, ‖∇ψ‖ on the set Q, and a Lipschitz constant for ψ on
the same set. Moreover, let ω be an arbitrary sample from the event where∑∞

n=1 ξn,
∑∞

n=1 εn converge (for the sake of notational simplicity, ω does not
explicitly appear in the relations which follow in the proof). Due to Lemma 2
and the fact that ψ is continuous and strictly positive onQ\D, it is sufficient to
show limn→∞ ψ(Xn) = 0. Suppose the opposite. Then, there exists ε ∈ (0,∞)
(depending on ω) such that lim supn→∞ ψ(Xn) > 2ε. On the other hand,
(9.22) yields

n−1∑
i=0

γi+1ψ(Xi) ≤‖X0 −ΠC(X0)‖2 − ‖Xn −ΠC(Xn)‖2

+
n∑

i=1

ξi ≤ K +
n∑

i=1

ξi, n ≥ 1.
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Consequently,
∞∑

n=0

γn+1ψ(Xn) < ∞. (9.23)

Then, A1 implies lim infn→∞ ψ(Xn) = 0. Otherwise, there would exist δ ∈
(0,∞) and j0 ≥ 1 (both depending on ω) such that ψ(Xn) ≥ δ, n ≥ j0, which
combined with A1 would yield

∞∑
n=0

γn+1ψ(Xn) ≥ δ

∞∑
n=j0+1

γn = ∞.

Let m0 = n0 = 0 and

mk+1 = {n ≥ nk : ψ(Xn) ≥ 2ε},
nk+1 = {n ≥ mk+1 : ψ(Xn) ≤ ε}

for k ≥ 0. Obviously, {mn}k≥0, {nk}k≥0 are well-defined, finite and satisfy
mk < nk < mk+1 for k ≥ 1. Moreover,

ψ(Xmk
) ≥ 2ε, ψ(Xnk

) ≤ ε (9.24)

for k ≥ 1, and
ψ(Xn) ≥ ε, for mk ≤ n < nk, k ≥ 0. (9.25)

Due to (9.23), (9.25),

ε2
∞∑

k=1

nk−1∑
i=mk

γi+1 ≤
∞∑

k=1

nk−1∑
i=mk

γi+1ψ(Xi) ≤
∞∑

n=0

γn+1ψ(Xn) < ∞.

Therefore,

lim
k→∞

nk∑
i=mk+1

γi = 0, (9.26)

while (9.21), (9.24) yield

ε ≤ |ψ(Xnk
) − ψ(Xmk

)| ≤ K‖Xnk
−Xmk

‖

= K

∥∥∥∥∥−
nk−1∑
i=mk

γi+1∇ψ(Xi) +

nk∑
i=mk+1

ξi

∥∥∥∥∥
≤ K

nk∑
i=mk+1

γi +

∥∥∥∥∥
nk∑

i=mk+1

ξi

∥∥∥∥∥ (9.27)

for k ≥ 1. However, this is not possible, since (9.26) and the limit process
k → ∞ applied to (9.27) yield ε ≤ 0. Hence, limn→∞ ‖∇ψ(Xn)‖ = 0. This
completes the proof. �
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9.5.3 Proof of Theorem 4

Let fn(x) = f(x) + δnψ(x) for x ∈ R
p, n ≥ 1, while ΠD∗(·) denotes the

projection on the set D∗ (i.e., ΠD∗(x) = arg infx′∈D∗ ‖x − x′‖ for x ∈ R
p).

The following error sequences are defined for n ≥ 0,

ξn+1 = γn+1δn+1(∇ψ(Xn) − h′(g(Xn, Yn+1))∇xg(Xn, Yn+1)),

ε1,n+1 = 2(Xn −ΠD∗(Xn))T ξn+1,

ε2,n+1 = ‖Xn+1 −Xn‖2,

εn+1 = ε1,n+1 + ε2,n+1 .

It is straightforward to verify that the following recursion holds for n ≥ 0,

Xn+1 = Xn − γn+1∇fn(Xn) + ξn+1,

and this implies the following bounds:

‖Xn+1 −ΠD∗(Xn+1)‖2

≤‖Xn+1 −ΠD∗(Xn)‖2

=‖Xn −ΠD∗(Xn)‖2 + 2(Xn −ΠD∗(Xn))T (Xn+1 −Xn)

+ ‖Xn+1 −Xn‖2

=‖Xn −ΠD∗(Xn)‖2

− 2γn+1(Xn −ΠD∗(Xn))T∇fn(Xn) + εn+1, n ≥ 0.

Lemma 3. Suppose that Assumptions B3 and B4 hold. Moreover, let {xk}k≥0

be a bounded sequence from R
p, while {nk}k≥0 is an increasing sequence of

positive integers. Suppose that

lim inf
k→∞

‖xk −ΠD∗(xk)‖ > 0.

Then,
lim inf
k→∞

(xk −ΠD∗(xk))T∇fnk
(xk) > 0.

Proof. Since {fnk
}k≥0 are convex and fnk

(ΠD∗(xk)) = f(ΠD∗(xk)) = η∗ for
k ≥ 0, we have

(xk −ΠD∗(xk))T∇fnk
(xk) ≥ fnk

(xk) − f(ΠD∗(xk)) = fnk
(xk) − η∗, k ≥ 0.

Therefore, it is sufficient to show that lim infk→∞ fnk
(xk) > η∗. Suppose the

opposite. Then, there exists ε ∈ (0,∞), x̃ ∈ R
p and a subsequence {x̃k, ñk}k≥0

of {xk, nk}k≥0 such that limk→∞ x̃k = x̃, lim supk→∞ fñk
(x̃k) ≤ η∗ and ‖x̃k −

ΠD∗(x̃k)‖ ≥ ε for k ≥ 0. Consequently,

f(x̃) = lim
k→∞

f(x̃k) ≤ lim sup
k→∞

fñk
(x̃k) ≤ η∗, (9.28)

d(x̃, D∗) = ‖x̃−ΠD∗(x̃)‖ = lim
k→∞

‖x̃k −ΠD∗(x̃k)‖ ≥ ε.
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Then, it can easily be deduced that x̃ �∈ D (otherwise, (9.28) would imply
x̃ ∈ D∗). Therefore,

lim
k→∞

fñk
(x̃k) ≥ lim

k→∞
δñk

ψ(x̃k) = ∞ > η∗.

However, this is not possible. Hence, lim infk→∞ fnk
(xk) > η∗. This completes

the proof. �

Lemma 4. Suppose that Assumptions B1 and B4 hold. Then, limn→∞ ‖Xn+1−
Xn‖ = 0 and

∑∞
n=1 εn converges w.p.1 on the event {sup0≤n ‖Xn‖ < ∞}.

Proof. Let ρ ∈ [1,∞), whileKρ ∈ [ρ,∞) denotes an upper bound of ‖ΠD∗(·)‖,
‖∇ψ‖, ∇f on Bp

ρ . Due to B4,

‖ξn+1‖I{‖Xn‖≤ρ} ≤ 2Kργn+1δn+1φ
2
ρ(Yn+1),

|ε1,n+1|I{‖Xn‖≤ρ} ≤ 4Kρ‖ξn+1‖I{‖Xn‖≤ρ},

|ε2,n+1|I{‖Xn‖≤ρ} ≤ 2K2
ργ

2
n+1 + 2‖ξn+1‖2I{‖Xn‖≤ρ},

‖Xn+1 −Xn‖I{‖Xn‖≤ρ} ≤ Kργn+1(1 + δn+1) + ‖ξn+1‖I{‖Xn‖≤ρ}

(9.29)

for k ≥ 0. Consequently,

E

( ∞∑
n=0

‖ξn+1‖2I{‖Xn‖≤ρ}

)
≤4K2

ρ

∞∑
n=1

γ2
nδ

2
nE(φ4

ρ(Yn)) < ∞ (9.30)

E

( ∞∑
n=0

|ε1,n+1|2I{‖Xn‖≤ρ}

)
≤16K2

ρE

( ∞∑
n=0

‖ξn+1‖2I{‖Xn‖≤ρ}

)
< ∞, (9.31)

E

( ∞∑
n=0

|ε2,n+1|2I{‖Xn‖≤ρ}

)
≤2E

( ∞∑
n=0

‖ξn+1‖2I{‖Xn‖≤ρ}

)

+ 2K2
ρ

∞∑
n=1

γ2
n(1 + δ2n) < ∞. (9.32)

Owing to B1 and (9.29), (9.30), limn→∞ ‖Xn+1 − Xn‖ = 0 w.p.1 on the
event {sup0≤n ‖Xn‖ ≤ ρ}. On the other hand, using (9.31), (9.32) and the
same arguments as in the proof of Lemma 9.14, it can be demonstrated that∑∞

n=1 εn converges w.p.1 on the same event. Then, we can easily deduce that
w.p.1 on the event {sup0≤n ‖Xn‖ < ∞}, limn→∞ ‖Xn+1 − Xn‖ = 0 and∑∞

n=1 εn converges. This completes the proof. �

Proof of Theorem 4. Let ρ ∈ [1,∞), while Kρ ∈ [ρ,∞) denotes an upper
bound of ‖ΠD∗(·)‖ on Bp

ρ . Moreover, let ω be an arbitrary sample from the
event where sup0≤n ‖Xn‖ ≤ ρ, limn→∞ ‖Xn+1 −Xn‖ = 0 and

∑∞
n=1 εn con-

verges (for the sake of notational simplicity, ω does not explicitly appear in
the relations which follow in the proof). Due to Lemma 4, it is sufficient to



260 V.B. Tadić, S.P. Meyn, R. Tempo

show limn→∞ ‖Xn −ΠD∗(Xn)‖ = 0. Suppose the opposite. Then, there exists
ε ∈ (0,∞) (depending on ω) such that lim supn→∞ ‖Xn − ΠD∗(Xn)‖ > 2ε.
On the other hand, (9.28) yields

2

n−1∑
i=0

γi+1(Xi −ΠD∗(Xi))
T∇fi(Xi)

≤ ‖X0 −ΠD∗(X0)‖2 − ‖Xn −ΠD∗(Xn)‖2 +

n∑
i=1

εi

≤ 4K2
ρ +

n∑
i=1

εi, n ≥ 1.

(9.33)

Since lim infn→∞(Xn−ΠD∗(Xn))T∇fn(Xn) > 0 results from lim infn→∞ ‖Xn−
ΠD∗(Xn)‖ > 0 (due to Lemma 3), B1 and (9.33) imply that lim infn→∞ ‖Xn−
ΠD∗(Xn)‖ = 0. Otherwise, there would exist δ ∈ (0,∞) and j0 ≥ 1 (both de-
pending on ω) such that (Xn − ΠD∗(Xn))T∇fn(Xn) ≥ δ, n ≥ j0, which
combined with B1 would yield

∞∑
n=0

γn+1(Xn −ΠD∗(Xn))T∇fn(Xn)

≥
j0∑

n=0

γn+1(Xn −ΠD∗(Xn))T∇fn(Xn) + δ

∞∑
n=j0+1

γn = ∞.

Let l0 = inf{n ≥ 0 : ‖Xn −ΠD∗(Xn)‖ ≤ ε}, and define for k ≥ 0,

nk = inf{n ≥ lk : ‖Xn −ΠD∗(Xn)‖ ≥ 2ε},
mk = sup{n ≤ nk : ‖Xn −ΠD∗(Xn)‖ ≤ ε},
lk+1 = inf{n ≥ nk : ‖Xn −ΠD∗(Xn)‖ ≤ ε}.

Obviously, {lk}k≥0, {mk}k≥0, {nk}k≥0 are well-defined, finite and satisfy lk ≤
mk < nk < lk+1 for k ≥ 0. Moreover,

‖Xmk
−ΠD∗(Xmk

)‖ ≤ ε, ‖Xnk
−ΠD∗(Xnk

)‖ ≥ 2ε, k ≥ 0, (9.34)

and
‖Xn −ΠD∗(Xn)‖ ≥ ε for mk < n ≤ nk, k ≥ 0. (9.35)

Due to (9.34), (9.35) and the fact that ΠD∗(·) is non-expansive (see, e.g.,
[42]),

ε ≤ ‖Xmk+1 −ΠD∗(Xmk+1)‖ ≤ε+ ‖Xmk+1 −ΠD∗(Xmk+1)‖
− ‖Xmk

−ΠD∗(Xmk
)‖

≤ε+ ‖(Xmk+1 −Xmk
)

− (ΠD∗(Xmk+1) −ΠD∗(Xmk
))‖

≤ε+ 2‖Xmk+1 −Xmk
‖, k ≥ 0.
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Therefore, limk→∞ ‖Xmk+1 −ΠD∗(Xmk+1)‖ = ε. Then, (9.35) yields

lim sup
k→∞

(‖Xnk
−ΠD∗(Xnk

)‖2 − ‖Xmk+1 −ΠD∗(Xmk+1)‖2) ≥ ε2. (9.36)

On the other hand, Lemma 3 and (9.35) imply

lim inf
k→∞

min
mk<n≤nk

(Xn −ΠD∗(Xn))T∇fn(Xn) > 0.

Consequently, there exists k0 ≥ 0 (depending on ω) such that

nk−1∑
i=mk+1

γi+1(Xi −ΠD∗(Xi))
T∇fi(Xi) ≥ 0 (9.37)

for k ≥ k0. Owing to (9.28), (9.37),

‖Xnk
−ΠD∗(Xnk

)‖2 − ‖Xmk+1 −ΠD∗(Xmk+1)‖2

≤
nk−1∑
mk+1

γi+1(Xi −ΠD∗(Xi))
T∇fi(Xi) +

nk∑
i=mk+2

εi ≤
nk∑

i=mk+2

εi

for k ≥ k0. However, this is not possible, since (9.36) and the limit process
k → ∞ applied to (9.37) yield ε2 ≤ 0. Hence, limn→∞ ‖Xn −ΠD∗(Xn)‖ = 0.
This completes the proof. �
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Summary. In this chapter, we present an approach to system identification based
on viewing identification as a problem in statistical learning theory. Apparently,
this approach was first mooted in [396]. The main motivation for initiating such a
program is that traditionally system identification theory provide asymptotic results.
In contrast, statistical learning theory is devoted to the derivation of finite time
estimates. If system identification is to be combined with robust control theory to
develop a sound theory of indirect adaptive control, it is essential to have finite time
estimates of the sort provided by statistical learning theory. As an illustration of
the approach, a result is derived showing that in the case of systems with fading
memory, it is possible to combine standard results in statistical learning theory
(suitably modified to the present situation) with some fading memory arguments
to obtain finite time estimates of the desired kind. It is also shown that the time
series generated by a large class of BIBO stable nonlinear systems has a property
known as β-mixing. As a result, earlier results of [394] can be applied to many more
situations than shown in that paper.

10.1 Introduction

10.1.1 The System Identification Problem

The aim of system identification is to fit given data, usually supplied in the
form of a time series, with models from within a given model class. One
can divide the main challenges of system identification into three successively
stronger questions, as follows. As more and more data is provided to the
identification algorithm:

1. Does the estimation error between the outputs of the identified model and
the actual time series approach the minimum possible estimation error
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achievable by any model within the given model class? In other words, is
the performance of the identification algorithm asymptotically optimal?

2. Does the identified model converge to the best possible model within the
given model class? In other words, assuming that the minimum possi-
ble estimation error is achievable by one or more ‘best possible models,’
does the output of the identification algorithm approach one of these best
possible models?

3. Assuming that the data is generated by a ‘true’ system whose output is
corrupted by measurement noise, does the identified model converge to
the ‘true’ system? In other words, if both the true system and the family
of models are parameterized by a vector of parameters, does the estimated
parameter vector converge to the true parameter vector?

From a technical standpoint, Questions 2 and 3 are easier to answer than
Question 1. Following the notational conventions of system identification, let
{h(θ), θ ∈ Θ} denote the family of models, where θ denotes a parameter that
characterizes the model, andΘ is a topological space (usually a subset of R

� for
some �), and let J(θ) denote the estimation error when the model h(θ) is used
to predict the next measurement. Since identification is carried out recursively,
the output of the identification algorithm is a sequence of estimates {θt}t≥1, or
what is the same thing, a sequence of estimated models {h(θt)}t≥1. Suppose
that we are able to show that Question 1 has an affirmative answer, i.e.,
that J(θt) → J∗, where J∗ denotes the minimum possible estimation error.
In such a case, with very few additional assumptions it is possible to answer
both Questions 2 and 3 in the affirmative. Traditionally a positive answer to
Question 2 is assured by assuming that Θ is a compact set, which in turn
ensures that the sequence {θt} contains at least one convergent subsequence.
For convenience, let us relabel this subsequence again as {θt}. If the answer
to Question 1 is ‘yes,’ if θ∗ is any limit point of the sequence, and if J(θ)
is continuous (or at worst, lower semi-continuous) with respect to θ, then it
readily follows that J(θt) → J∗. In other words, the model h(θ∗) is an ‘optimal’
fit to the data among the family {h(θ), θ ∈ Θ}. Coming now to Question 3,
suppose θtrue is the parameter of the ‘true’ system, and let ftrue denote the
‘true’ system. In order for Question 3 to have an affirmative answer, the true
system ftrue must belong to the model family {h(θ), θ ∈ Θ}; otherwise we
cannot hope that h(θt) will converge to ftrue. In such a case, the minimum
achievable estimation error is zero, i.e., J∗ = 0. Now suppose θ∗ is a limit
point of the sequence {θt}. The traditional way to ensure that θtrue = θ∗

is to assume that the input to the true system is ‘persistingly exciting’ or
‘sufficiently rich,’ so that the only way for h(θ∗) to match the performance of
ftrue is to have θ∗ = θtrue.

None of what has been said above is new. Indeed, because of the arguments
presented above, the main emphasis in system identification theory has been
to study conditions to ensure that Question 1 has an affirmative answer, i.e.,
that the identification algorithm is asymptotically optimal. In a seminal pa-
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per [208], Lennart Ljung has shown that indeed Question 1 can be answered
in the affirmative provided empirical estimates of the performance of each
model h(θ) converge uniformly to the corresponding true performance, where
the uniformity is with respect to θ ∈ Θ. In earlier work [68], Caines had es-
tablished an affirmative answer to Question 1 using ergodic theory. However,
so far as the present authors are able to determine, Ljung was the first to ad-
dress Question 1 using the notion of uniform convergence of empirical means
(though he did not use that terminology); see [208, Lemma 3.1.], Ljung also
showed that this particular uniform convergence property does hold, provided
three assumptions are satisfied, namely:

• The parameter set Θ is compact.
• The model class consists of uniformly exponentially stable systems.
• The parameter θ enters the description of the model h(θ) in a ‘differen-

tiable’ manner. (Coupled with the assumption that Θ is a compact set,
this assumption implies that various quantities have bounded gradients
with respect to θ.)

10.1.2 The Need for a Quantitative Identification Theory

By tradition, identification theory is asymptotic in nature. In other words, the
theory analyzes what happens as the number of samples approaches infinity.
In contrast, the objective of the present contribution is to derive finite time, or
nonasymptotic, estimates of the rate at which the output of the identification
process converges to the best possible model. We now give a brief justification
as to why such a theory would be useful.

In so-called ‘indirect’ adaptive control, one first carries out an identification
of an unknown system, and after a finite amount of time has elapsed, designs a
controller based on the current model of the unknown system. The philosophy
behind indirect adaptive control is that, after sufficient time has passed, the
output of the identification algorithm (the current model) is ‘sufficiently close’
to the true system that a controller designed on the basis of the current model
will also perform satisfactorily for the true system. In order for the above
argument to be made precise, we need to be able to give quantitative answers
to two questions:

(i) What is the distance (in some reasonable metric) between the currently
identified model and the true system?

(ii) How far can the identified model be from the true system (in some reason-
able metric) in order that a controller designed on the basis of the current
model also performs satisfactorily for the true system?

Of these, the second question falls in the realm of robust control, and there
are many satisfactory theories to address this question. But to date very little
attention has been paid to the first question. The objective of this chapter is
to address this first question, and to derive some preliminary results.
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In order to address this first question meaningfully, we must decide what
is meant by a ‘reasonable metric’ between the identified model and the true
system. If both the true system and the identified model are unstable, then
one can use either the so-called ‘gap’ metric [136, 408] or the graph metric
[379]. However, indirect adaptive control is rarely used when the true system
is unstable, because while identification is taking place the system is not
under any control. It is more common to use indirect adaptive control when
the true system is stable. In this case, the purpose of applying control is
not to stabilize the true system, but to improve its performance in some
other way. The metric used to measure the distance of the true system from
the identified model must, in some sense, take into account the performance
criterion. For the purposes of this presentation, we use a very simple measure,
namely the mean-squared error of the system response. This measure is by
far the most commonly used error measure. Moreover, the least-squares error
measure is very amenable to the kind of analysis carried out here. This is
the measure used in previous work on finite-time estimates, such as [78, 394,
395, 397] for example. On the other hand, from the standpoint of robustness
analysis, the �1-error measure would be much more natural. In general, the two
error measures are not directly related, unless one imposes some restrictions
on the McMillan degree of the various models. It is our hope that future
researchers will be able to apply the present methods to more meaningful
distance measures.

10.1.3 Review of Previous Work on Finite-Time Estimates

As stated earlier, the paper of Ljung [208] is apparently the first to study
the asymptotic optimality of system identification algorithms using the idea
that empirical means must converge uniformly to their true values. In that
paper, Ljung also establishes the desired property under some assumptions.
In principle, the arguments in [208] can be used to provide finite-time esti-
mates of the rate at which the identification algorithm converges. However, by
tradition the system identification community has not focused on finite-time
estimates. So far as the authors are able to determine, the first papers to state
the derivation of finite-time estimates as a desirable property in itself are by
Weyer et al. [396, 397]. In those papers, it is assumed that the time series
to which the system identification algorithm is applied consists of so-called
‘finitely-dependent’ data; in other words, it is assumed that the time series
can be divided into blocks that are independent. In a later paper [394], Weyer
replaced the assumption of finite dependence by the assumption that the time
series is β-mixing.3 However, he did not derive conditions under which a time
series is β-mixing. In a still later paper by Campi and Weyer [78], the authors
restrict themselves to the case where the data is generated by an ARMA
model driven by i.i.d. Gaussian noise, and the model family also consists of

3These notions are defined in subsequent sections.
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ARMA models driven by Gaussian noise. In this paper, the authors say that
they are motivated by the observation that ‘signals generated by dynamical
systems are not β-mixing in general’. This is why their analysis is limited to
an extremely restricted class. However, their statement that dynamical sys-
tems do not generate β-mixing sequences is simply incorrect. Specifically, all
the systems studied in [78] are themselves β-mixing! (See Theorems 6 and
7.) In another paper [180], the present authors have shown that practically
any exponentially stable system driven by i.i.d. noise with bounded variance is
β-mixing. The systems under study can be linear or nonlinear. This result is
reproduced in later sections. Hence, far from being restrictive, the results of
Weyer [394] have broad applicability, though he did not show it at the time.

10.1.4 Contributions of the Present Chapter

The present chapter essentially has three contributions.

1. In Section 10.3, we derive a very general result relating the uniform con-
vergence properties of the cost function to the finite-time estimates of the
rate of convergence of an identification algorithm. Though previous pa-
pers allude to such arguments indirectly, in the present chapter we make
the connection quite explicit.

2. In Section 10.4, we study the case where the time series is generated by
a ‘true but unknown’ system, and show that the desired uniform con-
vergence property holds whenever the family of ‘error models’ (i.e., the
difference between the true system and the model family) satisfies two
properties: each error model (i) has exponentially decaying memory, and
(ii) is exponentially stable. Note that the true system and/or models can
be nonlinear and/or infinite-dimensional. So far as we are aware, such a
general situation has not been studied by previous papers in the literature.

3. In Section 10.5, we derive bounds on the P-dimension of nonlinear ARMA
models. There are not too many such bounds in the literature.

4. From Section 10.6 onwards, we reproduce a result from [180] which gives
conditions under which a time series is β-mixing, and give its proof. As
a consequence of this result, it follows that the time series studied in all
previous papers in this subject are β-mixing. This had not been recog-
nized until now. As a consequence, the results of [394] have far broader
applicability than shown in that paper.
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10.2 Problem Formulation

The problem of system identification studied in this chapter can be stated
as follows: let U ⊆ R

l denote the input set, and Y ⊆ R
k denote the output

set, where k, l are appropriate integers. To avoid technical difficulties, it is as-
sumed that both U and Y are bounded. This ensures that any random variable
assuming values in U, Y or U × Y has bounded moments of all orders. One
is given a time series {(ut, yt)}, where ut denotes the input to the unknown
system at time t, and yt denotes the output at time t. The time series, as the
name implies, is measured one time step at a time. One is also given a family
of models {h(θ), θ ∈ Θ}, parameterized by a parameter vector θ belonging
to a set Θ. Usually Θ is a subset of a finite-dimensional Euclidean space. At
time t, the data available to the modeller consists of all the past measure-
ments until time t − 1. Based on these measurements, the modeller chooses
a parameter θt, with the objective of making the best possible prediction of
the next measured output yt. The method of choosing θt is called the identi-
fication algorithm. Traditionally, the aim of identification theory has been to
study the behavior of the model h(θt) as t → ∞.

To make this formulation a little more precise, let us introduce some no-
tation. Define U .

=
∏∞

−∞ U , and define Y analogously. Note that the input
sequence {ut} belongs to the set U , while the output sequence belongs to Y.

Let U0
−∞ denote the one-sided infinite cartesian product U0

−∞
.
=
∏0

−∞ U , and
for a given two-sided infinite sequence u ∈ U , define

ut
.
= (ut−1, ut−2, ut−3, . . .) ∈ U0

−∞.

Thus the symbol ut denotes the infinite past of the input signal u at time t.
The family of models {h(θ), θ ∈ Θ} consists of a collection of maps h(θ), θ ∈ Θ,
where each h(θ) maps U0

−∞ into Y . Thus, at time t, the quantity h(θ) · ut
.
=

ŷt(θ) is the ‘predicted’ output if the model parameter is chosen as θ. Note
that the above notation automatically builds in the requirement that each
model is time-invariant. The quality of this prediction is measured by a ‘loss
function’ � : Y × Y → [0, 1]. Thus �(yt, h(θ) · ut) is the loss we incur if we use
the model h(θ) to predict the output at time t, and the actual output is yt.

To illustrate this notation, consider the most common case where the
model family consists of LTI systems described by their unit pulse responses.
Hence each h(θ) is described by a sequence {hi(θ)}i≥1. The output of this
model at time t is

ŷt(θ) =
∞∑

i=1

hi(θ)ut−i.

Choose constants µU , µY such that ‖ u ‖≤ µU ∀u ∈ U , and similarly for Y .
Suppose that, for each θ ∈ Θ, the unit impulse response sequence {hi(θ)}i≥1

is absolutely summable, and that

∞∑
i=1

|hi(θ)| ≤ µY /µU .
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Then it is easy to see that each model h(θ) maps every input sequence assum-
ing values in U to an output sequence assuming values in Y . By far the most
commonly used loss function is �(y, z)

.
=‖ y − z ‖2. Hence

�(yt, h(θ) · ut) =‖ yt − ŷt(θ) ‖2

is the mean-squared error between the actual and predicted output.
Since we are dealing with a time series, all quantities are random. Hence, to

assess the quality of the prediction made using the model h(θ), we should take
the expected value of the loss function �(yt, ŷt(θ)). For this purpose, let P̃u,y

denote the law of the time series {(ut, yt)}. Observe that P̃u,y is a probability
measure on the infinite cartesian product set U×Y, and describes the statistics
of the time series. Given a parameter vector θ, the quality of the prediction
made using this choice of model is defined as

J(θ)
.
= E[�(yt, h(θ) · ut), P̃u,y]. (10.1)

The quantity J(θ) is referred to hereafter as the objective function. Note
that J(θ) depends solely on θ and nothing else. Also, since the time series
is assumed to be stationary, the probability measure P̃u,y is shift-invariant,
which in turn implies that the quantity J(θ) is independent of t.

A key observation at this stage is that the probability measure P̃u,y is
unknown. This is because, if the statistics of the time series are known ahead
of time, then there is nothing to identify! To make this point more forcefully,
let us consider the common situation where yt is the output of a ‘true’ system
corrupted by measurement noise, as in (10.2). Given the laws of ut and ηt,
and given ftrue, we can, at least in some abstract sense, derive the joint law of
the process {(ut, yt)}. Hence assuming that the time series has a known law
is tantamount to assuming that the true system is known.

Now at last we come to a precise formulation of the system identification
problem.

Definition 1 (System Identification Problem). Given the time series
{(ut, yt)} with unknown law P̃u,y, construct if possible an iterative algorithm
for choosing θt as a function of t, in such a way that

J(θt) → inf
θ∈Θ

J(θ).

While the above problem definition appears to be rather abstract, actually
in many cases the problem can be interpreted as one of approximating an
unknown system using a model from a specified family of models. Suppose the
measured output yt corresponds to a noise-corrupted output of a ‘true’ system
ftrue, and that � is the squared error, as above. Note that it is not assumed that
the true system ftrue belongs to the model family {h(θ), θ ∈ Θ}. In such a case,
the problem formulation becomes the following: suppose the input sequence
{ut}∞−∞ is distributed according to some joint law Q, and that {ηt}∞−∞ is
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a zero-mean i.i.d. measurement noise sequence with one-dimensional law P .
Suppose in addition that ui, ηj are independent for each i, j. Now suppose
that

yt = ftrue · ut + ηt, ∀t. (10.2)

In such a case, the expected value in (10.1) can be expressed in terms of the
probability measure Q× P∞, and becomes

J(θ) = E[‖ (ftrue − h(θ)) · ut + ηt ‖2, Q× P∞]

= E[‖ h̃(θ) · ut ‖2, Q] + E[‖ η ‖2, P∞],

where h̃(θ)
.
= h(θ) − ftrue. Since the second term is independent of θ, we

effectively minimize only the first term. In other words, by minimizing J(θ)
with respect to θ, we will find the best approximation to the true system ftrue

in the model family {h(θ), θ ∈ Θ}. Recall that it is not assumed the true
system ftrue belongs to {h(θ), θ ∈ Θ}. In case there is a ‘true’ value of θ, call
it θtrue such that ftrue = h(θtrue), then an optimal choice of θ is θtrue. If in
addition we impose some assumptions to the effect that the input sequence
{ut} is sufficiently exciting, then θ = θtrue becomes the only minimizer of J(·).

10.3 A General Result

As stated in Section 10.2, the system identification problem is to choose a
parameter vector θ so as to minimize the objective function J(θ). As stated
just after (10.1), the probability measure P̃u,y is unknown. In other words,
the objective function J(θ) cannot be computed on the basis of the available
data.

Thus the key to the system identification problem is that the objective
function to be minimzed cannot be computed exactly. To circumvent this
difficulty, one replaces the ‘true’ objective function J(·) by an ‘empirical ap-
proximation,’ as defined next. For each t ≥ 1 and each θ ∈ Θ, define the
empirical error

Ĵt(θ)
.
=

1

t

t∑
i=1

�[yi, h(θ) · ui].

For example, if �(y, z) =‖ y − z ‖2, then

Ĵt(θ) =
1

t

t∑
i=1

‖ yi − ŷi(θ) ‖2

is the average cumulative mean-squared error between the actual output yi

and the predicted error ŷi(θ), from time 1 to time t. Note that, unlike the
quantity J(θ), the function Ĵ(θ) can be computed on the basis of the available
data. Hence, in principle at least, it is possible to choose θt so as to minimize
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the ‘approximate’ (but computable) objective function Ĵ(θ) in the hope that,
by doing so, we will somehow minimize the ‘true’ (but uncomputable) ob-
jective function J(θ). The next theorem gives some sufficient conditions for
this approach to work. Specifically, if a particular property known as UCEM
(uniform convergence of empirical means) holds, then the natural approach of
choosing θt to minimize the empirical (or cumulated average) error will lead
to a solution of the system identification problem.

Theorem 1. At time t, choose θ∗t so as to minimize Ĵt(θ); that is,

θ∗t = argminθ∈Θ Ĵt(θ).

Let
J∗ .

= inf
θ∈Θ

J(θ).

Define the quantity

q(t, ε)
.
= P̃u,y{sup

θ∈Θ
|Ĵt(θ) − J(θ)| > ε}. (10.3)

Suppose it is the case that q(t, ε) → 0 as t → ∞, ∀ε > 0. Then

P̃u,y{J(θ∗t ) > J∗ + ε} → 0 as t → ∞, ∀ε > 0. (10.4)

In other words, the quantity J(θ∗t ) converges to the optimal value J∗ in prob-
ability, with respect to the measure P̃u,y.

Corollary 1. Suppose that q(t, ε) → 0 as t → ∞, ∀ε > 0. Given ε, δ > 0,
choose t0 = t0(ε, δ) such that

q(t, ε) < δ ∀t ≥ t0(ε, δ).

Then
P̃u,y{J(θ∗t ) > J∗ + ε} < δ ∀t ≥ t0(ε/3, δ). (10.5)

Proof of Theorem 1. Suppose q(t, ε) → 0 as t → ∞, ∀ε > 0. To establish the
desired conclusion (10.4), we need to establish the following: given arbitrarily
small numbers ε, δ > 0, there exists a t0 = t0(ε, δ) such that

P̃u,y{J(θ∗t ) > J∗ + ε} < δ ∀t ≥ t0.

For this purpose, we proceed as follows. Given ε, δ > 0, choose t0 large enough
such that

P̃u,y{sup
θ∈Θ

|Ĵt(θ) − J(θ)| > ε/3} < δ ∀t ≥ t0. (10.6)

Select a θε ∈ Θ such that J(θε) ≤ J∗ + ε/3. Such a θε exists in view of the
definition of J∗. Then, in view of (10.6), whenever t ≥ t0 we can say with
confidence 1 − δ that
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Ĵ(θt) ≥ J(θt) − ε/3, and Ĵ(θε) ≤ J(θε) + ε/3.

By definition,
Ĵ(θt) ≤ Ĵ(θε).

Combining these two inequalities shows that

J(θt) ≤ Ĵ(θt) + ε/3 ≤ Ĵ(θε) + ε/3 ≤ J(θε) + 2ε/3 ≤ J∗ + 2ε/3 + ε/3 = J∗ + ε.

This statement holds with confidence 1 − δ, that is,

P̃u,y{J(θt) > J∗ + ε} < δ.

Since this argument can be repeated for every ε, δ > 0, it follows that

P̃u,y{J(θt) > J∗ + ε} → 0 as t → ∞ ∀ε > 0,

which is the desired conclusion. �

A proof of Corollary 1 is contained in the proof of Theorem 1.

Several points are noteworthy about this theorem.

1. The theorem states that, under appropriate conditions, the quantity J(θt)
approaches the infimum J∗, even though we cannot compute either of
these quantities. In particular, the performance of the estimated model
h(θt) is asymptotically optimal, if the conditions of the theorem are satis-
fied.

2. The condition that q(t, ε) → 0 as t → ∞ is usually referred to in the statis-
tical learning theory as the property of uniform convergence of empirical
means (UCEM). Thus the theorem states that if the family of error mea-
sures {J(θ), θ ∈ Θ} has the UCEM property, then the natural algorithm
of choosing θt so as to minimize the empirical estimate Ĵ(θ) at time t is
‘asymptotically optimal.’

3. The corollary turns this asymptotic result into a finite-time result. Specif-
ically, as shown in (10.5), if we can compute a number t0 such that (10.6)
holds, then it can be stated with confidence 1− δ that the currently iden-
tified model θt is within ε of the optimal performance. This quantification
of the finite time performance of the identification algorithm is the addi-
tional feature of using statistical learning theory.

4. The number t0(ε, δ) such that q(t, ε) < δ ∀t ≥ t0 is called the sample com-
plexity corresponding to the ‘accuracy’ ε and ‘confidence’ δ. Thus Corollary
1 states that the sample complexity of achieving ε-optimality with confi-
dence δ is no worse than the sample complexity of achieving ε/3-accuracy
with confidence δ.

5. Note that such an approach is already adopted in the paper of Ljung;
see [208, Lemma 3.1]. Thus he was among the first to recognize the im-
portance of the UCEM property in establishing the asymptotic optimality
of identification algorithms. Moreover, he was also able to establish that



10 A Learning Theory Approach to System Identification 275

the UCEM property holds under appropriate conditions. In contrast, in
the statistical learning theory literature, very general conditions for the
UCEM property to hold for real-valued functions were derived by Vap-
nik and Chervonenkis only in 1981; see [377]. (Similar results for binary-
valued, as opposed to real-valued, functions were published by the same
authors ten years earlier; see [376].)

6. Note that the result given here is not by any means the most general
possible. In particular, it is possible to show that if θt is chosen so as to
‘nearly’ minimize the empirical error ‘with high probability,’ then the re-
sulting algorithm will still be asymptotically optimal. In this more general
version of the theorem, θt need not always minimize the empirical error Ĵt.
Rather, the quantity P̃u,y{Ĵ(θ) > Ĵ(θt)} should approach zero as t → ∞.
For an exposition of this approach to the standard PAC learning prob-
lem, see [382, Section 3.2]. However, while such an approach makes sense
in the context of PAC learning theory (where the underlying probability
measure is known), this approach would be meaningless in the context of
system identification, where the underlying probability measure P̃u,y is
unknown.

10.4 A Result on the Uniform Convergence of Empirical
Means

In this section, it is shown that the UCEM property of Theorem 1 does indeed
hold in the commonly studied case where yt is the output of a ‘true’ system
corrupted by additive noise, and the loss function � is the squared error. By
Theorem 1, this implies that by choosing the estimated model h(θt) so as to
minimize the cumulated least squares error, we will eventually obtain the best
possible fit to the given time series. Note that no particular attempt is made
here to state or prove the ‘best possible’ result. Rather, the objective is to give
a flavour of the the statistical learning theory approach by deriving a result
whose proof is free from technicalities.

We begin by listing below the assumptions regarding the family of models
employed in identification, and on the time series. Recall that the symbol
h̃(θ)·ut denotes the function (ftrue−h(θ))·ut. Define the collection of functions
G mapping U into R as follows:

g(θ)
.
= u �→‖ (f − h(θ)) · u0 ‖2: U → R,

G .
= {g(θ) : θ ∈ Θ}.

Now the various assumptions are listed.

A1. There exists a constant M such that

|g(θ) · u0| ≤ M, ∀θ ∈ Θ,u ∈ U .
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This assumption can be satisfied, for example, by assuming that the true
system and each system in the family {h(θ), θ ∈ Θ} is BIBO stable (with
an upper bound on the gain, independent of θ), and that the set U is
bounded (so that {ut} is a bounded stochastic process).

A2. For each integer k ≥ 1, define

gk(θ) · ut
.
= g(θ) · (ut−1, ut−2, . . . , ut−k, 0, 0, . . .). (10.7)

With this notation, define

µk
.
= sup

u∈U
sup
θ∈Θ

|(g(θ) − gk(θ)) · u0|.

Then the assumption is that µk is finite for each k and approaches zero
as k → ∞. This assumption essentially means that each of the systems
in the model family has decaying memory (in the sense that the effect of
the values of the input at the distant past on the current output becomes
negligibly small). This assumption is satisfied, for example, if
• Each of the models h(θ) is a linear ARMA model of the form

yt =

l∑
i=1

ai(θ)ut−i + bi(θ)yt−i,

• The characteristic polynomials

φ(θ, z)
.
= zl+1 −

l∑
i=1

bi(θ)z
l−i

all have their zeros inside a circle of radius ρ < 1, where ρ is indepen-
dent of θ.

• The numbers ai(θ) are uniformly bounded with respect to θ.
The extension of the above condition to MIMO systems is straight-forward
and is left to the reader.

A3. Consider the collection of maps Gk = {gk(θ) : θ ∈ Θ}, viewed as maps
from Uk into R. For each k, this family Gk has finite P-dimension, denoted
by d(k). (See [382, Chapter 4] for a definition of the P-dimension.)

Now we can state the main theorem.

Theorem 2. Define the quantity q(t, ε) as in (10.3) and suppose Assumptions
A1 through A3 are satisfied. Given an ε > 0, choose k(ε) large enough that
µk ≤ ε/4 for all k ≥ k(ε). Then for all t ≥ k(ε) we have

q(t, ε) ≤ 8k(ε)

(
32e

ε
ln

32e

ε

)d(k(ε))

· exp(−�t/k(ε) ε2/512M2), (10.8)

where �t/k(ε) denotes the largest integer part of t/k(ε).
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Theorem 3. Let all notation be as in Theorem 2. Then, in order to ensure
that the current estimate θt satisfies the inequality J(θt) ≤ J∗ + ε (i.e., is
ε-optimal) with confidence 1− δ, it is enough to choose the number of samples
t large enough that

�t/k(ε) ≥ 512M2

ε2

[
ln

(
24k(ε)

δ

)
+ d(k(ε)) ln

(
32e

ε

)
+ d(k(ε)) ln ln

(
32e

ε

)]
.

(10.9)

Proof of Theorem 2. Write g(θ) = gk(θ) + (g(θ) − gk(θ)), and define

qk
1 (t, ε)

.
= Pr{sup

θ∈Θ

∣∣∣∣∣1t
t∑

i=1

gk(θ) · ui − E[gk(θ) · ui, P̃ ]

∣∣∣∣∣ > ε},

qk
2 (t, ε)

.
= Pr{sup

θ∈Θ

∣∣∣∣∣1t
t∑

i=1

(g(θ) − gk(θ)) · ui − E[(g(θ) − gk(θ)) · ui, P̃ ]

∣∣∣∣∣ > ε},

Then it is easy to see that

q(t, ε) ≤ qk
1 (t, ε/2) + qk

2 (t, ε/2).

Now observe that if k is sufficiently large that µk ≤ ε/4, then qk
2 (t, ε/2) = 0.

This is because, if |(g(θ) − gk(θ)) · ui| is always smaller than ε/4, then its
expected value is also smaller than ε/4, so that their difference can be at
most equal to ε/2. Since this is true for all u and all θ, the above observation
follows. Thus it follows that if k(ε) is chosen large enough that µk ≤ ε/4 for
all k ≥ k(ε), then

q(t, ε) ≤ q
k(ε)
1 (t, ε/2) ∀t ≥ k(ε), ∀ε. (10.10)

Hence the rest of the proof consists of estimating q
k(ε)
1 (t, ε) when t ≥ k(ε).

From here onwards, let us replace k(ε) by k in the interests of notational
clarity. When t ≥ k, define l

.
= �t/k , and r = t− kl. Partition {1, . . . , t} into

k intervals, as follows:

Ij
.
= {i, i+ k, . . . , i+ lk} for 1 ≤ j ≤ r, and

Ij
.
= {i, i+ k, . . . , i+ (l − 1)k} for r + 1 ≤ j ≤ k.

Then we can write

1

t

t∑
i=1

gk(θ) · ui =
1

t

k∑
j=1

∑
i∈Ij

gk(θ) · ui.

Now define

αj
.
=

1

l + 1

∣∣∣∣∣∣
∑
i∈Ij

(
gk(θ) · ui − E[gk(θ) · ui, P̃ ]

)∣∣∣∣∣∣ , 1 ≤ j ≤ r, and
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αj
.
=

1

l

∣∣∣∣∣∣
∑
i∈Ij

(
gk(θ) · ui − E[gk(θ) · ui, P̃ ]

)∣∣∣∣∣∣ , r + 1 ≤ j ≤ k.

Then, noting that E[gk(θ) · ui, P̃ ] is independent of i due to the stationarity
assumption, we get∣∣∣∣∣1t

t∑
i=1

gk(θ) · ui − E[gk(θ) · ui, P̃ ]

∣∣∣∣∣ ≤
∣∣∣∣∣∣

r∑
j=1

l + 1

t
αj +

k∑
j=r+1

l

t
αj

∣∣∣∣∣∣ .
It follows that if αj ≤ ε for each j, then the left side of the equality is also
less than ε. So the following containment of events holds:{

sup
θ∈Θ

∣∣∣∣1t (gk · ui − E[gk · ui, P̃ ]

∣∣∣∣ > ε

}
⊆

k⋃
j=1

{αj > ε}.

Hence

qk
1 (t, ε) ≤

k∑
j=1

Pr{αj > ε}. (10.11)

Now note that each gk ·ui depends on only ui−1 through ui−k. Hence, in the
summation defining each of the αj , the various quantities being summed are
independent. Since it is assumed that the family {gk(θ), θ ∈ Θ} has finite P-
dimension d(k), standard results from statistical learning theory can be used to
bound each of the probabilities on the right side of (10.11). A small adjustment
is necessary, however. The results stated in [382] for example assume that all
the functions under study assume values in the interval [0, 1], whereas in
the present instance the functions h(θ) · ui all assume values in the interval
[−M,M ]. Thus the range of values now has width 2M instead on one. With
this adjustment, Equation (7.1) of [382] implies that

Pr{αj > ε} ≤ 8

(
16e

ε
ln

16e

ε

)d(k)

exp(−(l+1)2ε2/128M2), for 1 ≤ j ≤ r, and

Pr{αj > ε} ≤ 8

(
16e

ε
ln

16e

ε

)d(k)

exp(−l2ε2/128M2), for r + 1 ≤ j ≤ k.

Since exp(−(l + 1)2) < exp(−l2), the l + 1 term can be replaced by l in the
first inequality as well. Substituting these estimates into (10.11) yields the
desired estimate

qk
1 (t, ε) ≤ 8k

(
16e

ε
ln

16e

ε

)d(k)

exp(−l2ε2/128M2).

Finally, the conclusion (10.8) is obtained by replacing ε by ε/2 in the above
expression, and then applying (10.10). �
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Proof of Theorem 3. By Corollary 1, we can conclude that J(θt) ≤ J∗ + ε
with confidence 1−δ provided q(t, ε/3) ≤ δ/3. This can be achieved by setting
the right side of (10.9) less than or equal to δ/3 and solving for t. Thus we
wish to have

8k(ε)

(
32e

ε
ln

32e

ε

)d(k(ε))

· exp(−�t/k(ε) ε2/512M2) ≤ δ/3,

or

exp(�t/k(ε) ε2/512M2) ≥ 24k(ε)

δ

(
32e

ε
ln

32e

ε

)d(k(ε))

,

or

�t/k(ε) ≥ 512M2

ε2

[
ln

(
24k(ε)

δ

)
+ d(k(ε)) ln

(
32e

ε

)
+ d(k(ε)) ln ln

(
32e

ε

)]
.

This completes the proof. �

10.5 Bounds on the P-Dimension

In order for the estimate in Theorem 2 to be useful, it is necessary for us to
derive an estimate for the P-dimension of the family of functions defined by

Gk
.
= {gk(θ) : θ ∈ Θ},

where gk(θ) : Uk → R is defined by

gk(θ)(u)
.
=‖ (f − h(θ)) · uk ‖2,

where
uk

.
= (. . . , 0, uk, uk−1, . . . , u1, 0, 0, . . .).

Note that, in the interests of convenience, we have denoted the infinite se-
quence with only k non-zero elements as uk, . . . , u1 rather than u0, . . . , u1−k

as done earlier. Clearly this makes no difference. In this section, we state
and prove such an estimate for the commonly occuring case where each sys-
tem model h(θ) is an ARMA model where the parameter θ enters linearly.
Specifically, it is supposed that the model h(θ) is described by

xt+1 =

l∑
i=1

θi φi(xt, ut), yt = xt, (10.12)

where θ = (θ1, . . . , θl) ∈ Θ ⊆ R
l, and each φi(·, ·) is a polynomial of degree no

larger than r in the components of xt, ut.
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Theorem 4. With the above assumptions, we have that

P-dim(Gk) ≤ 9l + 2l log2[2(rk+1 − 1)/(r − 1)]

≈ 9l + 2lk log2(2r) if r > 1.

In case r = 1 so that each system is linear, the above bound can be simplified
to

P-dim(Gk) ≤ 9l + 2l log2(2k).

Remark 1. It is interesting to note that the above estimate is linear in both
the number of parameters l and the duration k of the input sequence u, but
is only logarithmic in the degree of the polynomials φi. In the practically
important case of linear ARMA models, even k appears inside the logarithm.

Proof. For each function gk(θ) : Uk → R defined as in (10.7), define an
associated function g′k : Uk × [0, 1] → {0, 1} as follows:

g′k(θ)(u, c)
.
= η[gk(θ)(u) − c],

where η(·) is the Heaviside or ‘step’ function. Then it follows from [382, Lemma
10.1] that

P-dim(Gk) = VC-dim(G′
k).

Next, to estimate VC-dim(G′
k), we use [382, Corollary 10.2] which states that,

if the condition η[gk(θ)u−c] = 1 can be stated as a Boolean formula involving
s polynomial inequalities, each of degree no larger than d, then

VC-dim(G′
k) ≤ 2l log2(4eds). (10.13)

Thus the proof consists of showing that the conditions needed to apply this
bound hold, and of estimating the constants d and s.

Towards this end, let us back-substitute repeatedly into the ARMA model
(10.12) to express the inequality

‖ (f − h(θ))uk ‖2 −c < 0

as a polynomial inequality in u and the θ-parameters. To begin with, we have

xk+1 =

l∑
i=1

θi φi(xk, uk)

=

l∑
i=1

θiφi

⎛⎝ l∑
j=1

θj φj(xk−1, uk−1)

⎞⎠
= . . .

Thus each time one of the functions φi is applied to its argument, the degree
with respect to any of the θj goes up by a factor of r. In other words, the
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total degree of xk+1 with respect to each of the θj is no larger than 1 + r +
r2 + . . .+ rk = (rk+1 − 1)/(r− 1). If r = 1, then the degree is simply k. Next,
we can write

‖ xk+1 ‖2 −c < 0 ⇐⇒ x′k+1xk+1 − c < 0.

This is a single polynomial inequality. Moreover, the degree of this polynomial
in the components of θ is at most 2(rk+1 −1)/(r−1) if r > 1, and 2k if r = 1.
Thus we can apply the bound (10.13) with and s = 1, and

d =

{
2(rk+1−1)

r−1 if r > 1,

2k if r = 1.

The desired estimate now follows on noting that log2 e < 1.5, so that
log2(8e) < 4.5. �

10.6 Definition of Beta-Mixing and Significance

The main result of the remainder of the chapter shows that an exponentially
stable nonlinear system driven by i.i.d. noise with bounded variance, and sat-
isfying a few additional technical assumptions, generates a β-mixing sequence.
This is the first time that such a general result is available in the literature.
Thus the results of [394] have much wider applicability than is shown in that
paper.

10.6.1 Mixing Coefficients of Stochastic Processes

Given a stationary stochastic process {Xt}, it is desirable to have a notion of
how dependent {Xt+k,Xt+k+1, . . .} are on {Xt,Xt−1, . . .}. There are several
different notions of mixing used in the literature, but only three are introduced
here, namely α-mixing, β-mixing and φ-mixing. Actually, β-mixing is the
notion with which we are most concerned. However, the other two definitions
are widely used in the literature. Moreover, an earlier paper [77] uses φ-mixing
processes. Thus they are introduced for the purposes of completeness.

A little bit of notation is introduced first to facilitate the definitions. For
each index k, let Σk

−∞ denote the σ-algebra generated by the coordinate ran-
dom variables Xi, i ≤ k, and similarly let Σ∞

k denote the σ-algebra generated
by the coordinate random variables Xi, i ≥ k. Next, suppose we are given
the probability measure P̃ on the doubly infinite Cartesian product space Ξ,
and note that Ξ is itself the product of the singly infinite product spaces
X−

.
=
∏0

i=−∞X and X+ .
=
∏∞

i=1 X. Let P̃ 0
−∞ denote the marginal probabil-

ity of P̃ on X−, and similarly, let P̃∞
1 denote the marginal probability of P̃

on X+. Finally define τ0(P̃ )
.
= P̃ 0

−∞ × P̃∞
1 . Then it is clear that τ0(P̃ ) is the

unique probability measure on (Ξ, §∞) such that:

1. The laws of {Xi, i ≤ 0} under P̃ and under τ0(P̃ ) are the same.
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2. The laws of {Xj , j ≥ 1} under P̃ and under τ0(P̃ ) are the same.

3. Under the measure τ0(P̃ ), the variables {Xi, i ≤ 0} are independent of
{Xj , j ≥ 1}. This means that each Xi, i ≤ 0 is independent of each Xj , j ≥
1.

Let Σ̄k−1
1 denote the σ-algebra generated by the random variables Xi, i ≤ 0

as well as Xj , j ≥ k. Thus the bar over the Σ serves to remind us that the
random variables between 1 and k − 1 are missing from the list of variables
that generate Σ.

Now we are ready to state the definitions.

Definition 2. The α-mixing coefficient of the stochastic process {Xt} is de-
fined as

α(k)
.
= sup

A∈Σ0
−∞,B∈Σ∞

k

|P̃ (A ∩B) − P̃ (A) · P̃ (B)|.

The β-mixing coefficient of the stochastic process is defined as

β(k)
.
= sup

C∈Σ̄k−1
1

|P̃ (C) − (P̃ 0
−∞ × P̃∞

1 )(C)|.

The φ-mixing coefficient of the stochastic process is defined as

φ(k)
.
= sup

A∈Σ0
−∞,B∈Σ∞

k

|P̃ (B|A) − P̃ (B)|.

In the definition of the α-mixing coefficient, A is an event that depends
only on the ‘past’ random variables {Xi, i ≤ 0} while B is an event that de-
pends only on the ‘future’ random variables {Xi, i ≥ k}. If the future event
B were to be truly independent of the past event A, then the probability
P̃ (A∩B) would exactly equal P̃ (A)P̃ (B). Thus the α-mixing coefficient mea-
sures how near to independence future events are of past events, by taking
the supremum of the difference between the two quantities P̃ (A ∩ B) and
P̃ (A)P̃ (B). Similarly, if the future event B were to be truly independent of
the past event A, then the conditional probability P̃ (B|A) would exactly equal
the unconditional probability P̃ (B). The φ-mixing coefficient measures how
near to independence future events are of past events, by taking the supremum
of the difference between the two quantities P̃ (B|A) and P̃ (B). The β-mixing
coefficient has a somewhat more involved interpretation. If the future events
beyond time k were to be truly independent of the past events before time
0, then the probability measure P̃ would exactly equal the product measure
P̃ 0
−∞ × P̃∞

1 when restricted to the σ-algebra Σ̄k−1
1 . The β-mixing coefficient

of the stochastic process equals the total variation metric between the true
probability measure P̃ and the product P̃ 0

−∞ × P̃∞
1 when restricted to the

σ-algebra Σ̄k−1
1 . Thus the mixing coefficient β(k) measures how nearly the

product measure P̃ 0
−∞ × P̃∞

1 approximates the actual measure P̃ on Σ̄k−1
1 .
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Since Σ∞
k+1 ⊆ Σ∞

k , it is obvious that

α(k + 1) ≤ α(k), β(k + 1) ≤ β(k), φ(k + 1) ≤ φ(k).

Moreover, it can also be shown that

α(k) ≤ β(k) ≤ φ(k) ∀k.

Definition 3. The stochastic process {Xt} is said to be α-mixing if α(k) → 0
as k → ∞, β-mixing if β(k) → 0 as k → ∞, and φ-mixing if φ(k) → 0 as
k → ∞.

It is ironic that some authors refer to α-mixing as ‘strong’ mixing, even
though it is the weakest notion of mixing. In some papers, especially the
Russian literature, α-mixing is also referred to as ‘strong regularity,’ β-mixing
as ‘complete regularity,’ and φ-mixing as ‘uniform regularity.’

In case any of these mixing coefficients decays at an exponential rate, we
say that the mixing is ‘geometric.’ Thus, for example, if β(k) = O(rk) for
some r < 1, then the stochastic process is said to be ‘geometrically β-mixing.’

10.6.2 Significance of Beta-Mixing Sequences

The significance of β-mixing arises from a result proved in [394], which shows
that it is possible to derive finite time bounds for system identification in the
case where the time series to be identified is β-mixing, and the model family
consists of ARMA models of bounded degree. Specifically, the problem studied
in [394] is as follows:

W1. The time series to be identified is denoted by {(ut, yt)}, and is assumed
to be β-mixing with a geometrically decaying β-mixing coefficient.

W2. The family of models consists of systems of the form

A(d)y = B(d)u,

where d denotes a one time-step delay, and

A(d) = 1 +

r∑
i=1

aid
i, B(d) =

s∑
i=1

bid
i.

If we define θ
.
= (a1, . . . , ar, b1, . . . , bs), then the system can also be written

as
yt = θ · φt,

where φt is the regression vector

φt
.
= (−yt−1, . . . ,−yt−r, ut−1, . . . , ut−s).

In [394] it is assumed that the system in SISO (single-input, single-output)
but this assumption is not necessary. In particular, Lemma A.11 of [394]
can be readily modified to the case where the system is MIMO. Let q, p
denote respectively the dimensions of the vectors u and y.
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W3. The loss function l(y, ŷ) is taken as any increasing function of the �∞
norm ‖ y− ŷ ‖∞. Note that in [394] he uses |y− ŷ|. In order to generalize
his arguments to the MIMO case, we replace the absolute value by the
�∞ norm. It is further assumed that the loss function takes values in an
interval [0,M ].

With these assumptions, the following result is shown in [394, Lemma 7].

Theorem 5. With the above notation and assumptions, for every time t and
every integer k ≤ t, define l

.
= �t/k , the integer part of t/k. Define the

‘dimension’
d
.
= 2p(pr + qs) + 1.

Then, whenever ε > 4M/l, the quantity q(t, ε) defined in (10.3) is bounded by

q(t, ε) ≤ 4ed

(
32eM

ε

)d

exp(−lε2/128M2) + 2lβ(k).

A couple of points are noteworthy about this version of Weyer’s theorem.

• In [394], the system is assumed to be SISO. As a result, the regression
vector has dimension r + s. In the present instance, the regression vector
has dimension pr + qs. Hence the integer k in [394, Lemma A.10] now
becomes pr + qs. Similarly, since y and ŷ are now p-dimensional vectors,
the inequality ‖ y − ŷ ‖∞> c can be written as a set of 2p inequalities

(y − ŷ)i > c or (y − ŷ)i < −c, i = 1, . . . , p.

With these adjustments, the P-dimension estimate 2k+ 1 in Lemma A.10
of [394] now becomes the quantity d defined above.

• The multiplier 16 on the right side of Lemma 7 appears to us a simple
error in arithmetic and should be 4 instead.

In [394], the author did not give conditions under which any time series
is β-mixing. Indeed, in [78], the authors say that they are motivated by the
observation that ‘signals generated by dynamical systems are not β-mixing in
general’. As shown below in Theorem 7, actually this statement is quite false –
practically every time series encountered in system identification is β-mixing.
Thus the results of [394] have very wide applicability, though this was not
shown in that paper.

10.7 Statement of Main Results on Beta-Mixing of
Markov Chains

Since β-mixing plays such a central role in the present chapter, we begin
with an extremely general result that shows that a large class of nonlinear
recursions are β-mixing. There appears to be some confusion in the literature
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about β-mixing as a property. Indeed, in [78], the authors make the statement
that ‘signals generated by dynamical systems are not β-mixing in general’.
Actually, exactly the opposite is true: Theorem 6 below shows that a very
wide class of Markov chains naturally occuring in control and system theory
are β-mixing.

We state the main result at once so that the reader can see where we are
going. The proof itself is spread over the next two sections.

Throughout the remainder of the chapter, | · | denotes the Euclidean, or
�2-norm on R

k and on R
m. Where convenient, we also use the same symbol

| · | to denote the matrix norm induced by the �2-norm, that is, the largest
singular value of a matrix. Thus, in this notation, if A ∈ R

k×k and v ∈ R
k,

we have |Av| ≤ |A| · |v|.
Throughout, we consider Markov chains described by the recursion relation

Xt+1 = f(Xt, et), (10.14)

where xt ∈ R
k, et ∈ R

m for some integers k,m, and {et} is a stationary noise
sequence. It is assumed that the following assumptions are satisfied:

A1. The function f : R
k ×R

m → R
k is ‘smooth,’ i.e., is C∞, and in addition,

f is globally Lipschitz continuous. Thus there exist constants L and K
such that

|f(x, u) − f(y, v)| ≤ L|x− y| +K|u− v|.

A2. The noise sequence {et} is i.i.d., has finite variance, and has a continuous
multivariate density function φ(·) that is positive in some neighbourhood
Ω of the origin in R

m.
A3. When et = 0 ∀t, the ‘unforced’ system

xt+1 = f(xt, 0)

is globally exponentially stable with the origin as the unique globally
attractive equilibrium. This means that there exist constants M ′ and l < 1
such that

|xt| ≤ M ′|x0|lt, ∀t ≥ 1, ∀x0.

By taking M
.
= max{M ′, 1}, one can write the above inequality as

|xt| ≤ M |x0|lt, ∀t ≥ 0, ∀x0.

A4. The associated deterministic control system

xt+1 = f(xt, ut) (10.15)

is ‘globally forward accessible’ from the origin with the control set Ω. In
other words, for every y ∈ R

k, there exist a time N and a control sequence
{u0, . . . , uN−1} ⊆ Ω such that, with x0 = 0 we have xN = y.
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A5. The associated deterministic control system (10.15) is ‘locally control-
lable’ to the origin with the control set Ω. This means that there exists
a neighbourhood B of the origin in R

k such that, for every y ∈ B there
exist a time N and a control sequence {u0, . . . , uN−1} ⊆ Ω such that,
with x0 = y we have xN = 0.

Now we can state the main result.

Theorem 6. Suppose assumptions A1 through A5 hold. Then the state se-
quence {Xt} is geometrically β-mixing.

Theorem 7. Suppose assumptions A1 through A5 hold. Then the sequence
{Yt = (Xt, εt)} is geometrically β-mixing.

As a concrete illustration of the above theorems, consider the linear system

Xt+1 = AXt +Bet, Yt = CXt,

where the matrix A has all of its eigenvalues inside the unit circle, and the
pair (A,B) is controllable; note that it is not assumed that the pair (C,A) is
observable. Under these conditions, if {et} is an i.i.d. sequence with bounded
variance (e.g., Gaussian noise), then both the state sequence {Xt} and the
joint process {(Xt,Yt)} are β-mixing. This is in sharp contrast to φ-mixing.
The following result due to Athreya and Pantula shows that φ-mixing is an
extremely restrictive concept.

Lemma 1. ( [19], Theorem 2) Consider the first-order recursion

Xt+1 = lXt + et,

where l ∈ [0, 1) is some constant, and {et} is an i.i.d. sequence independent
of X0. Suppose:

1. E[{log(e1)}+] < ∞, where (·)+ denotes the positive part.
2. For some n ≥ 1, the random variable

∑n
i=1 l

iei has a nontrivial absolutely
continuous component. (This assumption is satisfied if l > 0 and e1 has a
nontrivial absolutely continuous component.)

Then {Xt} is φ-mixing if and only if the noise sequence {et} is essentially
bounded, that is, there exists a constant M such that

|et| ≤ Ma.s.

The interesting part of the above lemma is the ‘only if’ part. This lemma
implies that even the simple situation of a stable recursion driven by Gaussian
noise is not φ-mixing, since Gaussian noise is unbounded. In contrast, such a
sequence is indeed β-mixing. Thus it appears that β-mixing is a more natural
and useful notion than φ-mixing.
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10.8 Beta Mixing Properties of Markov Chains

In this section we present some sufficient conditions to ensure that a Markov
chain is β-mixing. These conditions are stated in terms of a property known
as V -geometric ergodicity. Throughout this section, the principal reference
is [227]. Then we show that, if a stationary stochastic process is β-mixing,
then so is any ‘measurement’ process obtained from it. This result is relevant
to so-called ‘hidden Markov models.’

10.8.1 Background Material on Markov Chains

We begin by introducing some background material on Markov chains and
hidden Markov models (HMMs). Suppose (X, §) is a measurable space. For
the purposes of the present discussion, a Markov chain is a sequence of random
variables {Xm}m≥0 together with a set of probability measures Pn(x,A), x ∈
X,A ∈ § denoting the ‘transition probabilities.’ It is assumed that

Pr{Xn+m ∈ A|Xj , j ≤ m} = Pn(Xm, A).

Thus Pn(x,A) denotes the probability that the state X will belong to the
set A after n time steps, starting from the initial state x at time m. It is
common to denote the ‘one-step’ transition probability by P (x,A), so that
P 1(x,A) = P (x,A). The fact that the transition probability does not depend
on the values of X prior to time m is the Markov property, and the fact that
the transition probability does not depend on the ‘initial time’ m means that
the Markov chain is stationary.

Suppose the Markov chain is set in motion with the initial state at time
t = 0 distributed according to the probability measureQ0. Then the definition
of P (·, ·) implies that

Q1(A)
.
= Pr{X1 ∈ A} =

∫
X

P (x,A) Q0(dx).

Under suitable conditions (see [227] for a detailed treatment), a stationary
Markov chain has an invariant measure or a stationary distribution π on (X, §)
with the property that

π(A) =

∫
X

P (x,A) π(dx).

Thus, if the Markov chain is started off with the initial state distributed
according to the the stationary distribution π, then at all subsequent times
the state continues to be distributed according to π.
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10.8.2 An Expression for the Beta-Mixing Coefficient of a Markov
Chain

The main result of this subsection gives a characterization of the β-mixing
coefficient in terms of an abstract integral. Note that the formula (10.16)
below is actually due to Davydov [97], but a complete proof is given here for
the convenience of the reader.

Theorem 8. Suppose a Markov chain has m-step transition probability Pm(·, ·)
and a stationary distribution π. Then its β-mixing coefficient is given by

β(m) = E{ρ[Pm(x, ·), π], π} =

∫
X

ρ[Pm(x, ·), π] π(dx). (10.16)

Note that the third expression is just a restatement of the second expres-
sion. Thus the importance of the theorem is in relating the β-mixing coefficient
to the expected value of the difference between the m-step transition proba-
bility Pm(x, ·) and the invariant probability π.

In order to prove the theorem we require two preliminary lemmas. The first
is on decomposition of measures, also known as existence of regular conditional
probabilities. The second lemma shows that two distinct ways of defining the
β-mixing coefficient are in fact equivalent. This lemma is important since both
definitions are widely used in the literature, but so far as can be ascertained,
the equivalence of the two formulas is not explicitly stated anywhere.

Let us begin with a little notation. Suppose Z1, Z2 are complete separable
metric spaces, and that §1, §2 are the corresponding Borel σ-algebras of subsets
of Z1 and Z2 respectively. Define Z = Z1 × Z2 and let § = §1 × §2 be the
corresponding product algebra. Define G1 = §1 × {∅, Z2}, and similarly G2 =
{∅, Z1} × §2. Suppose P is a probability measure on (Z, §), and let P1, P2

denote the marginal probability measures of P on Z1 and Z2 respectively.
Thus for A1 ∈ §1, A2 ∈ §2 we have

P1(A1) = P (A1 × Z2),

and similarly for P2. Now we are ready to state the lemma on existence of
regular conditional probabilities.

Lemma 2. With the above notation, there exists a probability transition func-
tion Q : Z1 × §2 → [0, 1], that is, Q(z1, ·) is a probability measure on (Z2, §2)
for all z1 ∈ Z1, and Q(·, A2) ∈ §1 for all A2 ∈ §2, such that for all A ∈ § we
have

P (A) =

∫
Z1

Q(z1, A(z1)) P1(dz1),

where A(z1): the z1-section of A of is given by

A(z1)
.
= {z2 : (z1, z2) ∈ A}.

Further,
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EP (IA|G1) = Q(·, A(·)),
where EP (IA|G1) denotes the best approximation to the indicator function
IA(·) among functions measurable with respect to G1, and the error mea-
sure is the L2-norm with respect to the measure P . In other words, f(z1) =
Q(z1, A(z1)) satisfies

EP (IA|G1) = f(·).

The proof can be found in, for example, [64].
Next, it is shown that two distinct-looking definitions of the β-mixing

coefficient that are widely used in the literature are in fact equivalent.

Lemma 3. With the notation as above, let H2 ⊆ §2 be a sub-σ-algebra on Z2

such that (Z1, §1), (Z2,H2) are standard-Borel. Let

β
.
= sup

A∈§1×H2

|P (A) − (P1 × P2)(A)|,

θ
.
= E[ sup

A2∈H2

|Q(z1, A2) − P2(A2)|, P1]

=

∫
Z1

sup
A2∈H2

|Q(z1, A2) − P2(A2)| P1(dz1).

Then β = θ.

Remark 2. We will show in the course of the proof that the expression appear-
ing in the previous line is measurable.

Proof. To prove that θ ≤ β, we proceed as follows. Let

R(z1, A2) = Q(z1, A2) + P (A2), A2 ∈ H2.

Then for all z1, Q(z1, ·) is absolutely continuous with respect to R(z1, ·). Let
us denote the Radon-Nikodym derivative by f(z1, ·) and let g(z1, ·) be the
Radon-Nikodym derivative of P2 with respect to R(z1, ·). It is well known
in the probability literature that f(z1, z2) and g(z1, z2) can be chosen to be
jointly measurable with respect to §1 × H2 and hence

A
.
= {(z1, z2) : f(z1, z2) ≥ g(z1, z2)}

belongs to §1 × H2. Let

A(z1)
.
= {z2 : f(z1, z2) ≥ g(z1, z2)}.

Then z1 −→ (Q(z1, A(z1)) − P2(A(z1))) is measurable and it can be checked
that

Q(z1, A(z1)) − P2(A(z1)) = sup
C2∈H2

|Q(z1, C2) − P2(C2)|.
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Hence

P (A) − (P1 × P2)(A) =

∫
Z1

[Q(z1, A(z1)) − P2(A(z1))] P1(dz1)

= θ.

Therefore
β = sup

A∈§1×H2

|P (A) − (P1 × P2)(A)| ≥ θ.

To show that β ≤ θ, suppose that A ∈ §1 × H2. Then

P (A) =

∫
Z1

Q(z1, A(z1)) P1(dz1), (P1 × P2)(A) =

∫
Z1

P2(A(z1)) P1(dz1).

Hence

|P (A) − (P1 × P2)(A)| ≤
∫

Z1

|Q(z1, A(z1)) − P2(A(z1))| P1(dz1)

≤
∫

Z1

sup
A2∈H2

|Q(z1, A2) − P2(A2)| P1(dz1) = θ.

Here we use the fact that A(z1) ∈ H2 since A ∈ §1 × H2. Since the above
argument holds for every A, it follows that β ≤ θ. This completes the proof.

�

Proof of Theorem 8. Let Ξ, §∞ and {Xt} be as before. Let Y =
∏∞

i=1 X and
let T be the corresponding product σ-algebra generated by §. (The difference
between Ξ and Y is that Ξ is a doubly infinite Cartesian product whereas Y
is a singly infinite Cartesian product; similarly for §∞ vs T .) Let P̃ be a prob-
ability measure on (Ξ, §∞) such that {Xn} is a stationary Markov chain with
the transition probability P (x,A) and stationary distribution π. Similarly,
let Qx be the probability measure on (Y, T ) such that {Yn} is a stationary
Markov chain with transition probability P (x,A) and initial distribution δx,
where {Yn} denotes the ‘co-ordinate random variables’ on (Y, T ). To apply
Lemma 3, we identify

Z1 =

0∏
i=−∞

X, Z2 =

∞∏
i=1

X.

Let P̃1, P̃2 be the marginal measures of P̃ on Z1 and Z2 respectively. Here we
make use of the Markov property which implies that the conditional proba-
bility

P̃{(X1,X2, . . .) ∈ A2|Xi : i ≤ 0}
depends only on X0 and equals QX0

(A2). Hence we identify Q(z1, A2) with
Qx0

(A2) where z1 = {. . . , x−1, x0}. For D ∈ T , we have

P{(Xm+1,Xm+2, . . .) ∈ D|σ{Xi, i ≤ m}} = QXm
(D).
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Now define H2
.
= σ{Xi, i ≥ m}. Then the β-mixing coefficient β(m) is given,

using the result of Lemma 3, by∫
Ξ

sup
D

|P{(Xm+1,Xm+2, . . .) ∈ D|σ(Xi, i ≤ 0)}−P{(Xm+1,Xm+2, . . .) ∈ D}| dP.

Note that

P{(Xm+1, xm+2, . . .) ∈ D} =

∫
Ξ

P{(Xm+1, xm+2, . . .) ∈ D|σ(Xm)}dP

=

∫
Ξ

QXm
(D)dP =

∫
X

Qy(D) π(dy),

since the only random variable under the integral sign is Xm. Similarly

P{(Xm+1,Xm+2, . . .) ∈ D|Xi, i ≤ 0}
= E[P{(Xm+1,Xm+2, . . .) ∈ D|σ{Xi, i ≤ m}|σ{Xi, i ≤ 0}]
= E[QXm

(D)|σ{Xi, i ≤ 0}]

=

∫
X

Qy(D) Pm(X0, dy)

Thus

β(m) =

∫
X

sup
D

∣∣∣∣∫
X

Qy(D) Pm(x0, dy) −
∫

X

Qy(D) π(dy)

∣∣∣∣ π(dx0). (10.17)

Since Qy(D) ≤ 1, it is clear that

sup
D

∣∣∣∣∫
X

Qy(D) Pm(x0, dy) −
∫

X

Qy(D) π(dy)

∣∣∣∣ ≤ ρ[Pm(x0, ·), π(·)],

where ρ is the total variation metric. If in (10.17) we take D to be of the form
B×X ×X × . . . where B ∈ §, it follows that the left side is in fact no smaller
than the right side. Therefore we finally have

β(m) =

∫
X

ρ[Pm(x0, ·), π(·)] π(dx0),

which is the same as (10.16). �

10.8.3 Characterization of Beta-Mixing in Terms of V -Geometric
Ergodicity

In this subsection, we begin by recalling a notion called V -geometric ergodicity
from [227]. Then it is shown that V -geometric ergodicity implies geometric
β-mixing.

A (stationary) Markov chain is said to be geometrically ergodic if there
exist constants µ and l < 1 such that
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ρ[Pn(x, ·), π] ≤ µln, ∀x ∈ X.

Note that here ρ denotes the total variation metric between two probability
measures. Thus in a geometrically ergodic Markov chain, the total variation
metric distance between the n-step transition probability Pn(x, ·) and the sta-
tionary distribution π decays to zero at a geometric rate; moreover, this rate
is independent of the initial state x. If the state space X is not compact, it is
not reasonable to expect such a strong type of convergence to hold. To cater
to the general situation, a more liberal notion called ‘V -geometric ergodicity’
is introduced. A stationary Markov chain is said to be V -geometrically er-
godic with respect to the measurable function V : X → [1,∞) if there exist
constants µ and l < 1 such that

ρ[Pn(x, ·), π] ≤ µlnV (x), ∀x ∈ X,

and in addition,

E[V, π] =

∫
X

V (x) π(dx) < ∞.

Actually, the notion of V -geometric ergodicity as defined in [227] is more
restrictive than the above. Specifically, in [227] the total variation metric
ρ[Pn(x, ·), π] is replaced by a larger quantity that can be thought of as the total
variation with respect to all functions bounded by V . Since V is bounded be-
low by one, this latter quantity is no smaller than ρ[Pn(x, ·), π]. Consequently
V -geometric ergodicity in the sense of [227] implies the above inequality.

Thus a Markov chain is V -geometrically ergodic if two conditions hold.
First, there is a non-negative-valued function V such that the total variation
distance between the n-step transition probability Pn(x, ·) and the invariant
measure π approaches zero at a geometric rate multiplied by V (x). Thus the
rate of geometric convergence is independent of x, but the multiplicative con-
stant is allowed to depend on x. To ensure that the property is meaningful,
the second condition is imposed, namely that the ‘growth function’ V (·) has
finite expectation with respect to the invariant measure π. Thus ‘on average’
the total variation metric distance between the n-step transition probability
and the stationary distribution decays to zero at a geometric rate.

Theorem 9. Suppose a Markov chain is V -geometrically ergodic. Then it is
geometrically β-mixing, i.e., there exist constants B and l < 1 such that
β(m) ≤ Blm for all m.

Proof. Since the Markov chain is V -geometrically ergodic, it follows that

ρ[Pm(x0, ·), π(·)] ≤ V (x0)µl
m

for some function V : X → [1,∞) such that E[V, π] < ∞, and some constants
µ and l < 1. Consequently, it follows from (10.16) that

β(m) ≤ µE[V, π]lm, ∀m,

which shows that the Markov chain is geometrically β-mixing. �
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10.8.4 Hidden Markov Models

Next we introduce the notion of hidden Markov models (HMMs) as used in
this chapter. Suppose {Xm}m≥0 is a stationary Markov chain assuming values
in a set X with associated σ-algebra §, and that Y is a complete separable
metric space, called the ‘output space.’4 Let B(Y ) denote the Borel σ-algebra
on Y . Suppose µ : X × B(Y ) → [0, 1] is a ‘transition probability’ function.
This means that, for each x ∈ X, µ(x, ·) is a probability measure on Y , and for
each A ∈ B(Y ), µ(·, A) is a measurable function on (X, §). Then a stochastic
process {Ym}m≥0 is called a hidden Markov model (HMM) if

Pr{Ym ∈ A|Yi, i ≤ m− 1,Xj , j ≤ m} = µ(Xm, A), ∀A ∈ B(Y ).

In other words, the Markov process {Xm} generates a probability µ(Xm, ·) on
Y , and this is the conditional law of Ym given {Yi, i ≤ m−1} and {Xj , j ≤ m}.

The next result shows that if a Markov chain is (geometrically) β-mixing,
so is any hidden Markov model generated from the Markov chain. Actually,
the result is more general than that.

Theorem 10. Suppose {Xt}t≥0 is a stationary stochastic process assuming
values in a set X with associated σ-algebra §. Suppose Y is a complete sep-
arable metric space, and let B(Y ) denote the Borel σ-algebra on Y . Suppose
µ : X×B(Y ) → [0, 1] is a transition probability function. Thus for each x ∈ X,
µ(x, ·) is a probability measure on Y , and for each A ∈ B(Y ), µ(·, A) is a mea-
surable function on (X, §). Finally, suppose {Yt}t≥0 is a Y -valued stochastic
process such that

Pr{Yt ∈ A|Yi, i ≤ t− 1,Xj , j ≤ t} = µ(Xt, A).

Under these assumptions, if {Xt} is β-mixing, so is {Yt}.

The proof of this theorem is given at the end of this section.
Next we give a proof of Theorem 10. The proof is based on a couple of

preliminary lemmas.

Lemma 4. Suppose a real-valued stochastic process {Xt} is α-, β-, or φ-
mixing, and that Yt = f(Xt) where f : X → R. Then {Yt} is also α-, β-,
or φ-mixing, as appropriate.

Proof. Note that mixing is really a property of the σ-algebras generated by
the stochastic process. Since Yt is a measurable function of Xt, we see that
the σ-algebra generated by any collection of the Yt is a subset of (and perhaps
equal to) the σ-algebra generated by the corresponding collection of Xt. Hence
the Yt stochastic process inherits the mixing properties of the {Xt} sequence.

�

4The assumption that the output space Y is a complete separable metric space
is made to facilitate some of the measure-theoretic arguments in the sequel.
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Lemma 5. Suppose {Xt} is β-mixing, and that {Ut} is i.i.d. and also indepen-
dent of {Xt}. Suppose Yt = f(Xt,Ut), where f is a fixed measurable function.
Then {Yt} is also β-mixing.

Proof. Note that under the hypotheses, it follows that the joint process
{(Xt,Ut)} is β-mixing. Now the desired conclusion follows from Lemma 4. �

Proof of Theorem 10. The theorem is proved by constructing a represen-
tation of Yt as a deterministic function of Xt and another random variable
Ut that is i.i.d. and also independent of Xt. The conclusion then follows from
Lemma 5. Specifically, it is shown that there exists a measurable mapping
ψ : X × [0, 1] → Y such that the process {Zt}t≥0 defined by

Zt = ψ(Xt,Ut)

has the same distribution as {Yt}, where {Ut}t≥0 is a sequence of i.i.d. random
variables whose common distribution is the uniform distribution on [0, 1].

Recall (see, e.g., [263]) that if Y is a complete separable metric space, then
there exists a Borel subset E of [0, 1] and a one-to-one onto mapping φ from
Y into E such that both φ and φ−1 are measurable. With φ as above, define
the transition function ν : X × B(E) → [0, 1] as follows:

ν(x,B)
.
= µ(x, φ−1(B)), ∀x ∈ X,B ∈ B(E).

Here B(E) denotes the σ-algebra of Borel subsets of E. Now define the map
ψ0 : X × [0, 1] → [0, 1] as follows:

ψ0(x, s)
.
= lim

m→∞
1

2m
inf{k ≥ 0 : ν(x, (−∞, k/2m)) ≥ s}.

It readily follows from the above definition that the function ψ0 is jointly
measurable. Moreover, it is easy to see that

ψ0(x, s) = inf{u ≥ 0 : ν(x, (−∞, u)) ≥ s}.

However, the above equation is not used as a definition of ψ0 since it involves
an infimum over an uncountable set, and it is therefore not clear that the
resulting function is jointly measurable.

From the above equation it can be seen that

ψ0(x, s) ≤ u if and only if ν(x, (−∞, u)) ≥ s.

Hence, if l denotes the Lebesgue measure on [0, 1], it follows that

l{s : ψ0(x, s) ≤ u} = ν(x, (−∞, u)).

Now define
ψ(x, s)

.
= φ−1(ψ0(x, s)).
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Then for each A ∈ B(Y ) we have

l{s : ψ(x, s) ∈ A} = µ(x,A).

Therefore, if {Ut}t≥0 is a sequence of i.i.d. random variables whose common
distribution is the uniform distribution on [0, 1], then the process {Zt}t≥0

defined by
Zt = ψ(Xt,Ut)

has the same distribution as {Yt}.
Finally, by Lemma 5, if {Xt} is β-mixing, so is {Yt}. �

Similar results can be proven for α- and φ-mixing. Moreover, notice that
the above proof does not require the process {Xt} to be Markovian. However,
in the absence of a result like Theorem 6 that guarantees the mixing properties
of the sequence {Xt}, Theorem 10 might not be very useful by itself.

10.9 Proofs of Main Results

In this section we give proofs of Theorems 6 and 7. Actually, all the effort
goes into proving Theorem 6. The proof of this is very long and requires a
great deal of build up, to address lots of technical issues. The proof is given
in Section 10.9.3.

10.9.1 ‘Petiteness’ of Compact Sets

Consider the Markov Chain defined by (10.14). Note that the probability
transition function P (x,A) for this chain is given by

P (x,A) =

∫
Rm

IA(f(x, e))φ(e)de

(Recall that φ denotes the (common) density of the noise sequence et). In
this subsection, it is shown that when Conditions A1 through A5 hold, every
compact set in R

k is ‘petite’ in the sense defined in [227]. This is a techni-
cal condition needed to apply the main theorem of [227] to deduce that the
Markov chain (10.14) is V -geometrically ergodic. It is possible that Lemma 6
holds under weaker conditions than A1 through A5, but this requires further
investigation.

Lemma 6. Suppose assumptions A1 through A5 hold. Then every compact
set in R

k is ‘petite’ in the sense of [227].

Proof. To prove this claim we proceed as follows:
Claim 1: The system (10.14) is a T -chain.

To establish this claim, we invoke [227, Proposition 7.1.5], which states
that the system (10.14) is a T -chain if the associated control system (10.15)
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is ‘forward accessible’ in the sense of [227], i.e., if it is possible to start from
any initial state y ∈ R

k and reach any final state z ∈ R
k in a finite number of

time steps, using only controls from Ω. But this kind of forward accessibility
is immediate. If y ∈ B (see Condition A5), then it is possible to steer the state
y to the origin in a finite number of time steps using only controls from Ω.
Then, from condition A4, it is possible to steer the state from the origin to
z in another finite number of steps, again using only controls from Ω. Now
suppose y lies outside B. Then by applying the control ut = 0, it is possible
to ensure that the resulting state xt enters B in a finite number of time steps,
since the unforced system is globally exponentially stable (see Condition A3).
Now apply the previous argument.

Claim 2: The origin in R
k is a globally attractive state in the sense

of [227, p. 160].5 Moreover, the system (10.14) is a ψ-irreducible aperiodic
T -chain.

To establish the first part of the claim, it is necessary to show that, for
every y ∈ R

k, there exist an integer N and a control sequence in Ω such
that the resulting state xN comes arbitrarily close to the origin (the claimed
globally attractive state). In fact we can do better than that, by showing that
xN actually equals 0. Let B be the neighbourhood of 0 in Condition A5. Since
the unforced system is globally asymptotically stable, if we simply apply no
control (and recall that the origin in the control space R

m belongs to the
control set Ω), then within a finite number of time steps the state trajectory
starting from y enters the set B. Then in another finite number of steps the
state can be steered to the origin using only controls from Ω.

Now let A+(0) denote the closure of the set of all states reachable from
0 (see [227, Equation 7.10]). By condition A4, this set in fact equals R

k.
By [227, Proposition 7.2.5], R

k is the unique minimal set of this Markov chain.
Clearly R

k is connected, so the Markov chain is aperiodic; see [227, Proposition
7.3.4]. Next, by [227, Proposition 7.3.5], the Markov chain is an aperiodic ψ-
irreducible T -chain.

Finally, by [227, Theorem 6.2.5], all compact sets are petite. �

10.9.2 A Converse Lyapunov Theorem for Discrete-Time Systems

Converse Lyapunov theory refers to results which state that, if a system has
a particular type of stability property, then there exists a corresponding Lya-
punov function satisfying an associated set of conditions. Converse Lyapunov
theory for continuous-time systems is well-studied but nowadays it is rare to
find this theory mentioned in textbooks. Most of the books that discuss con-
verse Lyapunov theory are now out of print, and [383] is among the few extant
books that discusses this theory. However, even [383] does not explicitly dis-
cuss converse Lyapunov theory for discrete-time systems, which is needed in
the present context.

5Note that the phrase ‘globally attractive state’ is used in [227] in a different
sense than in stability theory.
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Though Theorem 11 is used here as an intermediate step in the proof of
the main result, namely Theorem 6, it is of independent interest and is thus
stated and proved separately.

Theorem 11. Consider the system

g(x)
.
= f(x, 0) : R

k → R
k.

Suppose the following conditions hold:6

B1. g is C1, and there exists a constant L such that

|∇g(x)| ≤ L, ∀x ∈ R
k.

B2. Define the functions gn : R
k → R

k recursively as follows:

g0(x)
.
= x, gn(x)

.
= g[gn−1(x)].

Suppose there exist constants M < ∞, l < 1 such that

|gn(x)| ≤ M |x|ln, ∀n ≥ 0. (10.18)

Under these conditions, there exists a C1 function S : R
k → [0,∞) satisfying

the following properties, for suitable constants c1 ∈ [1,∞), c2, c3 > 0:

L1. |x|2 ≤ S(x), ∀x.
L2. S(x) ≤ c1|x|2, ∀x.
L3. S[g(x)] − S(x) ≤ −c2S(x) ≤ −c2|x|2, ∀x.
L4. |∇S(x)| ≤ c3(x), ∀x.
L5. S(x+ y) − S(x) ≤ c3|x| · |y| + (c3/2)|y|2, ∀x, y.

Remark 3. Note that Properties L1 through L4 are quite standard in converse
Lyapunov theory. However, Property L5 is not usually included as a part
of the theorem, but is needed here. Hence we give an ab initio proof of the
theorem, though the various steps in the proof are by now well-known in the
Lyapunov theory literature.

Proof. We begin by defining an intermediate function W : R
k → [0,∞) as

follows: Choose an integer p large enough that Ll2p−1 < 1; this is possible
since l < 1. Define

W (x)
.
=

∞∑
n=0

|gn(x)|2p =

∞∑
n=0

{[gn(x)]tgn(x)}p.

It is now shown that the function W has the following properties:

W1. W (x) ≥ |x|2p, ∀x.

6Note that Condition B1 is weaker than Condition A1, in that g is required only
to be C1, not C∞.
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W2. We have

W (x) ≤ M2p

1 − l2p
|x|2p, ∀x.

W3. W [g(x)] −W (x) = −|x|2p, ∀x.
W4. We have

|∇W (x)| ≤ 2p
M2p−1

1 − Ll2p−1
|x|2p−1, ∀x.

Property W1 is obvious, since |x|2 is the first term in the infinite series
that defines W (x).

To prove Property W2, use (10.18). Thus

W (x) ≤
∞∑

n=0

M2pl2p|x|2p =
M2p

1 − l2p
|x|2p.

To prove Property W3, note that from the definition of W (·) we have

W [g(x)] =

∞∑
n=0

|gn+1(x)|2p =

∞∑
n=1

|gn(x)|2p = W (x) − |x|2p,

since g0(x) = x.
Finally, to prove Property W4, let us compute ∇W (x) by differentiat-

ing the infinite series for W (x) inside the summation (which can be easily
justified). This gives

∇W (x) =

∞∑
n=0

p[|gn(x)|2]p−1 · ∇[|gn(x)|2]

= 2p

∞∑
n=0

|gn(x)|2p−2 · ∇gn(x) · gn(x).

Hence

|∇W (x)| ≤ 2p

∞∑
n=0

|gn(x)|2p−1|∇gn(x)|.

However, since |∇g(x)| ≤ L ∀x, it follows by induction that |∇gn(x)| ≤ Ln ∀x.
Therefore, after invoking (10.18), we get

|∇W (x)| ≤ 2p

∞∑
n=0

M2p−1l(2p−1)nLn|x|2p−1 = 2p
M2p−1

1 − Ll2p−1
|x|2p−1.

To complete the proof, define the function S : R
k → [0,∞) by

S(x)
.
= [W (x)]1/p.

It is now shown that the function S has each of the claimed properties L1
through L5.



10 A Learning Theory Approach to System Identification 299

L1 follows readily from W1. L2 follows readily from W2, where the defi-
nition of the constant c1 is obvious.

To prove L3, note that from W3 we have

W [g(x)] = W (x) − |x|2p ≤ (1 − d)W (x),

where

d
.
=

1 − l2p

M2p
< 1.

Taking the 1/p-th power of both sides leads to

S[g(x)] ≤ (1 − d)1/pS(x)
.
= (1 − c2)S(x),

where c2
.
= 1 − (1 − d)1/p > 0. This is the same as

S[g(x)] − S(x) ≤ −c2S(x) ≤ −c2|x|2,

where the last inequality follows from L1 which is already established.
To prove L4, note that

∇S(x) =
1

p
[W (x)]−(p−1)/p∇W (x).

Hence it follows from W4 that

|∇S(x)| ≤ const.|x|−2(p−1) · |x|2p−1 = const.|x|.

If let c3 denote the constant in the above we get L4.
Finally, to prove L5, define h(α)

.
= S(x+αy), and note that h(1) = S(x+y)

and h(0) = S(x). Therefore

S(x+ y) − S(y) = h(1) − h(0) =

∫ 1

0

h′(α)dα

=

∫ 1

0

∇S(x+ αy) · ydα

≤
∫ 1

0

c3|x+ αy| · |y|dα

≤
∫ 1

0

c3[|x| + α|y|] · |y|dα

= c3|x| · |y| +
c3
2
|y|2.

This completes the proof. �
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10.9.3 Proof of Theorem 6

At last we are in a position to give a proof of Theorem 6.

Proof of Theorem 6. Define the function S : R
k → [0,∞) as in Theorem

11, and define the function V : R
k → [1,∞) by

V (x)
.
= 1 + S(x), ∀x.

Recall ( [227, p. 174]) that the ‘drift’ of the stochastic Lyapunov function V
for the system (10.14) is defined as

dV (x) =

∫
X

V (y) P (x, dy) − V (x) =

∫
Rm

{V (f(x, e)) − V (x)}φ(e)de.

By Lemma 6, we already know that every compact set in R
k is petite. Thus,

by a theorem in [227, p. 354], the Markov chain is V -geometrically ergodic if
there exist constants γ, ν such that

dV (x) ≤ −γV (x) + IB(ν) ∀x, (10.19)

where B(ν) denotes the closed ball of radius ν centered at the origin, and I·
denotes the indicator function. Thus the proof consists of obtaining an upper
bound for dV (x) and showing that (10.19) is satisfied. This will establish V -
geometric ergodicity of the Markov chain, which in turn implies geometric
β-mixing by Theorem 9.

Computing directly, we have (using property L3 of S )

V [f(x, e)] − V (x) = V [f(x, 0)] − V (x) + (V [f(x, e)] − V [f(x, 0)])

≤ −c2|x|2 + V [f(x, e)] − V [f(x, 0)].

Now write
f(x, e) = f(x, 0) + z,

where
z = f(x, e) − f(x, 0).

By Condition A1 we have |z| ≤ K|e|. By Property L5 of S(·), we have

V [f(x, e)] − V [f(x, 0)] = S[f(x, 0) + z] − S[f(x, 0)]

≤ c3|f(x, 0)| · |z| + c3
2
|z|2

≤ c3L|x| · |z| +
c3
2
|z|2

≤ c3LK|x| · |e| + c3K
2

2
|e|2

.
= c4|x| · |e| + c5|e|2.

Now the drift term can be estimated as follows:
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dV (x) =

∫
Rm

[V (f(x, e)) − V (x)] φ(e)de

≤
∫

X

[−c2|x|2 + c4|x| · |e| + c5|e|2]φ(e)de

= −c2|x|2 + c4|x|· ‖ e1 ‖1 +c5 ‖ e1 ‖2
2

≤ −c2|x|2 + c4|x|· ‖ e1 ‖2 +c5 ‖ e1 ‖2
2,

Here, ‖ e1 ‖1 and ‖ e1 ‖2 are the L1 and L2 norms of the random variable
e1 which are finite as e1 is assumed to have finite variance. Let ν′ denote the
positive root of the quadratic equation

−c2
2
r2 + c4r ‖ e1 ‖2 +c5 ‖ e1 ‖2

2= 0,

and let ν
.
= max{ν′, 1}. Then, whenever |x| ≥ ν, we have

−c2
2
|x|2 + c4|x|· ‖ e1 ‖2 +c5 ‖ e1 ‖2

2≤ 0.

As a result,

dV (x) ≤ −c2
2
|x|2 ≤ −c2

2

[
1

1 + c1
|x|2 +

c1
1 + c1

|x|2
]

≤ −c2
2

[
1

1 + c1
+

1

1 + c1
S(x)

]
≤ − c2

2(1 + c1)
V (x).

Hence (10.19) holds with ν as above and γ
.
= c2/[2(1+c1)]. This shows that the

Markov chain is V -geometrically ergodic and hence geometrically β-mixing.
�

Proof of Theorem 7. We have shown that the Markov Chain {Xt} defined
by (10.14) is V -geometrically ergodic and hence is β-mixing. We now show
that the chain consisting of the state Xt and the noise et together also inherit
these properties. Let Yt = (Xt, et) denote the augumented chain. Note that
for Borel sets A,B

P{Yn+m ∈ A×B|Yi, i ≤ m} = P{(Xn+m, en+m) ∈ A×B|Xi, ei, i ≤ m}
= P{Xn+m ∈ A|Xi, ei, i ≤ m}P{en+m ∈ B}
= P{Xn+m ∈ A|Xm, em}µφ(B)

= P{Xn+m ∈ A|f(Xm, em)}µφ(B)

= Pn−1(f(Xm, em))µφ(B)

where µφ is the (common) distribution of t. Thus it is clear that {Yt} is a
Markov chain whose n- step transition probability function Qn((x, e), A) is
given by
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Qn((x, e), ·) = P (n−1)(f(x, e), ·) ⊗ µφ

and P (n−1)(f(x, e), ·)⊗µφ denotes the product of the measure P (n−1)(f(x, e), ·)
(on R

k) and and πµφ (on R
m).

Thus if π denotes the stationary distribution for the Markov chain Xt, it
follows that the stationary distribution of Yt is given by π̃ = π ⊗ µφ. Since
the second component of the two product measures, Qn((x, e), ·) and π̃ are
the same, it follows that

ρ(Qn((x, e), ·), π̃) = ρ(P (n−1)(f(x, e), ·), π)

Since {Xt} is V -geometrically ergodic, it follows that there exists λ < 1, µ
such that

ρ(Pn(x, ·), π) ≤ µλnV (x)

with ∫
V (x)π(dx) < ∞.

Defining Ṽ (x, e) = V (x), µ̃ = µ
λ , using (10.20) we conclude that

ρ(Qn((x, e), ·), π̃) ≤ µ̃λnṼ (x, e)

Further, ∫
Ṽ (x, e)δπ̃(x, e) =

∫
V (x)π(dx) < ∞.

Thus we have shown that the chain {Yt} is Ṽ -geomoetrically ergodic and
hence is also beta mixing. �

10.10 Conclusions

In this chapter, a beginning has been made towards showing that it is possible
to use the methods of statistical learning theory to derive finite time estimates
for use in system identification theory. Obviously there is a great deal of
room for improvement in the specific results presented here. For instance, in
Sections 10.4 and 10.5, it would be desirable to combine the fading memory
argument and the ARMA model into a single step. This would require new
results in statistical learning theory, whereby one would have to compute the
VC-dimension of mappings whose range is an infinite-dimensional space. This
has not been the practice thus far.

In summary, the message of this contribution is that both system iden-
tification theory and statistical learning theory can enrich each other. Much
work remains to be done to take advantage of this potential.
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Summary. An extension of a randomized algorithm is considered for the use of a
parameter-dependent Lyapunov function. The proposed algorithm is considered to
be useful for a less conservative design of a robust state-feedback controller against
nonlinear parametric uncertainty. Indeed, one can avoid two sources of conservatism
with the proposed algorithm: covering the uncertainty by a polytope and using a
common Lyapunov function for all parameter values. After a bounded number of it-
erations, the proposed algorithm either gives a probabilistic solution to the provided
control problem with high confidence or detects infeasibility of the problem in an
approximated sense. Convergence to a non-strict deterministic solution is discussed.
Usefulness of the proposed algorithm is illustrated by a numerical example.

11.1 Introduction

Although a robust-controller design is a classical control problem, it still re-
mains difficult against nonlinear parametric uncertainty. One existing ap-
proach to this problem consists of two simplifications: (i) to cover the un-
certainty by a polytope and consider the plants corresponding to the vertices
of the polytope, and (ii) to assume a common Lyapunov function for all of
those plants. These two simplifications enable us to formulate and solve the
above problem in terms of a linear matrix inequality (LMI). On the other
hand, these simplifications produce conservatism, that is, even if the original
problem is solvable, the simplified one may not.

In order to reduce conservatism, we propose in this chapter a randomized
algorithm that allows the use of a parameter-dependent Lyapunov function.
This is based on a randomized algorithm, which was proposed in [250] as an
extension of [76, 176, 271, 273], and also on a technique to use a parameter-
dependent Lyapunov function, which was developed by de Oliveira et al. [100]
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with further extensions by [11,13,101,116,328,334]. In particular, the proposed
algorithm does not need to cover the uncertainty and allows a Lyapunov
function having any parameter dependence.

A problem to be considered is formulated in terms of a parameter-
dependent LMI having two types of variables: parameter-independent vari-
ables, which describe a controller, and parameter-dependent variables, which
correspond to a Lyapunov function. The proposed algorithm iterates the
following three steps: (i) random selection of uncertain parameter values;
(ii) optimization of the parameter-dependent variables; (iii) update of the
parameter-independent variables based on the sensitivity of the preceding op-
timization problem. This algorithm terminates after a bounded number of
iterations. At its termination, it gives a probabilistic solution of the provided
problem with high confidence or detects that the problem has no deterministic
solution in an approximated sense. The above sensitivity is efficiently evalu-
ated based on a theory of semidefinite programming. In [76, 176, 271, 273], it
is shown that their algorithms find a non-strict deterministic solution instead
of a probabilistic one after a finite number of iterations with probability one.
We can prove a corresponding result on our algorithm. However, this result is
not emphasized here because it has some practical difficulties as is discussed
in [250] for a special case.

In Section 11.2, the problem to be considered is presented with an example.
An algorithm is proposed in Section 11.3 with a theoretical guarantee on its
performance. Section 11.4 describes how one can compute an infimum and a
subgradient, which are required in the algorithm. In Section 11.5, convergence
to a non-strict deterministic solution is discussed. Section 11.6 provides a
numerical example and Section 11.7 concludes this chapter.

Throughout this chapter, ln stands for the natural logarithm. For a real
number a, the symbol 	a
 denotes the minimum integer that is larger than or
equal to a. The symbol R

n designates the n-dimensional Euclidean space and
vol the volume in R

n. The symbol ‖·‖ denotes the Euclidean norm. The trans-
pose of a matrix or a vector is expressed by T. The maximum (most positive)
eigenvalue of a symmetric matrix A is written as λ[A]. Negative definiteness
and negative semidefiniteness of a symmetric matrix A are denoted by A ≺ 0
and A � 0, respectively.

11.2 Problem

The problem to be considered is stated in a general form. Let V (x, y, θ) be a
symmetric-matrix-valued function in x ∈ R

n, y ∈ R
m, and θ ∈ Θ ⊆ R

p. At
this moment, the parameter set Θ can be any set. The function V (x, y, θ) is
affine in x and y and is written as

V (x, y, θ) = V0(θ) +
n∑

i=1

xiVi(θ) +
m∑

i=1

yiVn+i(θ),
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where xi and yi are the ith elements of x and y, respectively.

Problem 1. Find x ∈ R
n such that for any θ ∈ Θ there exists y ∈ R

m

satisfying V (x, y, θ) ≺ 0. �

The choice of y can depend on the parameter θ. The inequality V (x, y, θ) ≺ 0
is called a parameter-dependent LMI. When Θ consists of infinitely many
components, our problem is equivalent to solving infinitely many LMIs with
infinitely many variables. Note also that our problem reduces to the one con-
sidered in the existing papers [76,176,250,271,273] in the special case that V
does not depend on y.

Here is an example that can be formulated in the above general form.

Example 1. Consider a discrete-time plant ξ[k + 1] = A(θ)ξ[k] + B(θ)u[k],
which depends nonlinearly on a time-invariant but uncertain parameter θ ∈
Θ ⊆ R

p. Suppose that we want a state-feedback controller u[k] = Kξ[k] that
robustly stabilizes this plant for all θ ∈ Θ. This problem can be stated in
terms of a parameter-dependent LMI based on the result of de Oliveira et
al. [100]. Namely, consider to find two matrices G and L such that for any
θ ∈ Θ there exists a symmetric matrix Y satisfying

−
[

Y A(θ)G+B(θ)L
GTA(θ)T + LTB(θ)T G+GT − Y

]
≺ 0. (11.1)

Then K := LG−1 gives a desired controller. Here, η[k]TY η[k] works as
a Lyapunov function for the transposed version of the closed-loop system
η[k + 1] = [A(θ) + B(θ)K]Tη[k]. Since Y can be chosen depending on θ, the
Lyapunov function is allowed to be parameter-dependent. This means that
a less conservative result can be expected than in the case that a common
Lyapunov function is used for all θ. In order to express this problem in our
general form, construct x by the components of G and L, construct y by the
independent components of Y , and write the left-hand side of (11.1) as V . �

The idea in this example has been extended to robust performance prob-
lems [11, 101] and to problems on continuous-time systems [13, 116, 328,334].
These can be stated in our general form, too.

The x desired in Problem 1 is called a deterministic solution. The set of all
deterministic solutions is referred to as the solution set S ⊆ R

n. Rather than
a deterministic solution itself, we consider to obtain an approximate solution
in this chapter. For a given probability measure P on Θ and a given 0 < ε < 1,
we mean by a probabilistic solution an x ∈ R

n that satisfies

P
{
θ ∈ Θ : ∃y ∈ R

m s.t. V (x, y, θ) ≺ 0
}
> 1 − ε.

By a non-strict deterministic solution, we mean an x ∈ R
n such that for any

θ ∈ Θ there exists y ∈ R
m satisfying V (x, y, θ) � 0. Note that the strict

inequality in Problem 1 is replaced by the non-strict one.
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11.3 Algorithm

This is the main section of this chapter and proposes a randomized algorithm
for finding a probabilistic solution of Problem 1. The basic idea is as follows.
Note that V (x, y, θ) ≺ 0 is equivalent to λ[V (x, y, θ)] < 0. Hence, for pro-
vided x and θ, there exists y ∈ R

m satisfying V (x, y, θ) ≺ O if and only if
infy∈Rm λ[V (x, y, θ)] < 0. This infy∈Rm λ[V (x, y, θ)] is convex in x because
λ[V (x, y, θ)] is convex in x and y. By these facts, we can extend the ran-
domized algorithms in [250], which are for the special case that V does not
depend on y. Although the extended algorithm requires computation of the
infimum value, infy∈Rm λ[V (x, y, θ)], and its subgradient with respect to x,
their computation is efficiently carried out as we will see in the next section.

In [250], two randomized algorithms are presented: the gradient-based
algorithm, which was originally proposed by Polyak and Tempo [273] and
Calafiore and Polyak [76], and the ellipsoid-based algorithm, which was by
Kanev et al. [176]. We present only an extension of the ellipsoid-based algo-
rithm because an extension of the gradient-based one is similar.

The algorithm to be proposed iteratively updates an ellipsoid, which is
expected to contain a deterministic solution. The ellipsoid at the kth iteration,
E(k), is specified by its center x(k) and a positive definite matrix Q(k) in the
form of {x ∈ R

n : (x− x(k))T(Q(k))−1(x− x(k)) < 1}.
Before executing the algorithm, we choose an initial ellipsoid E(0) =

(x(0), Q(0)) and three numbers 0 < µ, 0 < ε < 1, and 0 < δ < 1. We usually
choose these three numbers close to zero. We use two counters in the algo-
rithm: k counts the number of iterations and � the number of updates. We
define an integer

� :=
⌈
2(n+ 1) ln

volE(0)

µ

⌉
and a function

κ(�) :=

⌈(
ln
π2(�+ 1)2

6δ

)/
ln

1

1 − ε

⌉
.

Algorithm 11.1
Initialization: Set k := 0 and � := 0.

Step 1. If � reaches �, stop with no output.
Step 2. If λ(k−1), λ(k−2), . . . , λ(k−κ(�)) are all well-defined and negative, stop

and give x(k) as an output.
Step 3. Randomly sample θ(k) ∈ Θ according to the given probability mea-

sure P.
Step 4. Check λ(k) := infy∈Rm λ[V (x(k), y, θ(k))] for negativity.

Case 1 The value λ(k) is non-negative.
Compute a subgradient, say d(k), of infy∈Rm λ[V (x(k), y, θ(k))] as a convex
function in x. Update the current ellipsoid by setting
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x(k+1) := x(k) − Q(k)d(k)

(n+ 1)
√

(d(k))TQ(k)d(k)
,

Q(k+1) :=
n2

n2 − 1

[
Q(k) − 2Q(k)d(k)(d(k))TQ(k)

(n+ 1)(d(k))TQ(k)d(k)

]
.

Case 2 The value λ(k) is negative.
Keep the current ellipsoid by setting x(k+1) := x(k) and Q(k+1) := Q(k).

Step 5. If λ(k) ≥ 0, set � := �+ 1.
Step 6. Set k := k + 1. Go back to Step 1.

The performance of this algorithm is guaranteed by the following theorem,
which is a direct generalization of Theorem 21 in [250], a result on the special
case that V does not depend on y. In particular, the statement (a) evaluates
the computational complexity and the statements (b) and (c) give properties
of the output. Although the proof is almost the same as in the special case,
it is presented in Appendix 11.8 for convenience of the readers. Notice that
the probabilistic behavior of the algorithm is determined by the sequence
θ(0), θ(1), . . . We hence analyze the behavior of the algorithm according to the
probability measure on such sequences, which can be derived from P and is
denoted by P

∞. See for example [335, Section II.3.4].

Theorem 1. The following statements hold on Algorithm 11.1.

(a) The number of iterations k is bounded as

k ≤ �κ(�− 1) = �

⌈(
ln
π2�

2

6δ

)/
ln

1

1 − ε

⌉
=: k.

(b) If the algorithm terminates at Step 1, the volume of the set E(0)∩S is less
than µ.

(c) The probability that the algorithm stops at Step 2 but still the corresponding
output x(k) fails to satisfy P{θ ∈ Θ : ∃y ∈ R

m s.t. V (x(k), y, θ) ≺ 0} > 1−ε
is less than or equal to δ, where the probability is measured with respect to
P
∞.

The statement (a) of Theorem 1 means that our algorithm stops after

at most k iterations. The number k is of order O((�/ε) ln(�
2
/δ)), which is a

polynomial in n, ln(volE(0)/µ), 1/ε, and ln(1/δ). Note that this number does
not depend on the dimension of the parameter p. This forms a sharp contrast
with deterministic algorithms whose complexity is usually of exponential order
in p.

When the algorithm stops at Step 1, we have vol (E(0) ∩ S) < µ by the
statement (b). This means that our choice of an initial ellipsoid E(0) is not
good or the solution set S itself is too small. On the other hand, termination at
Step 2 implies that the associated output is a probabilistic solution with high
confidence. Note that the algorithm always stops at Step 2 if vol (E(0)∩S) ≥ µ.
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As is considered in Section 6 of [250] for the special case, we can adapt
the algorithm for an optimization problem. Indeed, since the algorithm gives
a negative or a positive result, its bisectional use leads us to finding a solu-
tion that approximately optimizes a given objective function. For the explicit
algorithm and its properties, see Section 6 of [250].

11.4 Computation of the Infima and the Subgradients

In order to carry out Algorithm 11.1 in the previous section, we need to com-
pute the infimum value, λ(k) = infy∈Rm λ[V (x(k), y, θ(k))], and its subgradient
d(k). This section provides a method for this task.

Let us notice that the infimum value λ(k) is the optimal value of the
following semidefinite programming problem:

minimize λ

subject to V (x(k), y, θ(k)) − λI � 0, (11.2)

where the optimization variables are y and λ. By following a general theory
on semidefinite programming (see e.g. [331]), its dual problem is

maximize tr [UV (x(k), 0, θ(k))]

subject to U � 0, trU = 1,

tr [UVn+i(θ
(k))] = 0 for i = 1, . . . ,m, (11.3)

with the optimization variable being U , where tr designates the trace of a
matrix. The following properties hold on this dual problem.

Theorem 2. If the optimal value of the primal problem (11.2) is finite, the
dual problem (11.3) has an optimal solution and the optimal value is equal to
the infimum value λ(k). In this case, the set of all subgradients of the infimum

value is equal to the set of vectors
[
tr [UV1(θ

(k))] · · · tr [UVn(θ(k))]
]T

, where
U is an optimal solution of (11.3).

Proof. The first statement follows from the duality theorem on semidefinite
programming [331, Theorem 4.1.3]. Notice that the Slater condition is sat-
isfied in our primal problem (11.2), that is, there exist y and λ that satisfy
V (x(k), y, θ(k)) − λI ≺ 0. The second statement is derived from sensitivity
analysis on semidefinite programming [331, Theorem 4.1.2]. �

Theorem 2 reduces computation of the infimum value λ(k) and the subgra-
dient d(k) to solving the dual semidefinite programming problem (11.3). Since
one can efficiently solve a semidefinite programming problem, computation of
λ(k) and d(k) is now possible.
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Remark 1. In some situations, one can check λ(k) for negativity without com-
puting its value explicitly. In the case of Example 1, for example, λ(k) is
negative if and only if the controller corresponding to x(k) stabilizes the plant
at θ = θ(k). Stability of the system can be checked by location of its poles.
Using such an alternative is preferable when it is faster and/or numerically
more robust than semidefinite programming. �

Remark 2. In the algorithms of [76, 176, 271, 273], the norm ‖V (x, y, θ)+‖F

is used in place of our λ[V (x, y, θ)], where ‖ · ‖F is the Frobenius norm and
V (x, y, θ)+ is the projection of V (x, y, θ) onto the cone of positive semidefinite
matrices. There are two reasons why we adopt the maximum eigenvalue. First,
the infimum value and its subgradient can be efficiently computed as we have
seen. Second, V (x, y, θ) ≺ 0 can be differentiated from V (x, y, θ) � 0 with
λ[V (x, y, θ)], while this is not possible with ‖V (x, y, θ)+‖F. The latter point is
important because a strict inequality is often required in control applications.
The use of λ[V (x, y, θ)] is due to [205]. �

11.5 Convergence to a Non-Strict Deterministic Solution

In the papers [76, 176, 271, 273], they considered a non-strict deterministic
solution in our terminology and showed that their randomized algorithms
obtain this solution after a finite number of iterations with probability one. We
prove in this section a corresponding result for our algorithm and investigate
the expected number of necessary iterations. For this purpose, we slightly
modify Algorithm 11.1 in Section 11.3 by removing Steps 1 and 2. Similarly
to [76,176,271,273], the following assumptions are made.

Assumption 11.1. For x∗ ∈ R
n, the probability

P{θ ∈ Θ : inf
y∈Rm

λ[V (x∗, y, θ)] > 0}

is positive whenever infy∈Rm λ[V (x∗, y, θ)] > 0 holds for some θ ∈ Θ.

Assumption 11.2. The intersection between the initial ellipsoid E(0) and the
solution set S has a positive volume.

Theorem 3. Under Assumptions 11.1 and 11.2, there exists with probability
one a finite k such that x(k) produced by the modified algorithm is a non-strict
deterministic solution, where the probability is measured with P

∞.

Proof. The proof is basically the same as that of Lemma 2 in [176]. Since
E(k) ⊇ E(0) ∩ S as in the proof of Theorem 1 (b), the volume of the ellipsoid
E(k) has to be greater than or equal to that of E(0) ∩ S, which is positive
due to Assumption 11.2. This means that the number of updates is finite
by the same reasoning as in the proof of Theorem 1 (b). In the modified
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algorithm, it is allowed that no update is made for an infinite number of
consecutive iterations. However, the probability that this occurs is zero by
Assumption 11.1. �

For each sequence {θ(k)}, there may exist multiple k’s having the property
of the theorem. We write the minimum such k as kN, which stands for the
number of iterations necessary to find a non-strict deterministic solution. Note
that kN is a random number.

Though the above result is theoretically attractive, it is less practical than
the search for a probabilistic solution proposed in the preceding sections. The
reason is as follows. First, it is difficult to choose an initial ellipsoid E(0)

so that Assumption 11.2 holds because we do not know the location of the
solution set S in many cases. If Assumption 11.2 fails to hold, the finite-
time convergence is not guaranteed. Second, it is difficult to detect when x(k)

becomes a non-strict deterministic solution. Indeed, in order to detect it, we
need to check infy∈Rm V (x(k), y, θ) � 0 for all θ ∈ Θ, which is impossible in a
typical case that Θ consists of infinitely many parameter values. Finally, the
number of necessary iterations kN is distributed with a heavy tail. In fact, the
expectation of this number is infinite as shown in the following theorem. The
corresponding result has been reported in the special case that V does not
depend on y [250,252].

Theorem 4. Suppose that an initial ellipsoid E(0) is provided. Under As-
sumptions 11.3–11.6 below, the number of necessary iterations kN in the mod-
ified algorithm has infinite expectation, where the expectation is taken accord-
ing to P

∞.

The proof is similar to that in the special case. See Appendix 11.9.
Due to the dependence on y, the required assumptions are stronger than

in the special case.

Assumption 11.3. The parameter set Θ is a bounded closed set having a
non-empty interior and a finite-measure boundary. There exists an open set
that includes Θ and has V0(θ), . . . , Vn+m(θ) continuously differentiable there.
The probability measure P has a density function possessing a finite upper
bound and a positive lower bound.

Assumption 11.4. There exists a finite sequence of parameter values {θ̂(k)}k∗

k=0

having the following properties, where θ̂(0), . . . , θ̂(k∗−1) are in the interior of
Θ and θ̂(k∗) is in Θ. If we choose θ(0) = θ̂(0), . . ., θ(k∗) = θ̂(k∗) in the modified
algorithm, we obtain x(0) = x̂(0), . . ., x(k∗) = x̂(k∗), with which the following
statements hold:

(a) For each of k = 0, . . . , k∗ − 1, there holds infy∈Rm λ[V (x̂(k), y, θ̂(k))] > 0;

(b) infy∈Rm λ[V (x̂(k∗), y, θ̂(k∗))] = maxθ∈Θ infy∈Rm λ[V (x̂(k∗), y, θ)] = 0;
(c) For each of k = 0, . . . , k∗, there exists ŷ(k) ∈ R

m that attains the infimum

value infy∈Rm λ[V (x̂(k), y, θ̂(k))];
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(d) For each of k = 0, . . . , k∗, the maximum eigenvalue λ[V (x̂(k), ŷ(k), θ̂(k))] is
simple;

(e) For each of k = 0, . . . , k∗, the Hessian of λ[V (x, y, θ)] with respect to y is

positive definite at (x̂(k), ŷ(k), θ̂(k));
(f) The gradient of λ[V (x, y, θ)] with respect to θ is non-zero at (x̂(k∗), ŷ(k∗),

θ̂(k∗)).

The assumption (d) guarantees the existence of the Hessian and the gradi-
ent considered in the assumptions (e) and (f). By the assumptions (c), (d),
and (e), the infimum value, infy∈Rm λ[V (x, y, θ)], is continuously differentiable

in neighborhoods of (x̂(k), θ̂(k)), k = 0, . . . , k∗. In particular, the gradient of

infy∈Rm λ[V (x, y, θ)] with respect to θ is non-zero at (x̂(k∗), θ̂(k∗)) by the as-

sumption (f). Due to this fact and the assumption (b), the point θ̂(k∗) has to
lie on the boundary of Θ.

Since x(k∗) depends on the choice of θ(0), . . . , θ(k∗−1), it is possible to regard
infy∈Rm λ[V (x(k∗), y, θ(k∗))] as a function of θ(0), . . . , θ(k∗). This function is

continuously differentiable in a neighborhood of (θ̂(0), . . . , θ̂(k∗)) by the above
discussion and the update rule of the algorithm. It is also possible to regard
maxθ(k∗)∈Θ infy∈Rm λ[V (x(k∗), y, θ(k∗))] as a function of θ(0), . . . , θ(k∗−1). The
next assumption is made on this function.

Assumption 11.5. The maximum maxθ(k∗)∈Θ infy∈Rm λ[V (x(k∗), y, θ(k∗))] is
attained at a unique θ(k∗) for each (θ(0), . . . , θ(k∗−1)) in a neighborhood of

(θ̂(0), . . . , θ̂(k∗−1)).

It follows from this assumption that the maximum value, maxθ(k∗)∈Θ infy∈Rm

λ[V (x(k∗), y, θ(k∗))], is continuously differentiable in a neighborhood of (θ̂(0),

. . . , θ̂(k∗−1)) and that the unique maximizing θ(k∗) is continuous there. The
final assumption is now made.

Assumption 11.6. There exists at least one k = 0, . . . , k∗ − 1 such that the
gradient of maxθ(k∗)∈Θ infy∈Rm λ[V (x(k∗), y, θ(k∗))] with respect to this θ(k) is

non-zero at (θ̂(0), . . . , θ̂(k∗−1)).

11.6 Example

In order to illustrate our approach, we consider robust stabilization of a tower
crane model, which is taken from [356] with some simplification. Application
of Algorithm 11.1 successfully gave a probabilistic solution as we will see
below. On the other hand, we were not able to find a solution due to the
conservatism with the existing approach based on a polytopic cover and a
common Lyapunov function. These results show practical usefulness of our
approach.
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Figure 11.1. Histograms for 200 executions of the algorithm. Left: number of iter-
ations (×104); Right: running time (s).

By discretizing the model with the sampling period 0.01 s, we obtain the
plant ξ[k + 1] = Aξ[k] + Bu[k], where the dimension of ξ[k] is four. The
coefficients A and B nonlinearly depend on the three-dimensional parameter
θ, which expresses the rope length, the boom angle at the equilibrium point,
and the load weight. More details of the plant is found in [251]. It is supposed
that each component of θ can take any value in some interval, which means
that our parameter set Θ is a hyper rectangle. We consider to design a robustly
stabilizing controller by using the formulation of Example 1 and applying
Algorithm 11.1, which results in n = 20 and m = 10. We use the uniform
distribution as P and choose the initial ellipsoid E(0) by letting x(0) be the zero
vector and Q(0) be the identity. The parameters are set as µ = 10−9volE(0),
ε = 0.001, and δ = 0.0001.

We executed the algorithm 200 times with Pentium 4 of 2.4 GHz and
memory of 2.0 GByte. We used SDPA-M1 of the version 2.00 to solve the
semidefinite programming problem (11.3). In every execution, the algorithm
stopped at Step 2 and gave an output. Figure 11.1 (a) shows the histogram of
the number of iterations and (b) shows that of the running time. We can see
from Figure 11.1 (b) that the running time is less than 20 seconds in many
cases, which is practical enough. By Theorem 1 (c), on the other hand, the
probability that the algorithm stops at Step 2 but the obtained output is not
a probabilistic solution with ε = 0.001 is less than or equal to δ = 0.0001.
This means that the obtained output is a probabilistic solution with high
confidence.

11.7 Conclusion

A randomized algorithm that allows the use of a parameter-dependent Lya-
punov function is proposed. It is considered to be useful for a less conservative

1http://grid.r.dendai.ac.jp/sdpa/index.html
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robust-controller design against nonlinear parametric uncertainty. This algo-
rithm provides a probabilistic solution after a bounded number of iterations,
which is of polynomial order in the problem size. Convergence to a non-strict
deterministic solution is considered and its practical difficulties are pointed
out. Since our problem is described in a general form, the application of the
proposed algorithm is not limited to robust-controller design.

11.8 Appendix: Proof of Theorem 1

(a) By the construction of the algorithm, at most κ(�0) iterations are made
during the period that the counter � has the value �0. Since the algorithm
stops when � reaches �, the number of iterations k has to be less than or equal
to κ(0) + · · · + κ(�− 1) ≤ �κ(�− 1).

(b) Suppose that the ellipsoid E(k) is updated. Then the ellipsoid E(k+1) is
in fact the minimum-volume ellipsoid that contains the intersection between
the original ellipsoid E(k) and the half space {x ∈ R

n : (d(k))T(x− x(k)) < 0}
[50]. As we will see below, this half space includes the solution set S. There-
fore E(k+1) includes the set E(k) ∩ S. It can also be shown that volE(k+1) <
(volE(k))e−1/2(n+1) [50]. Hence, if the ellipsoid E(k) has experienced � up-

dates, it satisfies E(k) ⊇ E(0) ∩ S and volE(k) < (volE(0))e−�/2(n+1) ≤ µ,
which shows the claim.

We show that the half space {x ∈ R
n : (d(k))T(x − x(k)) < 0} in-

cludes the solution set S. To this end, note that infy∈Rm λ[V (x, y, θ(k))] ≥
infy∈Rm λ[V (x(k), y, θ(k))] + (d(k))T(x− x(k)) ≥ (d(k))T(x− x(k)) because d(k)

is the subgradient of infy∈Rm λ[V (x(k), y, θ(k))] and the value infy∈Rm λ[V (x(k),
y, θ(k))] is non-negative. By this inequality, if x belongs to S, it satisfies
infy∈Rm λ[V (x, y, θ(k))] < 0 and thus (d(k))T(x− x(k)) < 0.

(c) This is an extension of a result of [182] and [358]. Write the solution
candidate after � updates as x[�] noting that the candidate remains unchanged
until the next update. We define two events for each of � = 0, 1, . . .:

M� : Update is made at least � times and the candidate x[�] is not
updated for consecutive κ(�) iterations;

B� : Update is made at least � times and x[�] satisfies P{θ ∈ Θ : ∃y ∈
R

m s.t. V (x[�], y, θ) ≺ 0} ≤ 1 − ε.

In the following, we will show

P
∞[

(M0 ∩B0) ∪ (M1 ∩B1) ∪ · · ·
]
≤ δ, (11.4)

which establishes the claim.
We have, for any �,

P
∞(M� ∩B�) = P

∞(M�|B�)P
∞(B�) ≤ P

∞(M�|B�) ≤ (1 − ε)κ(�),
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β = β�(α)
max

ω
f < 0

max
ω

f > 0

Figure 11.2. The function β�(α)

where P
∞(M�|B�) expresses the conditional probability of M� with B� being

assumed. Therefore, we have

P
∞[

(M0 ∩B0) ∪ (M1 ∩B1) ∪ · · ·
]
≤ (1 − ε)κ(0) + (1 − ε)κ(1) + · · ·

≤ 6δ

π2

(
1 +

1

22
+ · · ·

)
= δ,

which shows (11.4).

11.9 Appendix: Proof of Theorem 4

We prepare some notation. As was noticed after Assumption 11.4, the infimum
value, infy∈Rm λ[V (x(k∗), y, θ(k∗))], is regarded as a function of (θ(0), . . . , θ(k∗)),

which is continuously differentiable in a neighborhood of (θ̂(0), . . . , θ̂(k∗)). Let
us write this function as f(α, β, ω), where [αT β]T stands for [(θ(0))T . . .
(θ(k∗−1))T]T with β being the last element of the vector and ω stands for θ(k∗).

We also use the notation [α̂T β̂]T = [(θ̂(0))T . . . (θ̂(k∗−1))T]T and ω̂ = θ̂(k∗).
By rearranging the order of the elements if necessary, we can assume due
to Assumption 11.6 that (∂/∂β) maxω∈Θ f(α, β, ω) �= 0 at (α̂, β̂). Using the
implicit function theorem, we can define a continuously differentiable function
β�(α) so that β�(α̂) is equal to β̂ and maxω∈Θ f(α, β, ω) = 0 is equivalent

to β = β�(α) in a neighborhood of (α̂, β̂). The situation is illustrated in
Figure 11.2.

For each pair of (α, β), a point x(k∗) is determined. A pair (α, β) satisfies
maxω∈Θ f(α, β, ω) > 0 if and only if the corresponding x(k∗) is not a non-strict
deterministic solution, in which case this x(k∗) needs to be further updated.
We will evaluate the probability of this update, which is equal to P

∞{ω ∈ Θ :
f(α, β, ω) ≥ 0}. Indeed, the two lemmas below show that this probability is
bounded by a linear function of |β−β�(α)|. Once such evaluation is obtained,
the theorem is easily proved.

We need more preparation to present the first lemma. By Assumption 11.5,
the maximum value, maxω∈Θ f(α, β�(α), ω), is attained at a unique ω, which
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is written as ω�(α). This ω�(α) is continuous in α as was noted after As-
sumption 11.5. Distinguishing the first element of ω from the others, we write
ω = [ω1 ωT

2 ]T, ω̂ = [ω̂1 ω̂T
2 ]T, and so on. We can assume without loss of

generality that (∂/∂ω1)f(α, β, ω) is non-zero at (α̂, β̂, ω̂) since the gradient is
non-zero as was discussed after Assumption 11.4.

Lemma 1. There exist a neighborhood of (α̂, β̂) and a positive number c such
that, if (α, β) belongs to that neighborhood and ω ∈ Θ satisfies f(α, β, ω) = 0,
there exists a real number t such that [ω1 + t ωT

2 ]T is on the boundary of Θ
and |t| ≤ c|β − β�(α)|.

Proof. Since (∂/∂ω1)f(α, β, ω) is non-zero at (α̂, β̂, ω̂), we can apply the
implicit function theorem and define a continuously differentiable function
ω1(α, β, ω2) so that ω1(α̂, β̂, ω̂2) is equal to ω̂1 and f(α, β, [ω1, ω

T
2 ]T) = 0 is

equivalent to ω1 = ω1(α, β, ω2) in a neighborhood of (α̂, β̂, ω̂). Moreover, it is
possible to assume the existence of a positive number c such that∣∣∣∂ω1(α, β, ω2)

∂β

∣∣∣ =
∣∣∣ (∂/∂β)f(α, β, ω)

(∂/∂ω1)f(α, β, ω)

∣∣∣ ≤ c. (11.5)

At (α̂, β̂), the relationship f(α, β, ω) = 0 holds only at ω̂; Hence, it is possible

to choose a neighborhood of (α̂, β̂), in which f(α, β, ω) = 0 holds only at ω
obtained as [ω1(α, β, ω2) ωT

2 ]T. Now, suppose that f(α, β, ω) = 0 holds with
(α, β) in this neighborhood. By integrating (11.5) from β to β�(α), we have
the lemma because no ω ∈ Θ satisfies f(α, β�(α), ω) = 0 except for ω�(α). �

Lemma 2. There exist a neighborhood of (α̂, β̂) and a positive number c′ such
that all (α, β) in that neighborhood satisfy P{ω ∈ Θ : f(α, β, ω) ≥ 0} ≤
c′|β − β�(α)|.

Proof. In Lemma 1, a neighborhood of (α̂, β̂) can be chosen to be convex
without loss of generality. Suppose that f(α, β, ω) ≥ 0 holds for some (α, β)
in that neighborhood and ω ∈ Θ. Since f(α, β�(α), ω) ≤ 0, continuity of
f(α, β, ω) implies that there exists β̃ satisfying f(α, β̃, ω) = 0 on the line
segment connecting β and β�(α). Lemma 1 guarantees the existence of t such
that [ω1+t ωT

2 ]T is on the boundary of Θ and |t| ≤ c|β̃−β�(α)| ≤ c|β−β�(α)|.
Due to Assumption 11.3, the probability of ω ∈ Θ having this property is
bounded by c′|β − β�(α)| for some c′ > 0. Note that we can choose the same
c′ for all α in a neighborhood of α̂. �

We now prove the theorem. We can assume without loss of generality that
(∂/∂β)maxω∈Θ f(α̂, β̂, ω) is not only non-zero but also positive. We choose
positive numbers a and b small enough that the set A = {(α, β) : ‖α − α̂‖ ≤
a and β�(α) < β ≤ β�(α) + b} is contained in the neighborhood of Lemma 2.
For a pair (α, β) ∈ A, the corresponding x(k∗) is not a non-strict deterministic
solution and thus needs to be updated. Because the probability of update is
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bounded by c′|β − β�(α)| due to Lemma 2, the expected number of iterations
required to make one update is larger than or equal to 1/c′|β − β�(α)|. If we
integrate this number in A with P

∞, it gives a lower bound of the expected
number of iterations necessary to find a non-strict deterministic solution. The
result is infinity, which completes the proof.
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Summary. A probabilistic approach to robust controller design is presented. The
design can be recast as a minimax problem with a cost function in general. In order
to solve the problem efficiently, the definition of probable near minimax value is
introduced. A probable near minimax value of the function can be calculated with a
certain accuracy and a certain confidence by using a randomized algorithm, where
independent identically distributed samples of optimized parameters are generated
according to probability measures. It is shown that the necessary number of samples
depends on the accuracy and the confidence, and is independent of the number of
parameters. Furthermore, a special case where the cost function has a global saddle
point is investigated. The definition of probable near saddle value, which is weaker
than that of probable near minimax value, is introduced. Then, it is shown that the
necessary number of samples is smaller in this case.

12.1 Introduction

Analysis and synthesis of robust control systems can be formulated as math-
ematical problems defined by structured singular value µ in general [253].
However, exact computation of µ is NP-hard with respect to the number of
uncertain parameters in the model of a plant [62]. That is, analysis and syn-
thesis of robust control systems involves an essential difficulty from the view
point of computational complexity.

To cope with this difficulty in a practical way, probabilistic approach has
been investigated, e.g., in [24, 74, 76, 129, 176, 182, 252, 273, 347, 358, 371, 381,
382]. In contrast to deterministic approach, where all members in the model
set of the plant are considered, probabilistic approach which chooses almost
all members randomly provides a practical method with low computational
complexity and low risk.
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A probabilistic method for robustness analysis of control systems is in-
vestigated in [182, 347, 358]. This method is used for H∞ controller synthesis
in [182], which presents a randomized algorithm to find a low-order H∞ con-
troller that is as efficient as the full-order H∞ controller given by analytical
method. Furthermore, a probabilistic robust controller design with respect
to plant uncertainties is investigated in [381], which proposes a randomized
algorithm to find a controller that minimizes an average performance of the
closed-loop system with respect to plant uncertainties.

In this chapter, we present a probabilistic approach to robust controller
design in a general setting. We propose a randomized algorithm to find a con-
troller that minimizes the worst case performance under plant uncertainties.

More specifically, robust controller design can be formulated as a minimax
problem with a cost function. In order to develop a probabilistic method
to solve the minimax problem, we introduce the definition of probable near
minimax value. Then, we propose a randomized algorithm which calculates
a probable near minimax value of the function with a certain accuracy and
a certain confidence, where independent identically distributed samples of
optimized parameters are generated according to probability measures. The
proposed algorithm is based on so-called Monte Carlo simulation. The main
result of this chapter is to show that the necessary number of samples depends
on the accuracy and the confidence, and is independent of the number of
parameters.

Furthermore, we consider a special case of the minimax problem, where
the cost function has a global saddle point and its value at the point gives
the exact minimax value. In this case, if we introduce a weaker notion, that
is, probable near saddle value, then we can reduce the necessary number of
samples corresponding to the plant uncertain parameters. This fact means
that the necessary number of samples depends on problem structure, and
we may invent more efficient randomized algorithms utilizing a particular
structure of control problems.

The chapter is organized as follows. In Section 12.2, we summarize basic
materials in a probabilistic approach [381], that is, the definitions of probable
near minimum and maximum, and randomized algorithms to find them. In
Section 12.3, we revisit robust controller design and recall that the design can
be recast as a minimax problem with a cost function. Then, in Section 12.4,
we present the main result of this chapter. That is, we define probable near
minimax value and propose a randomized algorithm to find it with low compu-
tational complexity. Subsequently, in Section 12.5, we derive a similar result
for the case that the function has a global saddle point. Here we compare
the necessary numbers of samples given by these results. In Section 12.6, we
demonstrate effectiveness of the proposed randomized algorithm through nu-
merical examples. Finally, in Section 12.7, we give concluding remarks and
make some comments on a possible extension of these results.
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12.2 Preliminaries

Let us consider a measurable function g : Y → R, where Y is a measur-
able subset of some finite-dimensional Euclidean space. It is well-known that
finding the exact minimum value of the function g(·)

g∗ = inf
y∈Y

g(y)

is in general NP-hard with respect to the dimension of the vector y ∈ Y . To
cope with this difficulty, the following notion of an approximation of the exact
minimum is introduced in [381].

Definition 1. Suppose that g : Y → R, that PY is a given probability measure
on Y , and that α ∈ (0, 1) is a given number. A number g0 ∈ R is said to be a
probable near minimum of g(·) to level α if

g∗ ≤ g0

PY {ỹ ∈ Y : g(ỹ) < g0} ≤ α. (12.1)

If g0 = g∗ then (12.1) holds for any α. This means that the exact minimum
is also a probable near minimum to any level. On the other hand, if g0 > g∗

then small α implies that the vector ỹ such that g(ỹ) < g0 hardly occurs when
ỹ is chosen randomly. In this sense, g0 is near g∗, although g0 − g∗ may not
be small actually.

There exists an efficient randomized algorithm to find a probable near
minimum [381].

Lemma 1. Suppose that a probability measure PY on Y , a measurable func-
tion g : Y → R, a level parameter α ∈ (0, 1), and a confidence parameter
δα ∈ (0, 1) are given. Choose an integer N such that

N ≥ ln(1/δα)

ln[1/(1 − α)]
. (12.2)

Generate independent identically distributed (i.i.d.) samples y1, y2, . . . , yN ∈
Y distributed according to PY . Define

y = [y1 y2 . . . yN ]T ∈ Y N

ĝ(y) = min
1≤i≤N

g(yi).

Then, it can be said with confidence at least 1−δα that ĝ(y) is a probable near
minimum of g(·) to level α.

The number N of i.i.d. samples required for estimation of a probable near
minimum depends only on parameters α and δα, and does not depend on
the dimension of the vector y. Thus, if i.i.d. samples can be generated with a
polynomial time, then finding a probable near minimum is not NP-hard with
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respect to the dimension. Note that such an efficient algorithm to generate
random samples is derived for robustness analysis of control systems in [74].

Now, let us consider a measurable function h : X → R, where X is a
measurable subset of some finite-dimensional Euclidean space. In the same
way, for finding the exact maximum of h(·)

h∗ = sup
x∈X

h(x)

we can state the corresponding notion and result as follows.

Definition 2. Suppose that h : X → R, that PX is a given probability measure
on X, and that β ∈ (0, 1) is a given number. A number h0 ∈ R is said to be
a probable near maximum of h(·) to level β if

h∗ ≥ h0

PX{x̃ ∈ X : h(x̃) > h0} ≤ β.

Lemma 2. Suppose that a probability measure PX on X, a measurable func-
tion h : X → R, an level parameter β ∈ (0, 1), and a confidence parameter
δβ ∈ (0, 1) are given. Choose an integer M such that

M ≥ ln(1/δβ)

ln[1/(1 − β)]
.

Generate i.i.d. samples x1, x2, . . . , xM ∈ X distributed according to PX . De-
fine

x = [x1 x2 . . . xM ]T ∈ XM

ĥ(x) = max
1≤i≤M

h(xi).

Then, it can be said with confidence at least 1−δβ that ĥ(x) is a probable near
maximum of h(·) to level β.

12.3 Problem Statement

Let us consider a family of plants {G(x), x ∈ X}, where x is the vector of all
the uncertain elements of the plant description and X is the set of all possible
plant parameter vectors x. We assume that x is a finite-dimensional vector
and X is a measurable subset of some finite-dimensional Euclidean space.
This plant description {G(x), x ∈ X} can represent any plant family with
structured uncertainty.

We also consider a family of controllers {K(y), y ∈ Y }, where y is the
vector of all adjustable design parameters of the controller description and
Y is the set of all possible controller parameter y. Similarly, we assume that
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y is a finite-dimensional vector and Y is a measurable subset of some finite-
dimensional Euclidean space. It should be noted that, although the function
K(y) is assumed to be given in advance, this formulation can treat not only
a fixed structure of the controllers but also a fixed design procedure of the
controllers. This detail can be found in Example 1 of Section 12.6.

In general, the objective of robust controller design is to find a single
fixed controller K(y0), y0 ∈ Y that achieves a given performance for all plants
G(x), x ∈ X. Thus, we introduce a cost function f : X × Y → R, where
we assume that f is a measurable function and lower value of f means better
performance of the control system. Then, the robust controller design becomes
to find a controller parameter that minimizes the worst case value of the cost
function with respect to all possible plant parameters. That is, the design can
be recast as a minimax problem: find y0 ∈ Y that achieves

f∗ = inf
y∈Y

sup
x∈X

f(x, y).

In the rest of this chapter, we refer to f∗ as the exact minimax value.
Note that even if we fix a controller and assume that X is a hyperbox, in

principle, we must check at least 2m extreme values of X in order to find the
worst case value of the cost function, where m is the dimension of the vector
x. In other words, this minimax problem is at least NP-hard with respect to
the dimension, thus heavy computational effort could be required when the
problem has large dimensions [62].

12.4 Probable Near Minimax Value and Randomized
Algorithms

In this section, we consider the minimax problem from the view point of
probabilistic approximation. We first introduce a notion of an approximation
of the exact minimax value f∗ as follows.

Definition 3. Suppose that f : X × Y → R, that PX , PY are given probabil-
ity measures on X,Y respectively, and that α, β ∈ (0, 1) are given numbers.
A number f0 ∈ R is said to be a probable near minimax value of f(·, ·) to
minimum level α and maximum level β if there exist a number fU ∈ R and a
measurable function fL : Y → R such that

inf
y∈Y

fL(y) ≤ f0 ≤ fU

PY {ỹ ∈ Y : sup
x∈X

f(x, ỹ) < fU} ≤ α (12.3)

PX{x̃ ∈ X : f(x̃, y) > fL(y)} ≤ β,∀y ∈ Y. (12.4)

Here, let us confirm that the exact minimax value is a probable near min-
imax value to any levels, that is,
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inf
y∈Y

fL(y) ≤ f∗ ≤ fU (12.5)

together with (12.3) and (12.4) holds for any α and any β. Furthermore, we
will see that small α implies that fU is near f∗ in the sense of probable near
minimum, and small β implies that infy∈Y fL(y) is near f∗ in the sense of
probable near maximum. As a result, this ensures that f0 is near f∗ in these
senses.

First, we consider fU . Note that there always exists fU satisfying

f∗ ≤ fU (12.6)

and (12.3) for any α because the selection fU = f∗ ensures this fact. Then,
comparing (12.6) and (12.3) with Definition 1, we see that every value fU

is a probable near minimum of the function supx∈X f(x, y). Hence, small α
implies that fU is near f∗ in the sense of Definition 1. That is, if α is small,
probability such that f0 > f∗ becomes small.

Next, we consider fL(y). Note that there always exists fL(y) satisfying

sup
x∈X

f(x, y) ≥ fL(y), ∀y ∈ Y (12.7)

and (12.4) for any β because the selection fL(y) = supx∈X f(x, y) ensures this
fact. Choosing such fL(y), we see that

inf
y∈Y

fL(y) ≤ f∗

holds. Thus, when f0 = f∗, we can say that there exists fL(y) satisfying the
conditions of Definition 3 for any β. Now, for a fixed y, comparing (12.7) and
(12.4) with Definition 2, we see that fL(y) is a probable near maximum of the
function f(x, y). Hence, small β implies that fL(y) is near supx∈X f(x, y) in
the sense of Definition 2. That is, if β is small, probability of fL(y) such that
supx∈X f(x, y) < fL(y) becomes small for each y, and therefore probability of
f0 such that f0 < f∗ becomes small.

As a result, we can say that the exact minimax value f∗ is also a probable
near minimax value f0 to any levels. Furthermore, if we consider each proba-
bility such that f0 is greater or less than f∗, in the sense of Definitions 1 and
2, we can reduce each probability with small α or small β respectively.

The main result of this contribution is the following theorem.

Theorem 1. Suppose that probability measures PX , PY on X,Y , a measurable
function f : X × Y → R, level parameters α, β ∈ (0, 1), and confidence
parameters δα, δβ ∈ (0, 1) are given. Choose integers M,N such that

M ≥ ln(N/δβ)

ln[1/(1 − β)]
, N ≥ ln(1/δα)

ln[1/(1 − α)]
. (12.8)

Generate i.i.d. samples x1, x2, . . . , xM ∈ X and y1, y2, . . . , yN ∈ Y distributed
according to PX and PY respectively. Define
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x = [x1 x2 . . . xM ]

y = [y1 y2 . . . yN ]

f̂(x, y) = min
1≤i≤N

max
1≤j≤M

f(xj , yi).

Then, it can be said with confidence at least 1 − (δα + δβ) that f̂(x, y) is a
probable near minimax value of f(·, ·) to minimum level α and maximum level
β.

Proof. We first consider fL(y). Here we fix the subscription i as any number
within 1 ≤ i ≤ N . As we see, for any β, there exists fL(y) satisfying (12.7),
(12.4), and

inf
y∈Y

fL(y) ≤ fL(yi).

Now, let us define

δ̃β =
δβ

N
.

Then, M of (12.8) is rewritten as

M ≥ ln(1/δ̃β)

ln[1/(1 − β)]
.

Thus, from Lemma 2, we see that max1≤j≤M f(xj , yi) is a probable near

maximum of the function f(x, yi) to level β with confidence at least 1 − δ̃β .
We therefore see that there exists fL(y) such that

fL(yi) ≤ max
1≤j≤M

f(xj , yi).

It turns out that there exists fL(y) such that

inf
y∈Y

fL(y) ≤ max
1≤j≤M

f(xj , yi)

together with (12.4) with confidence at least 1 − δ̃β , for each i. Computing
the confidence such that this holds for all N samples, we conclude that

inf
y∈Y

fL(y) ≤ f̂(x, y) (12.9)

and (12.4) hold with confidence at least 1 −Nδ̃β , that is, 1 − δβ .
We next consider fU . If we define

fU = min
1≤i≤N

sup
x∈X

f(x, yi),

then

f̂(x, y) ≤ fU (12.10)
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holds for any M . Noting here that N satisfies (12.8), from Lemma 1, we see
that fU is a probable near minimum of the function supx∈X f(x, y) to level α
with confidence at least 1−δα. That is, (12.10) and (12.3) hold with confidence
at least 1 − δα.

Finally, notice that (12.9) or (12.10) always holds because (12.5) holds.
We therefore see that all of the conditions

inf
y∈Y

fL(y) ≤ f̂(x, y) ≤ fU ,

(12.3), and (12.4) hold with confidence at least

(1 − δα) + (1 − δβ) − 1 = 1 − (δα + δβ).

This completes the proof of the theorem. �

As we see, smaller level parameters α and β imply that f̂(x, y) becomes
better approximation of f∗, and smaller confidence parameters δα and δβ

imply that f̂(x, y) is a probable near minimax value with higher probability.
These parameters α, β, δα, and δβ can be designed by the user, and the

necessary numbers N and M of samples for computing f̂(x, y) are determined
from (12.8). Although N and M increase if we make the parameters small,
they are still independent of the dimensions of x and y.

12.5 Probable Near Saddle Value and Randomized
Algorithms

In this section, we investigate a special case of the problem we have considered.
Here we assume that

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

sup
x∈X

f(x, y).

That is, the function f(·, ·) has a global saddle point in the space X × Y .
However, we do not make any further assumption, for example, convexity
of the function. Thus, finding the exact saddle point is still NP-hard and
intractable in general.

Here we introduce a definition of a probably approximate value of the
function f(·, ·) at the saddle point.

Definition 4. Suppose that f : X×Y → R, that PX , PY are given probability
measures on X,Y respectively, and that α, β ∈ (0, 1) are given numbers. A
number f0 ∈ R is said to be a probable near saddle value of f(·, ·) to minimum
level α and maximum level β if there exist fU ∈ R and fL ∈ R such that

fL ≤ f0 ≤ fU

PY {ỹ ∈ Y : sup
x∈X

f(x, ỹ) < fU} ≤ α (12.11)

PX{x̃ ∈ X : inf
y∈Y

f(x̃, y) > fL} ≤ β. (12.12)
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This notion is weaker than that of probable near minimax value. That is,
a probable near minimax value is always a probable near saddle value, and
the converse does not hold in general. Although this is immediately true from
the definitions, this can be also confirmed by the fact that, for any function
f(·, ·) which may not have a saddle point,

sup
x∈X

inf
y∈Y

f(x, y) ≤ inf
y∈Y

sup
x∈X

f(x, y) (12.13)

holds and the equality is not attained in general. Then, referring the discussion
of the previous section, we can regard fU as an approximation of an upper
bound of infy∈Y supx∈X f(x, y), while from the similarity we can also regard
fL as an approximation of a lower bound of supx∈X infy∈Y f(x, y). The exis-
tence of the gap in (12.13) suggests that the notion above is weaker than the
previous one.

Now, the necessary number of samples for computing a probable near
saddle value is smaller than that for computing a probable near minimax
value. That is, the following theorem holds.

Theorem 2. Suppose that probability measures PX , PY on X,Y , a measurable
function f : X × Y → R, level parameters α, β ∈ (0, 1), and confidence
parameters δα, δβ ∈ (0, 1) are given. Choose integers M,N such that

M ≥ ln(1/δβ)

ln[1/(1 − β)]
, N ≥ ln(1/δα)

ln[1/(1 − α)]
. (12.14)

Generate i.i.d. samples x1, x2, . . . , xM ∈ X and y1, y2, . . . , yN ∈ Y distributed
according to PX and PY respectively. Define

x = [x1 x2 . . . xM ]

y = [y1 y2 . . . yN ]

f̂(x, y) = min
1≤i≤N

max
1≤j≤M

f(xj , yi).

Then, it can be said with confidence at least 1 − (δα + δβ) that f̂(x, y) is a
probable near saddle value of f(·, ·) to minimum level α and maximum level
β.

The proof of this theorem is similar to the theorem in the previous section.
The difference appears in the lower bound fL, but its proof is parallel to the
upper bound fU . Thus, the proof is omitted here.

We immediately see that the necessary samples of (12.14) is smaller than
that of (12.8). For example, if we choose α = β = 0.05 and δα = δβ = 0.025,
then the smallest M or N satisfying (12.14) is 72. On the other hand, the
smallest M satisfying (12.8) becomes 156. If we choose α = β = 0.01 and
δα = δβ = 0.005, then the smallest M or N satisfying (12.14) is 528. On the
other hand, the smallest M satisfying (12.8) becomes 1151.
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12.6 Numerical Examples

In this section, we demonstrate the proposed randomized algorithms through
numerical examples.

Example 1. We assume that X = Y = [−5, 5] and consider the cost function

f(x, y) = y2 − x2 + 5x− 4y + xy + 5. (12.15)

We set both probability measures PX , PY on X, Y as uniform distribution.
Furthermore, we choose α = β = 0.05, δα = δβ = 0.025, and N = M = 72
which satisfies (12.14).

The function (12.15) has a global saddle point, which can be computed
analytically, and we see that f∗ = 10.8 at x = 2.8, y = 0.6. On the other hand,
fU and fL can be selected arbitrarily under the condition that they satisfy
(12.11) and (12.12). Here we define f̄U as the largest fU satisfying (12.11) and
f̄L as the largest fL satisfying (12.12). Computing f̄L and f̄U using grids of
x and y with interval 0.005, we obtained f̄L ≈ 10.7363 and f̄U ≈ 10.8781.

Based on Theorem 2, we generated i.i.d. samples x1, x2, . . . , xM ∈ X and
y1, y2, . . . , yN ∈ Y according to PX and PY . Then, we obtained f̂(x, y) =
10.8012, which is a probable near saddle value. Furthermore, we executed
100 trials of calculating f̂(x, y). The result is shown in Figure12.1, where

black bar denotes the case that the corresponding f̂(x, y) does not satisfy

f̄L ≤ f̂(x, y) ≤ f̄U . As you see, the condition f̄L ≤ f̂(x, y) ≤ f̄U was satisfied
96 times of 100. Thus, we confirm that the estimated confidence is greater
than the theoretical value {1 − (δα + δβ)} × 100 = 95 given by Theorem 2.

Example 2. We next consider the example in [273], which is the state feedback
design for the lateral motion of an aircraft. The state space equation of the
model is given by

ż(t) = A(ξ)z(t) +Bv(t),

A(ξ) =

⎡⎢⎢⎣
0 1 0 0
0 ξ1 ξ2 ξ3
ξ4 0 ξ5 −1
ξ4ξ6 ξ7 ξ8 + ξ5ξ6 ξ9 − ξ6

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0 0
0 −3.91

0.035 0
−2.53 0.31

⎤⎥⎥⎦ .
where the state variables z1, z2, z3, z4 are the bank angle, its derivative, the
side-slip angle, and the yaw rate, while the inputs v1 and v2 represent the
rudder and aileron deflections respectively. The vector of uncertain parameter
ξ is allowed to vary in a set of 15% of its nominal value ξ̄, i.e.,

ξ ∈ Ξ =
{
ξ ∈ R

9 : ξi ∈ [0.85 ξ̄i, 1.15 δ̄i], i = 1, 2, . . . , 9
}

where

ξ̄ =
[
−2.93 −4.75 0.78 0.086 −0.11 0.1 −0.042 2.601 −0.29

]T
.
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Figure 12.1. Probable near saddle values (100 trials)

We assume that the p.d.f. of ξ is uniform on Ξ, and define x and X by ξ and Ξ.
For this plant, we introduce a quadratic performance index

J =

∫ ∞

0

{zT (t)Qz(t) + vT (t)Rv(t)}dt

where we choose Q = 0.01I and R = νI. Here the parameter ν ∈ [0.1, 100] is
used for the design of state feedback gain. That is, we assume that the p.d.f.
of ν is uniform on this interval, and define y and Y by ν and [0.1, 100]. Then,
the state feedback gain K(ν) for a fixed ν is selected as the optimal regulator
with respect to the nominal system, i.e.,

v(t) = K(ν)z(t), K(ν) = −R−1BTP

where P is the symmetric and positive definite solution of

PA(ξ̄) +AT (ξ̄)P − PBR−1BTP +Q = 0.

We employ the following cost function:

f(x, y) =

⎧⎨⎩1 if the closed-loop system is unstable
tr P̄

1 + tr P̄
if the closed-loop system is stable

where P̄ is the symmetric and positive definite solution of
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P̄{A(ξ) +BK(ν)} + {A(ξ) +BK(ν)}T P̄ +Q+ 100KT (ν)K(ν) = 0.

Since zT (0)P̄ z(0) gives the value of J with R = 100I for the gain K(ν),
the above definition of the cost function enables us to expect a smaller input
induced by this J .

We now describe the results of the simulations. We chose α = β = 0.05
and δα = δβ = 0.025. Following (12.8), we set M = 156 and N = 72. We
randomly generated x (i.e., ξ) and y (i.e., ν), and computed a probable near

minimax value. Then, we obtained f̂(x, y) = 0.6523. This point is marked as
’o’ in Figure12.2, while the solid line indicates max1≤j≤M f(xj , y), which was
minimized on yi, 1 ≤ i ≤ N . The corresponding state feedback gain was

K(33.42) =

[
0.0164 0.0055 −0.0003 0.0120
0.0120 0.0041 −0.0002 0.0070

]
.

On the other hand, when the extreme points of X are selected and a grid on Y
is introduced, the minimax value can be computed as 0.7074 approximately.
This point is marked as ’x’ in Figure12.2, while the dashed line indicates the
function which has been maximized on the extreme points of X. This figure
shows that the obtained feedback gain can stabilize the systems at all the
extreme points robustly. It also shows that the lower bound of the probable
near minimax value is not so tight as the upper bound, which is consistent
with the definition of probable near minimax value.
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Figure 12.2. Cost function of robust LQR design
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12.7 Concluding Remarks

In this chapter, we have proposed a probabilistic approach to robust controller
design, which can be recast as a minimax problem with a cost function.

We have introduced probability measures on the optimized parameters
and have defined probable near minimax value, which is an approximation of
the true minimax value. Clarifying the relation to probable near minimum or
maximum, we have investigated the meaning of the approximation, that is, in
what sense the defined probable near minimax value is near the true minimax
value. Then, we have proposed an efficient randomized algorithm which finds
a probable near minimax value to given levels with given confidences.

Furthermore, we have investigated a special case such that a global saddle
point exists. For this case, we have introduced a weaker notion of the minimax
value, that is, probable near saddle value. It is shown that the number of sam-
ples required by the randomized algorithm is smaller than that of the general
case. This fact suggests that we may invent more efficient randomized algo-
rithms utilizing a particular structure of control problems. This insight may
be also useful for improving a sophisticated version of randomized algorithms
which interests many researchers recently [76,129,176,252,273,371].

Acknowledgement. We are thankful to Yasuaki Oishi for helpful discussions on a

technical point in the main theorem.
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Summary. Recently, considerable attention has been paid to the use of probabilis-
tic algorithms for analysis and design of robust control systems. However, since these
algorithms require the generation of random samples of the uncertain parameters,
their application has been mostly limited to the case of parametric uncertainty. In
this chapter, we provide the means for further extending the use of probabilistic
algorithms for the case of dynamic causal uncertain parameters. More precisely, we
exploit both time and frequency domain characterizations to develop efficient algo-
rithms for generation of random samples of causal, linear time-invariant uncertain
transfer functions. The usefulness of these tools will be illustrated by developing
algorithms that address the problem of risk-adjusted model invalidation. Further-
more, procedures are also provided for solving some multi-disk problems arising
in the context of synthesizing robust controllers for systems subject to structured
dynamic uncertainty.

13.1 Introduction

A large number of control problems of practical importance can be reduced
to the robust performance analysis framework illustrated in Figure 13.1. The
family of systems under consideration consists of the interconnection of a
known stable LTI plant with some bounded uncertainty ∆ ⊂ ∆, and the goal
is to compute the worst-case, with respect to ∆, of the norm of the output to
some class of exogenous disturbances.

Depending on the choice of models for the input signals and on the criteria
used to assess performance, this prototype problem leads to different mathe-
matical formulations such as H∞, �1, H2 and �∞ control. A common feature
to all these problems is that, with the notable exception of the H∞ case, no
tight performance bounds are available for systems with uncertainty ∆ being
a causal bounded LTI operator1. Moreover, even in the H∞ case, the problem

1Recently some tight bounds have been proposed for the H2 case, but these
bounds do not take causality into account; see [254].
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Figure 13.1. The robust performance analysis problem

of computing a tight performance bound is known to be NP-hard in the case
of structured uncertainty, with more than two uncertainty blocks [62].

Given the difficulty of computing these bounds, over the past few years,
considerable attention has been devoted to the use of probabilistic methods.
This approach furnishes, rather than worst case bounds, risk-adjusted bounds;
i.e., bounds for which the probability of performance violation is no larger
than a prescribed risk level ε. An appealing feature of this approach is that,
contrary to the worst-case approach case, here, the computational burden
grows moderately with the size of the problem. Moreover, in many cases,
worst-case bounds can be too conservative, in the sense that performance
can be substantially improved by allowing for a small level of performance
violation. The application of Monte Carlo methods to the analysis of control
systems was recently proposed in the work by Stengel and coworkers [216,290,
347] and was followed, among others, by [24,27,74,84,182,358,404,411]. The
design of controllers under risk specifications is also considered in some of the
work above as well as in [25,85,199,390,405].

At the present time the domain of applicability of Monte Carlo techniques
is largely restricted to the finite-dimensional parametric uncertainty case. The
main reason for this limitation resides in the fact that up to now, the problem
of sampling causal bounded operators (rather than vectors or matrices) has
not appeared in the systems literature. A notable exceptions to this limitation
is the algorithm for generating random fixed order state space representations
in [72]. In this chapter, we provide two algorithms aimed at removing this lim-
itation when the set ∆ consists of balls in H∞. We use results on interpolation
theory to develop three new procedures for random transfer function gener-
ation. The first algorithm generates random samples of the first n Markov
parameters of transfer functions whose H∞ norm is less than or equal to
one. This algorithm is particularly useful for problems like time-domain based
model invalidation where only the first few Markov parameters of the systems
involved are used. The second algorithm generates random transfer functions
having the property that, for a given frequency, the frequency response is
uniformly distributed over the interior of the unit circle. This algorithm is
useful for problems such as time-domain based model (in)validation, where
the uncertainty that validates the model description is not necessarily on the
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boundary of the uncertainty set ∆. Finally, the third algorithm provides sam-
ples uniformly distributed over the unit circle, and is useful for cases such as
some robust performance analysis/synthesis problems where the worst-case
uncertainty is known to be on the boundary of ∆.

The usefulness of these tools is illustrated by developing algorithms for
model invalidation. Moreover, we also provide an algorithm aimed at solving
some multi-disk problems arising in the context of synthesizing robust con-
trollers for systems subject to structured dynamic uncertainty. More precisely,
we provide a modification of the algorithm in [201] that when used together
with the sampling schemes mentioned above, enables one to solve the problem
of designing a controller that robustly stabilizes the system for a ‘large’ set
of uncertainties while guaranteeing a given performance level on a ‘smaller’
uncertainty subset.

13.2 Preliminaries

13.2.1 Notation

Below we summarize the notation used in this chapter:

�x largest integer smaller than or equal to x ∈ R.
σ (A) maximum singular value of the matrix A.
BX (γ) open γ-ball in a normed space X : BX (γ) = {x ∈ X : ‖x‖X < γ}.
BX (γ) closure of BX (γ).
BX (BX ) open (closed) unit ball in X .
X ⊂ R

k.

Projl(C) projection operator. Given a set C ⊂ R
m and l < m:

Projl(C)
.
=
{
x ∈ R

l :
[
xT yT

]T ∈ C for some y ∈ R
k−l

}
.

Sk
C k-th section of a set C ⊂ R

n. Given y ∈ R
n−k:

Sk
C (y)

.
=
{
x ∈ R

k :
[
yTxT

]T ∈ C
}
.

E[X|Y ] conditional expected value of X given Y .
Fl(M,∆) lower linear fractional transformation:

Fl(M,∆) = M11 +M12∆(I −M22∆)−1M21.
Fu(M,∆) upper linear fractional transformation:

Fu(M,∆) = M21∆(I −M11∆)−1M12 +M22.
�mp extended Banach space of vector valued real sequences equipped

with the norm:

‖x‖p
.
=

(∑∞
i=0 ‖xi‖p

p

) 1
p

p ∈ [1,∞), ‖x‖∞ .
= supi ‖xi‖∞.

L∞ Lebesgue space of complex-valued matrix functions essentially
bounded on the unit circle, equipped with the norm: ‖G‖∞ .

=
ess sup|z|=1 σ (G(z)).
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H∞ subspace of transfer matrices in L∞ with bounded analytic
continuation inside the unit disk, equipped with the norm:
‖G‖∞ .

= ess sup|z|<1 σ (G(z)).

H∞,ρ space of transfer matrices in H∞ with analytic continuation
inside the disk of radius ρ ≥ 1, equipped with the norm
‖G‖∞,ρ

.
= sup|z|<ρ σ (G(z)).

BHn
∞ set of (n − 1)th order FIR transfer matrices that can be com-

pleted to belong to BH∞, i.e. BHn
∞

.
=
{
H(z) = H0+H1z+. . .+

Hn−1z
n−1 : H(z) + znG(z) ∈ BH∞, for some G(z) ∈ H∞

}
.

RX subspace of X ⊆ L∞ composed of real rational transfer matrices.
H2 Hilbert space of complex matrix valued functions analytic in the

set {z ∈ C : |z| ≥ 1}, equipped with the inner product

〈H,T 〉 =
1

2π

∫ 2π

0

Re{tr[H(ejθ)∗T (ejθ)]}dθ.

and norm

‖T‖2 =

(
1

2π

∫ 2π

0

Re{tr[T (ejθ)∗T (ejθ)]}dθ
) 1

2

.

RH2 subspace of all rational functions in H2.
X(z) z transform of a right-sided real sequence {x}, evaluated at 1

z :

X(z) =
∞∑

i=0

xiz
i.

13.2.2 Space of Proper Rational Transfer Functions

Define the space G as the space of rational functions G : C → C
n×m that can

be represented as
G(z) = Gs(z) +Gu(z).

where Gs(z) analytic in the set {z ∈ C : |z| ≥ α} and Gu(z) is strictly proper,
analytic in the set {z ∈ C : |z| < α} and 0 < β < α < 1. Now, given two
functions G,H ∈ G define the distance function d as

d(G,H)
.
=
(
‖Gs(z) −Hs(z)‖2

2 + ‖Gu(β/z) −Hu(β/z)‖2
2)
) 1

2 .

The results later in the chapter that make use of this distance function hold
for arbitrary 0 < β < α < 1. However, α and β are usually taken to be
very close to one since one is usually interested in distinguishing between
the stable and anti-stable parts of a transfer function. Finally, define the
projection πs : G → H2 as

πs(G)
.
= Gs.
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13.2.3 Convex Functions and Subgradients

Consider a convex function g : H2 → R. Then, given any G0 ∈ H2, there
exists a ∂Gg(G0) ∈ H2 such that

g(G) − g(G0) ≥ 〈∂gG(G0), G−G0〉.

for all G ∈ H2. The quantity ∂Gg(G0) is said to be a subgradient of g at the
point G0. For example if g(G) = ‖G‖2 and G is a scalar; i.e.,

g(G) =

(
1

2π

∫ 2π

0

|G(ejθ)|2dθ
)1/2

then [57] indicates that

∂Gg(G) =
1

2π‖G‖2
G.

13.2.4 Closed-Loop Transfer Function Parametrization

Central to the results on design presented in this chapter is the parameteriza-
tion of all achievable closed-loop transfer functions. Consider the closed-loop
plant in Figure 13.2 with uncertain parameters ∆ ∈ ∆. The Youla param-
eterization (see, e.g., [318]) indicates that, given ∆ ∈ ∆ and a stabilizing
controller C ∈ G, the closed-loop transfer function can be represented as

TCL(z,∆,C) = T 1
∆(z) + T 2

∆(z)Q∆,C(z)T 3
∆(z),

where T 1
∆, T

2
∆, T

3
∆ ∈ RH2 are determined by the plant G(z,∆) (and, hence,

they also depend on the uncertainty ∆) and Q∆,C ∈ RH2 depends on both the
open loop plant G(z,∆) and the controller C(z). Also, given any Q∆,C(s) ∈
RH2, there exists a controller C ∈ G such that the equality above is satisfied.

G z( , ∆)

C z( )

u v

Figure 13.2. Closed loop system
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This parameterization also holds for all closed-loop transfer functions, sta-
ble and unstable. Using a frequency scaling reasoning one can prove the fol-
lowing result: given ∆ ∈ ∆ and a controller C ∈ G, the closed-loop transfer
function can be represented as

TCL(z,∆,C) = T 1
∆(z) + T 2

∆(z)Q∆,C(z)T 3
∆(z),

where T 1
∆, T

2
∆, T

3
∆ ∈ RH2 are the same as above and Q∆,C(s) ∈ G. Further-

more, given any Q∆,C(s) ∈ G there exists a controller C ∈ G such that the
equality above is satisfied. See [201] for a discussion on this extension of the
Youla parameterization.

Note that the mapping from ∆ to T 1
∆, T

2
∆, T

3
∆ is not unique. In what fol-

lows, we assume that a unique mapping has been selected. The results to
follow do not depend on how this mapping is chosen.

13.3 Sampling the Class BH
n

∞

The use of Monte Carlo methods for risk assessment and volume estimation
has been widely studied in the probabilistic literature (see, e.g., [126] and
references therein). However, a key issue that needs to be addressed before
these methods can be applied is the generation of samples of a random variable
with the appropriate distribution. In particular, as we will show in the sequel,
using a risk-adjusted approach to perform time-domain model (in)validation
and to assess finite horizon robust performance2 requires solving the following
problem.

Problem 1. Given n, generate uniformly distributed samples from a suitable
finite dimensional representation of the convex set BHn

∞.

In the problem above, n is given by the specific application under considera-
tion: for model invalidation problems, n is given by the number of experimental
data points; for performance analysis, n corresponds to the horizon length of
interest.

In principle sampling general convex sets is a hard problem, even in the
finite-dimensional case. However, as we will show in the sequel, in the case
under consideration here, the special structure of the problem can be exploited
to obtain a computationally efficient algorithm.

13.3.1 Reducing the Problem to Sampling Finite Dimensional Sets

We begin by showing how Problem 1 can be reduced to the problem of sam-
pling a finite-dimensional convex set. From Carathéodory-Fejér Theorem (see

2We will also show that this approach allows for assessing infinite-horizon robust
performance by resorting to an iterative process.
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Section 13.8.1) it follows that given the first n Markov parameters Hi ∈ R
s×m,

i = 0, 1, . . . , n − 1 of a matrix operator H(z) ∈ H∞, the corresponding
H(z) ∈ BHn

∞ if and only if
σ (Tn

H) ≤ 1,

where

Tn
H(H0, H1, . . . , Hn−1)

.
=

⎡⎢⎢⎢⎣
Hn−1 · · · H1 H0

Hn−2 · · · H0 0
...

...
H0 0 · · · 0

⎤⎥⎥⎥⎦ .
Thus, a natural representation for BHn

∞ in Problem 1 is the set

CHn

.
=
{
{Hi}n−1

i=0 : σ (Tn
H) ≤ 1

}
.

This leads to the problem below.

Problem 2. Given n > 0, generate uniform samples over the convex set CHn
.

In the sequel, we present an algorithm for generating uniform samples over
arbitrary finite dimensional convex sets and we solve Problem 2 as a special
case.

13.3.2 Generating Uniform Samples over Convex Sets

Let C ⊂ R
n denote an arbitrary convex set. Given x ∈ C, partition the vector

conformably to some given structure in the following form

x =
[
xT

1 xT
2 · · · xT

m

]T
where xi ∈ R

ni and
∑m

i=1 ni = n.
Consider now the following algorithm:

Algorithm 13.1

Step 1. Let k = 0. Generate N samples, xl
1, l = 1, 2, . . . , N , uniformly dis-

tributed over the set Io
.
= Projn1(C).

Step 2. Let k := k + 1. For every generated sample (xl
1, x

l
2, . . . , x

l
k−1), let

Ck(xl
1, x

l
2, . . . , x

l
k−1)

.
= Sn∗

C
(
[(xl

1)
T (xl

2)
T · · · (xl

k−1)
T ]T

)
Ik(xl

1, x
l
2, . . . , x

l
k−1)

.
= Projnk(Ck),

with n∗ .
=
∑m

i=k ni. Generate

Nk
.
= �αkNvol (Ik) 

samples uniformly over the set Ik, where αk is an arbitrary positive con-
stant.
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Step 3. If k < m go to step 2. Else Stop.

Next we show that the probability distribution of the samples generated
by this algorithm converges, with probability one, to a uniform distribution
as N → ∞.

Theorem 1. Consider any set A ⊆ C. For a given N , denote by Nt(N) and
NA(N)3 the total number of samples generated by Algorithm 13.1 and the
number of those samples that belong to A, respectively. Then

NA(N)

Nt(N)

w.p.1−→ vol(A)

vol(C)
.

Proof. See Appendix 13.9.

Remark 1. The main reason that prevents the estimate of probability pro-
duced by the samples generated by Algorithm 1 from being unbiased is the
fact that, in general, at step s,

�Nαsvs(X
k
1 , X

m
2 , . . . , Xn

s−1) 
N

�= αsvs(X
k
1 , X

m
2 , . . . , Xn

s−1).

due to the rounding. Indeed, for any union of hyper-rectangles A ⊆ C satisfy-
ing

�Nαsvs(X
k
1 , X

m
2 , . . . , Xn

s−1) 
N

= αsvs(X
k
1 , X

m
2 , . . . , Xn

s−1).

it can be shown that, for any value of N ,

E[NA]

E[Nt]
=

vol(A)

vol(C)

Unfortunately, in the general case this equality is not true. However, as we
show next, the difference between these values can be made very small even
for relatively small values of N .

Theorem 2. Consider a set A ⊆ C. Then, there exist constants k1, k2 and
k3 such that, for any N ,∣∣∣∣E[NA]

E[Nt]
− vol(A)

vol(C)

∣∣∣∣ ≤ 1

N

k1

k2 + k3

N

.

Proof. see Appendix 13.10.

Remark 2. The main difference between ‘traditional’ Monte Carlo simulation
for risk assessment and risk assessment using Monte Carlo methods together
with the sample generation algorithm above is the fact that here one has
to determine the volume of several sets in order to compute the samples.

3Note that both Nt and NA are random variables.
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However, as we will see in the next section, for the problem at hand we
do not need to estimate these volumes. The structure is such that one can
determine them up to a multiplicative constant. Therefore, the number of
samples needed to compute reliable estimates of risk is similar to the ones in
‘traditional’ Monte Carlo simulations. For bounds on the number of samples
required for reliable estimation of risk, see [182,358].

13.3.3 BH
n

∞ as a Simpler Case

In the case of a general convex set C, Algorithm 13.1 requires knowledge of
the volume of the projection sets up to a multiplying constant. However, as
we show in the sequel, for sets of the form CHn

.
=
{
{Hi}n−1

i=0 : σ (Tn
H) ≤ 1

}
it

is possible to find these quantities analytically. Since these are precisely the
sets arising in the context of Problem 1, and since the linear spaces R

s×m and
R

sm are isomorphic, it follows that this problem can be efficiently solved by
applying Algorithm 13.1.

Specifically, given {H0, H1, . . . , Hk−1}, 1 ≤ k ≤ n, consider the problem
of determining the set

Projnk
(
Ck(H0, H1, . . . , Hk−1)

)
.
=
{
Hk : (H0, . . . , Hk−1, Hk, Hk+1, . . . , Hn−1) ∈ CHn

,

forsome(Hk+1, . . . , Hn−1)
}
. (13.1)

From Parrott’s Theorem (Appendix 13.8) it follows that the set (13.1) is given
by: {

Hk : σ
(
T k+1

H (H0, H1, . . . , Hk)
)
≤ 1

}
.

Moreover, an explicit parameterization of this set can be obtained as follows.
Consider the partition

T k+1
H (H0, H1, . . . , Hk) =

[
Hk B
C A

]
and let the matrices Y and Z be a solution of the linear equations

B = Y (I −ATA)
1
2

C = (I −AAT )
1
2Z

σ (Y ) ≤ 1, σ (Z) ≤ 1.

Then{
Hk : σ

(
T k+1

H

)
≤ 1

}
=
{
Hk : Hk = −Y ATZ + (I − Y Y T )

1
2W (I − ZTZ)

1
2 , σ (W ) ≤ 1}.

Hence, generating uniform samples over the set (13.1) reduces to the problem
of uniformly sampling the set {W : σ (W ) ≤ 1}. Algorithms to do sampling



340 C.M. Lagoa, X. Li, M.C. Mazzaro, M. Sznaier

over such sets are readily available (see for instance [74]). In addition, this pa-
rameterization allows for easily computing, up to a multiplying constant, the
volume of the set Projnk(Ck), required in step 2 of Algorithm 13.1. This follows
from the fact that Projnk

(
Ck(H0, H1, . . . , Hk−1)

)
is a linear transformation of

the set M
(
{W : σ (W ) ≤ 1}

)
and thus

J(H0, H1, . . . , Hk−1) =
vol

(
Projnk

(
Ck(H0, H1, . . . , Hk−1)

))
vol

(
M

(
{W : σ (W ) ≤ 1}

)) .

where
J(H0, H1, . . . , Hk−1) = |(I − Y Y T )

1
2 |m|(I − ZTZ)

1
2 |s

is the Jacobian of the transformation above (see [74], Appendix F). Combining
these observations leads to the following algorithm for solving Problem 1.

Algorithm 13.2

Step 1. Let k = 0. Generate N samples uniformly distributed over the set

{H0 : σ (H0) ≤ 1}.

Step 2. Let k := k + 1. For every generated sample (H l
0, H

l
1, . . . , H

l
k−1), con-

sider the partition

T k+1
H (H l

0, H
l
1, . . . , Hk) =

[
Hk B
C A

]
and let the matrices Y and Z be a solution of the linear equations

B = Y (I −ATA)
1
2

C = (I −AAT )
1
2Z

σ (Y ) ≤ 1, σ (Z) ≤ 1.

Generate �NJ(H0, H1, . . . , Hk−1) samples uniformly over the set
{W : σ (W ) ≤ 1} and for each of those samples W i, take

Hi
k = −Y ATZ + (I − Y Y T )

1
2W i(I − ZTZ)

1
2 .

Step 3. If k < m go to Step 2. Else Stop.

13.3.4 Extension to the Infinite Horizon Case

In this section we show that the results above can be extended to assess infinite
horizon robust performance. Due to space constraints, we provide only an
outline of the ideas involved. Begin by noting that Carathéodory-Fejér only
specifies the values of the function and its first n − 1 derivatives at z = 0.
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However, these conditions do not impose any constraints on the smoothness
of the function over the unit disk and can lead to transfer functions which
do not represent a physical uncertainty. For example, h = {0, 0, . . . , 0, γ

(1+γ)2 }
has all the hi, i ≤ n − 1 arbitrarily small and satisfies the Carathéodory-
Fejér theorem. Moreover, it can be easily shown that a suitable interpolant is
given by

H(z) =
γ

1 + γ − zn
.

Clearly, H(z) ∈ BH∞. However, ‖ d
dzH(z)‖∞ = n

γ → ∞. Since these func-
tions are arguably not a good abstraction of physical uncertainty, estimating
worst-case performance bounds using samples from the set Fn can lead to con-
servative results. This effect can be avoided by working with the ball BH∞,ρ,
instead of BH∞, since restricting all the poles of the system to the exterior of
the disk |z| ≥ ρ induces a smoothness constraint. This leads to the following
modified version of Problem 1.

Problem 3. Given n > 0, ρ > 1, ρ ∼ 1, generate uniformly distributed sam-
ples over an appropriate finite-dimensional representation of the set

Fn,ρ
.
=
{
H(z) = H0 +H1z + . . .+Hn−1z

n−1 : H(z) + znG(z) ∈ BH∞,ρ,

for some G(z) ∈ BH∞,ρ

}
.

As we show next, this problem readily reduces to Problem 2 and thus can be
solved using Algorithm 13.1. To this end, note that F (z) = H(z) + znG(z) ∈
BH∞,ρ is equivalent to F (ρz) ∈ BH∞. Combining this observation with
Carathéodory-Fejér Theorem, it follows that, given {H0, H1, . . . , Hn−1}, then

there exists G(z) ∈ BH∞,ρ such that
∑n−1

i=0 Hiz
i + znG(z) ∈ BH∞,ρ if and

only if
σ
(
Tn

Ĥ

)
(Ĥ0, Ĥ1, . . . , Ĥn−1) ≤ 1,

where Ĥi = ρiHi. It follows that Problem 3 reduces to Problem 2 simply with
the change of variables Hk → ρkHk.

Next, we show that the norm of the tail ‖znG(z)‖∞ → 0 as n → ∞.
Thus, sampling the set Fn,ρ indeed approximates sampling the ball BH∞,ρ.
To establish this result note that if F ∈ BH∞,ρ, then its Markov parameters
satisfy

Fk =
1

2π

∮
∂Dρ

F (z)
dz

zk+1
⇒ σ (Fk) ≤ 1

ρk

where Dρ denotes the disk centered at the origin with radius ρ. Thus

‖znG(z)‖∞ = ‖
∞∑

i=n

Fiz
i‖∞ ≤

∞∑
i=n

1

ρi
=

1

ρn−1

1

ρ− 1
.

From this inequality it follows that ‖F (z) − H(z)‖∞ ≤ ε for n ≥ no(ε),
for some no(ε) that can be precomputed a-priori. Recall (see for instance
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Corollary B.5 in [254]) that robust stability of the LFT interconnection shown
in Figure 13.1 implies that (I−M11∆)−1 is uniformly bounded over BH∞. In
turn, this implies that there exists some finite β such that ‖Fu(M,∆)‖∞ ≤ β
for all ∆ ∈ BH∞. Thus, given some ε1 > 0, one can find ε and no(ε) such that
‖Fu(M,F ) − Fu(M,H)‖∗ ≤ ε1, where ‖ · ‖∗ denotes a norm relevant to the
performance specifications.

Finally, we conclude this section by showing that the proposed algorithm
can also be used to assess performance against uncertainty in RBH∞. Con-
sider a sequence ρi ↓ 1 and let ∆i be the corresponding worst-case uncer-
tainty. Since BH∞,ρ ⊂ BH∞ and ‖Fu(M,∆)‖∞ ≤ β it follows that both ∆i

and Fu(M,∆i) are normal families (see Appendix 13.8). Thus, they contain
a normally convergent subsequence ∆i → ∆̃ and Fl(M,∆i) → Fl(M, ∆̃i). It
can be easily shown that ∆̃ is indeed the worst case uncertainty over RBH∞.
Thus, robust performance can be assessed by applying the proposed algorithm
to a sequence of problems with decreasing values of ρ.

13.4 Sampling BH∞ - A Frequency Domain Approach

We now present two algorithms, based on Nevanlinna-Pick interpolation, for
generating random transfer functions in BH∞.

13.4.1 Sampling the ‘Inner’ BH∞

The first one, based on ‘ordinary’ Nevanlinna-Pick interpolation, provides
transfer functions with H∞ norm less or equal than 1 and whose frequency
response, at given frequency grid points, is uniformly distributed over the
complex plane unit circle.

Algorithm 13.3

Step 1. Given an integer N , pick N frequencies λi such that |λi| = 1, i =
1, 2, . . . , N .

Step 2. Generate N independent samples wi uniformly distributed over the
set {w ∈ C : |w| < 1}.

Step 3. Find 0 < r < 1 such that the matrix Λ with entries

Λi,j =
1 − wiw

∗
j

1 − r2λiλ∗j

is positive definite.
Step 4. Find a rational function hr(λ) analytic inside the unit circle satisfying

hr(rλi) = wi; i = 1, 2, . . . , N

‖hr‖∞ ≤ 1

by solving a ‘traditional’ Nevanlinna-Pick interpolation problem.
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Step 5. The random transfer function is given by

h(z) = hr(rz
−1).

We refer the reader to Appendix 13.8 for a brief review of results on
Nevanlinna-Pick interpolation and state space descriptions of the interpolat-
ing transfer function h(z).

Remark 3. Note that, there always exists an 0 < r < 1 that will make the
matrix Λ positive definite. This is a consequence of the fact that the diagonal
entries are positive real numbers and that, as one increases r < 1, the matrix
will eventually be diagonally dominant.

13.4.2 Sampling the Boundary of BH∞

We now present a second algorithm for random generation of rational func-
tions. The algorithm below generates random transfer functions whose fre-
quency response, at given frequency grid points, is uniformly distributed over
the boundary of the unit circle. Recall that the rational for generating these
samples is that in many problems it is known that the worst case uncertainty
is located in the boundary of the uncertainty set ·, and thus there is no point
in generating and testing elements with ‖∆‖∞ < 1.

Algorithm 13.4

Step 1. Given an integer N , pick N frequencies λi such that |λi| = 1, i =
1, 2, . . . , N .

Step 2. Generate N independent samples wi uniformly distributed over the
set {w ∈ C : |w| = 1}.

Step 3. Find the smallest possible ρ ≥ 0 such that the matrix Λ with entries

Λi,j =

{
1−w∗

i wj

1−λ∗
i λj

i �= j

ρ i = j

is positive definite.
Step 4. Let

θ(λ) =

[
θ11(λ) θ12(λ)
θ21(λ) θ22(λ)

]
be a 2 × 2 transfer function matrix given by

θ(λ) = I + (λ− λ0)C0(λI −A0)
−1Λ−1(λI −A∗

0)
−1C∗

0J

where

C0 =

[
w1 . . . wN

1 . . . 1

]
; A0 =

⎡⎢⎣λ1 0
. . .

0 λN

⎤⎥⎦ ; J =

[
1 0
0 −1

]
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and λ0 is a complex number of magnitude 1 and not equal to any of the
numbers λ1, λ2, . . . , λN .

Step 5. The random transfer function is given by

h(z) =
θ12(z

−1)

θ22(z−1)
.

The algorithm above provides a solution of the boundary Nevanlinna-Pick
interpolation problem

h(λi) = wi; i = 1, 2, . . . , N

h′(λi) = ρλ∗iwi; i = 1, 2, . . . , N

‖h‖∞ = 1.

A proof of this result can be found in [23]. A more complete description of
the results on boundary Nevanlinna-Pick interpolation used in this chapter is
given in Appendix 13.9.

Remark 4. The search for the lowest ρ that results in a positive definite matrix
Λ is equivalent to finding the interpolant with the lowest derivative.

13.5 Application 1: Risk-Adjusted Time-Domain Model
(In)validation

In this section we exploit the sampling framework introduced in Section 13.3.3
to solve the problem of model (in)validation in the presence of structured LTI
uncertainty using time-domain data. Consider the lower LFT interconnection,
shown in Figure 13.3, of a known model M and structured dynamic uncer-
tainty ∆.

∆
ζ η�

P Q
R S�

� �u �+
�

�

ω

y

Figure 13.3. The model (in)validation set-up
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The block M

M
.
=

[
P Q
R S

]
consists of a nominal model P of the actual system and a description, given
by the blocks Q, R and S4 of how uncertainty enters the model. The block ∆
is known to belong to a given set ∆st:

∆st(γ)
.
= {∆ : ∆ = diag(∆1, . . . , ∆l), ∆i ∈ BH∞(γ),∀i = 1, . . . , l}

Finally, the signals u and y represent a known test input and its corresponding
output respectively, corrupted by measurement noise ω ∈ N .

= B�mp [0, n](εt).
The goal is to determine whether the measured values of the pair (u, y) are
consistent with the assumed nominal model and uncertainty description, as
formalized in the following problem.

Problem 4. Given the time-domain experiments:

u
.
= {u0, u1, . . . , un}, y .

= {y0, y1, . . . , yn}

determine if they are consistent with the assumed a-priori information
(M,N ,∆st), i.e. whether the consistency set

T (y) = {(∆,ω) : ∆ ∈ ∆st, ω ∈ N and yk =
(
Fl(M,∆)∗u+ω

)
k
, k = 0, . . . , n}

is non-empty.

Model (in)validation of Linear Time Invariant (LTI) systems has been
extensively studied in the past decade (see for instance [83, 274, 337] and
references therein). The main result shows that in the case of unstructured
uncertainty, it reduces to a convex optimization problem that can be effi-
ciently solved. In the case of structured uncertainty, the problem leads to
bilinear matrix inequalities, and has been shown to be NP-hard in the num-
ber of uncertainty blocks [362]. However, (weaker) necessary conditions in the
form of LMIs are available, by reducing the problem to a scaled unstructured
(in)validation one ( [83,362]).

13.5.1 Reducing the Problem to Finite-Dimensional Sampling

In the sequel we show that the computational complexity of the model
(in)validation problem can be overcome by pursuing a risk-adjusted approach.
The basic idea is to sample the set ∆st in an attempt to find an element that,
together with an admissible noise, explains the observed experimental data. If
no such uncertainty can be found, then we can conclude that, with a certain
probability, the model is invalid. Note that, given a finite set of n input/output

4We will assume that ‖S‖∞ < γ−1, so that the interconnection Fl(M, ∆) is
well-posed.
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measurements, since ∆ is causal, only the first n Markov parameters affect the
output y. Thus, in order to approach this problem from a risk-adjusted per-
spective, we only need to generate uniform samples of the first n Markov
parameters of elements of the set ∆st. Combining this observation with Al-
gorithm 13.2, leads to the following model (in)validation algorithm:

Algorithm 13.5 Given γst, take Ns samples of ∆st(γst), {∆i(z)}Ns
i=1, ac-

cording to the procedure described in Section 13.3.3.

1. At step s, let
ωs .

= {(y − Fl(M,∆s) ∗ u)k}n
k=0. (13.2)

2. Find whether ωs ∈ N . If so, stop. Otherwise, consider next sample
∆s+1(z) and go back to Step 2.

Clearly, the existence of at least one ωs ∈ N is equivalent to T (y) �= ∅. The
algorithm finishes, either by finding one admissible uncertainty ∆s(z) that
makes the model not invalidated by the data or after Ns steps, in which case
the model is deemed to be invalid. The following Lemma gives a bound on
the probability of the algorithm terminating without finding an admissible
uncertainty even though the model is valid, e.g. the probability of discarding
a valid model.

Lemma 1. Let (ε, δ) be two positive constants in (0, 1). If N in Algorithm 13.2
is chosen such that

N ≥ ln(1/δ)

ln(1/(1 − ε))
,

then, with probability greater than 1 − δ, the probability of rejecting a model
which is not invalidated by the data is smaller than ε.

Proof. Define the function f(∆s(z))
.
= εt − ‖ωs‖p[0,N ], with ωs given by

(13.2). Note that the model is not invalidated by the data whenever one finds
at least one ∆s(z) so that f(∆s(z)) > 0. Equivalently, if ∀∆s, f(∆s(z)) ≤ 0,
we might be rejecting a model which is indeed not invalidated by the data.
Following [358], since the number of independent samples is at least N , then

P
N
{
P{∃∆(z) : f(∆(z)) > 0|{f(∆i(z))}Ns

i=1 ≤ 0} ≤ ε
}
≥ (1 − δ),

which yields the desired result. �

Thus, by introducing an (arbitrarily small) risk of rejecting a possibly good
candidate model, we can substantially alleviate the computational complexity
entailed in validating models subject to structured uncertainty.

In addition, as pointed out in [410] the worst-case approach to model
invalidation is optimistic since a candidate model will be accepted even if
there exists only a very small set (or even a single) of pairs (uncertainty,noise)
that validate the experimental record. On the other hand, both the approach
in [410] and the one proposed here will reject (with probability close to 1)
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such models. The main difference between these approaches is related to the
experimental data and the a-priori assumptions. The approach in [410] uses
frequency domain data and relies heavily on the whiteness of the noise process
and independence between samples at different frequencies – as a consequence
of Nevannlina-Pick boundary interpolation theory – to obtain mathematically
tractable, frequency-by-frequency estimates of the probability of the model
not being invalidated by the data. On the other hand, the approach pursued
in this chapter is based on time-domain data, and while ∆ is treated as a
random variable, the risk estimates are independent of the specific density
function [358].

13.5.2 A Simple (In)Validation Example

In order to illustrate the proposed method, consider the following system:

Ĝ(z) = Fl(M, ∆̂),

with:

P (z) =
0.2(z + 1)2

18.6z2 − 48.8z + 32.6
Q(z) =

[
1 0 −1

]
R(z) =

⎡⎣0
1
1

⎤⎦ S(z) =

⎡⎣0 1 0
0 0 0
0 0 0

⎤⎦
and

∆̂(z) =

⎡⎢⎣
0.125(5.1−4.9z)
(6.375−3.6250z) 0 0

0 0.1(5.001−4.9990z)
(6.15−3.85z) 0

0 0 0.05(5.15−4.85z)
(6.95−3.05z)

⎤⎥⎦ .
Our experimental data consists of a set of n = 20 samples of the im-
pulse response of Ĝ(z) = F�(P, ∆̂), corrupted by additive noise in N .

=
B�∞[0, n](0.0041). The noise bound εt represents a 10% of the peak value of
the impulse response. Our goal is to find the minimum size of the uncertainty,
γst, so that the model is not invalidated by the data. A coarse lower bound
on γst can be obtained by performing an invalidation test using unstructured
uncertainty ∆(s) ∈ ∆u, which reduces to an LMI feasibility problem [83]. In
our case, this approach led to the lower bound 0.0158 ≤ γst.

Direct application of Lemma 1 indicates that using Ns = 6000 samples
guarantees a probability of at least 0.9975 that prob{f(∆) > 0} ≤ 0.001.
Thus, starting from γst = 0.0158, we generated 3 sets of Ns = 6000 samples
over BH∞(γst), one for each of the scalar blocks ∆i(z), i = 1, 2, 3, which yields
one single set of samples {∆n(z)}Ns

n=1 over ∆st
5. Following Section 13.3, at

each given value of γst, we evaluated the function

5The corresponding samples over the set ∆(γst) were obtained by appropriate
scaling of the impulse response of each given sample by γst.



348 C.M. Lagoa, X. Li, M.C. Mazzaro, M. Sznaier

f(∆s) = εt − ‖{Fl(M,∆s) ∗ u− y}n
k=0 ‖∞[0,n]

for all ∆s ∈ ∆st(γst). If ∀∆s, f(∆s) < 0, then the model is invalidated by
the data with high probability. It is then necessary to increase the value of
γst and continue the (in)validation test. In this particular example, the test
was repeated over a grid of 1000 points of the interval I until we obtained the
value γst of 0.0775, the minimum value of γst for which the model was not
invalidated by the given experimental evidence.

The proposed approach differs from the one in [83] in that here the inval-
idation test is performed by searching over ∆st with the hope of finding one
admissible ∆ ∈ ∆st that makes the model not invalid; while there it is done by
searching over the class of unstructured uncertainties ∆u and by introducing,
at each step, diagonal similarity scaling matrices with the aim of invalidat-
ing the model. More precisely, if at step k the model subject to unstructured
uncertainty remains not invalidated (which is equivalent to the existence of
at least one feasible pair (ζ,Dk) so that a given matrix M(ζ,Dk) ≤ 0), one
possible strategy is to select the scaling Dk+1 so as to maximize the trace of
M . See [82, Chapter 9, pp. 301–306] for details. However, for this particular
example Dk = diag(d1k, d2k, d3k) and this last condition becomes

sup
d1k,d2k,d3k

−n
(
1 +

1

γ2

)
(d2k + d3k) + n

(
1 − 1

γ2

)
d1k, d1k, d2k, d3k ≥ 0.

For 0 < γ < 1, clearly the supremum is achieved at d1k = 0, d2k = 0 and
d3k = 0. As an alternative searching strategy, one may attempt to randomly
check condition M(ζ,Dk) ≤ 0 by sampling appropriately the scaling ma-
trices, following [362]. Using 6000 samples led to a value of γst of 0.03105
for which the model was invalidated by the data. For larger values of γst in
[0.03105, 0.125] nothing can be concluded regarding the validity of the model.

Combination of these bounds with the risk-adjusted ones obtained ear-
lier shows that the model is definitely invalid for γst ≤ 0.03105, invalid with
probability 0.999 in 0.03105 < γst < 0.0755 and it is not invalidated by the
experimental data available thus far for 0.0755 ≤ γst ≤ 0.125. Thus these
approaches, rather than competing, can be combined to obtain sharper con-
ditions for rejecting candidate models.

As a final remark, note that it seems possible to reduce the number of
samples required by the proposed method, at the expense of requiring addi-
tional a-priori information on the actual system. This situation may arise for
example when it is known that the uncertainty affecting the candidate model
is exponentially stable or even real, if the system has uncertain parameters.
The former case amounts to sampling BH∞,ρ ⊂ BH∞, ρ > 1, while the latter
involves samples of constant matrices.
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13.6 Application 2: Multi-Disk Design Problem

In this section we discuss a second application of the sampling algorithms
developed in this chapter. More precisely, we introduce a stochastic gradient
based algorithm to solve the so-called multi-disk design problem. We aim at
solving the problem of designing a robustly stabilizing controller that results
in guaranteed performance in a subset of the uncertainty support set. The al-
gorithm presented is an extension of the algorithms developed in [201]. Before
providing the controller design algorithm, we first provide a precise definition
of the problem to be solved and the assumptions that are made.

13.6.1 Problem Statement

Consider the closed-loop system in Figure 13.2 and a convex objective function
g1 : H2 → R. Given a performance value γ1 and uncertainty radii r2 > r1 >
0, we aim at designing a controller C∗(s) such that the closed-loop system
TCL(z,∆,C∗) is stable for all ‖∆‖∞ ≤ r2 and satisfies

g [TCL(z,∆,C∗)] ≤ γ1

for all ‖∆‖∞ ≤ r1. Throughout this chapter, we will assume that the problem
above is feasible. More precisely, the following assumption is made.

Assumption 13.1. There exists a controller C∗ and an ε > 0 such that

d(Q∆,C∗ , Q) < ε ⇒ g1
[
T 1

∆(z) + T 2
∆(z)Q(z)T 3

∆(z)
]
≤ γ1

for all ‖∆‖∞ ≤ r1 and there exists a γ2 (sufficiently large) such that

d(Q∆,C∗ , Q) < ε

⇒ g2
[
T 1

∆(z) + T 2
∆(z)Q(z)T 3

∆(z)
] .

=
∥∥T 1

∆(z) + T 2
∆(z)Q(z)T 3

∆(z)
∥∥

2
≤ γ2

for all ‖∆‖∞ ≤ r2.

Remark 5. Even though it is a slightly stronger requirement than robust sta-
bility, the existence of a large constant γ2 satisfying the second condition
above can be considered to be, from a practical point of view, equivalent to
robust stability.

13.6.2 Controller Design Algorithm

We now state the proposed robust controller design algorithm. This algorithm
has a free parameter η that has to be specified. This parameter can be arbi-
trarily chosen from the interval (0, 2).
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Algorithm 13.6

Step 1. Let k = 0. Pick a controller C0(z).
Step 2. Generate sample ik with equal probability or being 1 or 2.
Step 3. Draw sample ∆k over BH∞(rik). Given G(z,∆K), compute T 1

∆k(z),
T 2

∆k(z) and T 3
∆k(z) as described in [318].

Step 4. Let Qk(z) be such that the closed-loop transfer function using con-
troller Ck(s) is

TCL(z,∆k, Ck) = T 1
∆k(z) + T 2

∆k(z)Qk(z)T 3
∆k(z).

Step 5. Do the stabilizing projection6

Qk,s(z) = πs(Qk(z)).

Step 6. Perform update

Qk+1(z) = Qk,s(z) − αk(Qk,z,∆
k)(z)∂Qgik(TCL(z,∆k, Q))|Qk,s

where

αk(Qk,∆) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η

g
ik (TCL(z,∆,Qk))−γ

ik+ε ‖∂Qg
ik (TCL(z,∆,Q))|Qk

‖2

‖∂Qg
ik (TCL(z,∆,Q))|Qk

‖2
2

if gik(TCL(z,∆,Qk)) > γik

0 otherwise,

.

Step 7. Determine the controller Ck+1(z) so that

Q∆k,Ck+1
= Qk+1.

Step 8. Let k = k + 1. Go to Step 2.

Conjecture. Let g1 : H2 → R be a convex function with subgradient ∂g1 ∈
RH2 and let γ1 > 0 be given. Also let g2(H) = ‖H‖2. Define

Pk,1
.
= P{g1(TCL(z,∆,Ck)) > γ1}

with ∆ having the distribution over BH∞(r1) used in the algorithm. Similarly
take

Pk,2
.
= P{g2(TCL(z,∆,Ck)) > γ2}

with ∆ having the distribution over BH∞(r2) used in the algorithm. Given
this, define

Pk
.
=

1

2
Pk,1 +

1

2
Pk,2.

Then, consistent numerical experience indicates that the algorithm described
above generates a sequence of controllers Ck for which the risk of performance
violation satisfies the equality

lim
k→∞

Pk = 0.

Hence, risk tends to zero as k → ∞.

6Note that, since Ck is not guaranteed to be a robustly stabilizing controller, Qk

might not be stable.
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13.6.3 A Simple Numerical Example

Consider the uncertain system

P (z,∆) = P0(z) +∆(z),

with nominal plant

P0(z) =
0.006135z2 + 0.01227z + 0.006135

z2 − 1.497z + 0.5706

and stable causal dynamic uncertainty ∆. The objective is to find a con-
troller C(z) such that, for all ‖∆‖∞ ≤ r1 = 1,

‖W (z)(1 + C(z)P (z,∆))−1‖2 ≤ γ1 = 0.089

where

W (z) =
0.0582z2 + 0.06349z + 0.005291

z2 + 0.2381z − 0.6032
.

and the closed-loop system is stable for all ‖∆‖∞ ≤ r2 = 2. Since the
plant P (z,∆) is stable in spite of the uncertainty, according to the Youla
parameterization, all stabilizing controllers are of the form

C =
Q(z)

1 −Q(z)P (z,∆)

where Q(z) is a stable rational transfer function. To solve this problem using
the algorithm presented in the previous section, we take γ2 = 109 (which is in
practice equivalent to requiring robust stability for ‖∆‖ ≤ r2) and generate
the random uncertainty samples using Algorithm 13.4 by taking zi = ej2πi/11,
i = 1, 2, . . . , 10.

We first consider a design using only the nominal plant. Using Matlab’s
function dh2lqg(), we obtain the nominal H2 optimal controller

Cnom(s) =
138.2z3 − 93.78z2 − 90.4z + 64.5

z4 + 2.238z3 + 0.8729z2 − 0.9682z − 0.6031

and a nominal performance ‖Tcl(z)‖2 = 0.0583. However, this controller does
not robustly stabilize the closed-loop plant for ‖∆‖∞ ≤ 2. We next apply
Algorithm 13.6 to design a risk-adjusted controller and, after 1500 iterations,
we obtain

C1(s) =
−0.003808z14

z14 − 0.1778z13 + 0.6376z12 + 0.09269z11

−0.01977z13

+0.2469z10 + 0.06291z9 + 0.08426z8 + 0.0433z7

−0.002939z12

+0.07403z6 + 0.0004446z5 − 0.1107z4 − 0.07454z3

+0.04627z11

−0.08156z2 − 0.05994z + 0.01213
.



352 C.M. Lagoa, X. Li, M.C. Mazzaro, M. Sznaier

As in last section, define the probability of violating the performance specifi-
cation

Pk,1
.
= Prob{‖W (z) −W (z)P (z,∆)Qk(z)‖2 > γ1 = 0.089}; ‖∆‖∞ ≤ 1

and the approximation of probability of instability

Pk,2
.
= Prob{‖W (z) −W (z)P (z,∆)Qk(z)‖2 > γ2 = 109}; ‖∆‖∞ ≤ 2.

Monte Carlo simulations were performed to estimate Pk,1 and Pk,2 for each
controller Ck(z) and the results are shown in Figures 13.4 (a) and (b) and
Figures 13.5 (a) and (b). From these figures, one can see that both the proba-
bility of performance violation for ‖∆‖∞ ≤ 1 and the probability of instability
for ‖∆‖∞ ≤ 2 quickly converge to zero, being negligible after iteration 200.
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Figure 13.4. Estimated (a) Pk,1 and (b) Pk,2 as a function of iteration k

13.7 Concluding Remarks and Directions for Further
Research

In this chapter, we provide efficient algorithms for generation of random sam-
ples of causal, linear time-invariant uncertain transfer functions. First, results
on matrix dilation are used to develop algorithms for generating random sam-
ples of the first n Markov parameters of transfer functions in BH∞. Then,
results on Nevanlinna-Pick and boundary Nevanlinna-Pick interpolation are
exploited to develop two more algorithms. The first one generates samples in-
side the unit H∞ ball and the second one generates random transfer function
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on the boundary of the unit H∞ ball. The usefulness of these tools is illus-
trated by developing algorithms for model invalidation and for solving some
multi-disk problems arising in the context of synthesizing robust controllers
for systems subject to structured dynamic uncertainty.

The results presented suggest several directions for further research. First,
we believe that effort should be put in the development of efficient numerical
implementations of the algorithms put forth in this contribution. Also, note
that the algorithm for controller design proposed in this chapter only guar-
antees that one obtains a robustly stabilizing controller if one performs and
infinite number of iterations (although our experiments have revealed that, in
most cases, one quickly converges to a robustly stabilizing controller). There-
fore, a possible direction for further research is the development of stochas-
tic gradient algorithms for controller design which would guarantee that one
would obtain a robustly stabilizing controller after a finite number of steps.

13.8 Appendix: Background Results

In this appendix we recall, for ease of reference, some results on matrix norm
optimization, interpolation theory and complex analysis. These results are
used only in the technical proofs and can therefore be skipped in a first reading.

13.8.1 Matrix Dilations

Theorem 3 (Parrott’s Theorem). ( [409], page 40). Let A, B and C be
given matrices of compatible dimensions. Then
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min
X

∥∥∥∥[X B
C A

]∥∥∥∥ .
= γo = max

{∥∥[C A
]∥∥ ,∥∥∥∥[BA

]∥∥∥∥} ,

where ‖ · ‖ stands for σ (·). Moreover, all the solutions X to the above problem
are parameterized by

X = −Y ATZ + γo(I − Y Y T )
1
2W (I − ZTZ)

1
2

where the free parameter W is an arbitrary contraction and the matrices Y
and Z solve the linear equations

B = Y (γ2
oI −ATA)

1
2

C = (γ2
oI −AAT )

1
2Z

σ (Y ) ≤ 1, σ (Z) ≤ 1.

Theorem 4 (Carathéodory-Fejér, [23]). Given a matrix-valued sequence
{Li}n−1

i=0 , there exists a causal, LTI operator L(z) ∈ BH∞ such that

L(z) = L0 + L1z + L2z
2 + . . .+ Ln−1z

n−1 + . . .

if and only if Mc
.
= I − Tn

L (Tn
L )T ≥ 0 where

Tn
L =

⎡⎢⎢⎢⎣
L0 L1 · · · Ln−1

0 L0 · · · Ln−2

...
. . .

. . .
...

0 · · · 0 L0

⎤⎥⎥⎥⎦ .

13.8.2 Complex Analysis

Let fn denote a sequence of complex-valued functions, each of whose domain
contains an open subset U of the complex plane. The sequence fn converges
normally in U to f if fn is pointwise convergent to f in U and this convergence
is uniform on each compact subset of U . A family F of functions analytic in
U is said to be normal if each sequence fn from F contains at least one
normally convergent subsequence. Given a sequence of functions fn, each of
whose terms is analytic in an open set U , it is of interest to know whether fn is
normal, i.e., if it is possible to extract a normally convergent subsequence. An
answer to this question is given by Montel’s theorem, which requires a certain
equi-boundedness assumption. A family F is said to be locally bounded in U
if its members are uniformly bounded on each compact set in U .

Theorem 5 (Montel’s Theorem, [255]). Let F be a family of functions
that are analytic in an open set U . Suppose that F is locally bounded in U .
Then F is a normal family in this set.

In particular, if F ⊂ H∞ is such that f ∈ F ⇒ ‖f‖∞ ≤ M , then the theorem
implies that F is normal inside the unit disk. Thus, every sequence {fi} ∈ F
contains a normally convergent subsequence.
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13.8.3 Nevanlinna-Pick Interpolation

We start by focusing our attention on a more general result in interpolation
theory. Let T and BT denote the space of complex valued rational functions
continuous in |λ| = 1 and analytic in |λ| < 1, equipped with the ‖.‖L∞

norm,
and the (open) unit ball in this space, respectively (i.e. f(λ) ∈ BT ⇐⇒
f( 1

z ) ∈ BH∞).

Theorem 6. There exists a transfer function f(λ) ∈ BT (BT ) such that∑
λo∈D

Res
{
f(λ)C−(λI −A)−1

}
λ=λo

= C+ (13.3)

if and only if the following discrete time Lyapunov equation has a unique
positive (semi) definite solution

M = A∗MA+ C∗
−C− − C∗

+C+ (13.4)

where A,C− and C+ are constant complex matrices of appropriate dimensions
and D denotes the open unit circle. If M > 0 then the solution f(λ) is non-
unique and the set of solutions can be parameterized in terms of q(λ), an
arbitrary element of BT , as follows:

f(λ) =
T11(λ)q(λ) + T12(λ)

T21(λ)q(λ) + T22(λ)
(13.5)

T (λ) =

[
T11(λ) T12(λ)
T21(λ) T22(λ)

]
(13.6)

where T (λ) is the J-lossless7 matrix:

T (λ) ≡
[
AT BT

CT DT

]
AT = A

BT = M−1 (A∗ − I)
−1 [−C∗

+ C∗
−
]

CT =

[
C+

C−

]
(A− I)

DT = I +

[
C+

C−

]
M−1 (A∗ − I)

−1 [−C∗
+ C∗

−
]

Proof. See [23,305].
Note that the matrices A and C− provide the structure of the interpolation

problem while C+ provides the interpolation values. The following corollaries
show that both the Nevanlinna-Pick and the Carathéodory-Fejér problems are
special cases of this theorem, corresponding to an appropriate choice of the
matrices A and C−

7A transfer function H(λ) is said to be J-lossless if HT (1/λ)JH(λ) = J when

|λ| = 1, and HT (1/λ)JH(λ) < J when |λ| < 1. Here J =

[
I 0
0 −I

]
.
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Corollary 1 (Nevanlinna-Pick). Let Γ = diag{λi} ∈ C
r×r and take

A = Γ

C− =
[
1 1 . . . 1

]
∈ R

r

C+ =
[
w1 w2 . . . wr

]
then (13.3) is equivalent to

f(λi) = wi i = 1, . . . , r

and the solution to (13.4) is the standard Pick matrix:

P =

[
1 − w̄iwj

1 − λ̄iλj

]
ij

.

Proof. Replace A,C−, C+ in (13.3). See [305] for details. �

13.8.4 Using these Results for Boundary Interpolation

In the case of boundary interpolation |λi| = 1, |wi| < 1, these results can be
used as follows:

1. Find a scalar r < 1 such that the equation

M = r2A∗MA+ C∗
−C− − C∗

+C+

has a positive definite solution M > 0.
2. Find the modified interpolant using the formulas (13.5)–(13.6) with A =

rΓ = rdiag{λi}.
3. The desired interpolant is given by G(λ) = Gr(rλ).

13.8.5 Boundary Nevanlinna-Pick Interpolation

We now elaborate on the results on boundary Nevanlinna-Pick interpolation
used in this chapter. For a extensive treatment of this problem see [23]. Let D
denote the unit circle in the complex plane with boundary ∂D and consider
the following interpolation problem.

Problem 5. Given N distinct points λ1, λ2, . . ., λN in ∂D, N complex
numbers w1, w2, . . . , wN of unit magnitude and N positive real numbers
ρ1, ρ2, . . . , ρN , find all rational functions f(λ) mapping D into D such that

f(λi) = wi

f ′(λi) = λ∗iwiρi

for all i = 1, 2, . . . , N .
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The following theorem provides a solution for the problem above.

Theorem 7. Let λ1, λ2, . . . , λN , w1, w2, . . . , wN and ρ1, ρ2, . . . , ρN be as in
the statement of Problem 5 and define the matrix Λ = [Λij ]1≤i,j≤N by

Λi,j =

{
1−w∗

i wj

1−λ∗
i λj

i �= j

ρi i = j
.

Then a necessary condition for Problem 5 to have a solution is that Λ be
positive semidefinite and a sufficient condition is that Λ be positive definite.
In the latter case, the set of all solution is given by

f(λ) =
θ11(λ)g(λ) + θ12(λ)

θ21(λ)g(λ) + θ22(λ)

where g(λ) is an arbitrary scalar rational function analytic on D with
sup{|g(λ)| : z ∈ D} ≤ 1 such that θ21(λ)g(λ) + θ22(λ) has a simple pole
at the points λ1, λ2, . . . , λN . Here

θ(λ) =

[
θ11(λ) θ12(λ)
θ21(λ) θ22(λ)

]
is given by

θ(λ) = I + (λ− λ0)C0(λI −A0)
−1Λ−1(λI −A∗

0)
−1C∗

0J

where

C0 =

[
w1 . . . wN

1 . . . 1

]
; A0 =

⎡⎢⎣λ1 0
. . .

0 λN

⎤⎥⎦ ; J =

[
1 0
0 −1

]
and λ0 is a complex number of magnitude 1 and not equal to any of the
numbers λ1, λ2, . . . , λN .

Proof. See [23].
Note that if only the values w1, w2, . . . , wN of magnitude one are specified

at the boundary points λ1, λ2, . . . , λN , then the matrix Λ in the theorem above
can always be made positive definite by choosing the unspecified quantities
ρ1, ρ2, . . . , ρN sufficiently large. This leads to the following corollary.

Corollary 2. Let 2N complex numbers of magnitude one λ1, λ2, . . . , λN and
w1, w2, . . . , wN be given, where λ1, λ2, . . . , λN are distinct. Then, there always
exist scalar rational functions f(λ) analytic in D with

sup{|f(λ)| : λ ∈ D} ≤ 1

which satisfy the set of interpolation conditions

f(λi) = wi; i = 1, 2, . . . , N.
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13.9 Proof of Theorem 1

For the sake of notational simplicity we will prove the result for the case where
the number of partitions of the vector x is m = 4, but the same reasoning
applies to arbitrary dimensions.

Consider a rectangle

R
.
= R1 ×R2 ×R3 ×R4 ⊆ C

where Ri ⊂ R
ki , i = 1, 2, 3, 4. Let Nt and NR be the total number of samples

generated and the number of hits of R respectively. We will show that

NR

Nt

w.p.1−→ vol(R1)vol(R2)vol(R3)vol(R4)

vol(C)
.

In other words, the ratio converges with probability one to a constant which is
equal to the probability of the rectangle R under a uniform distribution over
the set C. Henceforth, the symbol → denotes convergence with probability
one.

Let Xk
1 be the k-th sample of the first component of the vector. Similarly,

denote by Xmk
2 and Xnmk

3 the m-th sample of the second component of the
vector when the first component is Xk

1 , and the n-th sample of the third
component of the vector when the first two components are Xk

1 and Xmk
2 ,

respectively. Finally, denote by vk
.
= vol [Ik(X1, . . . , Xk−1)]. Consider now

Nt

N4
=

1

N

N∑
k=1

1

N

α2Nv2(X
k
1 )�∑

m=1

1

N

Nα3v3(X
k
1 ,Xmk

2 )�∑
n=1

1

N
�Nα4v4(X

k
1 , X

mk
2 , Xnmk

3 ) 

=
1

N

N∑
k=1

α2v2(X
k
1 )

�Nα2v2(X
k
1 ) 

Nα2v2(Xk
1 )

1

�Nα2v2(Xk
1 ) 

Nα2v2(X
k
1 )�∑

m=1

α3v3(X
k
1 , X

mk
2 )

�Nα3v3(X
k
1 , X

mk
2 ) 

Nα3v3(Xk
1 , X

mk
2 )

1

�Nα3v3(Xk
1 , X

mk
2 ) 

Nα3v3(X
k
1 ,Xmk

2 )�∑
n=1

1

N
�Nα4v4(X

k
1 , X

mk
2 , Xnmk

3 ) 

The Strong Law of Large Numbers (see, e.g., [147]) indicates that, as N → ∞,
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α3v3(X
k
1 , X

mk
2 )

Nα3v3(X
k
1 ,Xmk

2 )�
Nα3v3(Xk

1 ,Xmk
2 )

1
Nα3v3(Xk

1 ,Xmk
2 )�

∑Nα3v3(X
k
1 ,Xmk

2 )�
n=1

1
N �Nα4v4(X

k
1 , X

mk
2 , Xnmk

3 ) 

→ α3v3(X
k
1 , X

mk
2 )E[α4v4(X

k
1 , X

mk
2 , X3)|Xk

1 , X
mk
2 ]

= α3α4vol[S2(X
k
1 , X

mk
2 )].

Furthermore,

α2v2(X
k
1 )

�Nα2v2(X
k
1 ) 

Nα2v2(Xk
1 )

1

�Nα2v2(Xk
1 ) 

Nα2v2(X
k
1 )�∑

m=1

α3α4vol[S2(X
k
1 , X

mk
2 )]

→ α2v2(X
k
1 )E

[
α3α4vol[S2(X

k
1 , X2)]|Xk

1

]
= α2α3α4vol[S3(X

k
1 )]

and

1

N

N∑
k=1

α2α3α4vol[S3(X
k
1 )] → E [α2α3α4vol[S(X1)]] =

α2α3α4

v1
vol(C).

Hence
Nt

N4
→ α2α3α4

v1
vol(C)

as N → ∞.
Next, consider the number of hits of the rectangle R, which we denote

by NR. The Strong Law of Large Numbers implies that

NR

N

∣∣∣∣Xk
1 ∈ R1, X

mk
2 ∈ R2, X

nmk
3 ∈ R3

→ α4v4(X
k
1 , X

mk
2 , Xnmk

3 )
vol(R4)

v4(Xk
1 , X

mk
2 , Xnmk

3 )
= α4vol(R4)

which is independent of the values of Xk
1 , Xmk

2 and Xnmk
3 . Using the same

reasoning, we have

NR

N2

∣∣∣∣Xk
1 ∈ R1, X

mk
2 ∈ R2 → α3v3(X

k
1 , X

mk
2 )

vol(R3)α4vol(R4)

v3(Xk
1 , X

mk
2 )

= α3vol(R3)α4vol(R4)

NR

N3

∣∣∣∣Xk
1 ∈ R1 → α2v2(X

k
1 )

vol(R2)α3vol(R3)α4vol(R4)

v2(Xk
1 )

= α2vol(R2)α3vol(R3)α4vol(R4).
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Finally, this implies that

NR

N4
→ 1

v1
α2α3α4vol(R1)vol(R2)vol(R3)vol(R4).

Hence,
NR

Nt
→ vol(R1)vol(R2)vol(R3)vol(R4)

vol(C)

as N → ∞. This completes the proof. �

13.10 Proof of Theorem 2

As in the proof of Theorem 1, only m = 4 is considered and it is assumed that

A .
= R1 ×R2 ×R3 ×R4 ⊆ C

where Ri ⊂ R
ki , i = 1, 2, 3, 4, satisfy

vol(Ri) = dxi.

The proof can be easily generalized for other values of m and other sets A.
Using the notation in the proof of Theorem 1, we first consider E[Nt]. The

reasoning to follow relies on the fact that, given two random variables, X and
Y , E[Y ] = E[E[Y |X]]. Indeed,

E

[
Nt

N4

]
= E

⎡⎣ 1

N

N∑
k=1

1

N

α2Nv2(X
k
1 )�∑

m=1

1

N

Nα3v3(X
k
1 ,Xmk

2 )�∑
n=1

1

N
�Nα4v4(X

k
1 , X

mk
2 , Xnmk

3 ) 

⎤⎦ .
Moreover,

E

⎡⎣ 1

N

Nα3v3(X
k
1 ,Xmk

2 )�∑
n=1

1

N
�Nα4v4(X

k
1 , X

mk
2 , Xnmk

3 ) 

∣∣∣∣∣∣Xk
1 , X

mk
2

⎤⎦
=

�Nα3v3(X
k
1 , X

mk
2 ) 

N

(
α4

vol(S2(X
k
1 , X

mk
2 ))

v3(Xk
1 , X

mk
2 )

− ε4
N

)
where ε4 ∈ [0, 1]. Also,

E

⎡⎣ 1

N

α2Nv2(X
k
1 )�∑

m=1

�Nα3v3(X
k
1 , X

mk
2 ) 

N
α4

vol(S2(X
k
1 , X

mk
2 ))

v3(Xk
1 , X

mk
2 )

∣∣∣∣∣∣Xk
1

⎤⎦
=

�α2Nv2(X
k
1 ) 

N

(
α3α4

vol(S1(X
k
1 ))

v2(Xk
1 )

− ε3
N

E

[
α4

vol(S2(X
k
1 , X

mk
2 ))

v3(Xk
1 , X

mk
2 )

∣∣∣∣Xk
1

])
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where ε3 ∈ [0, 1]. Finally,

E

[
1

N

N∑
k=1

�α2Nv2(X
k
1 ) 

N
α3α4

vol(S1(X
k
1 ))

v2(Xk
1 )

]

=
α2α3α4

v1
vol(C) − E

[
α3α4

ε2
N

vol(S1(X
k
1 ))

v2(Xk
1 )

]
where ε2 ∈ [0, 1]. Hence,

E

[
Nt

N4

]
=
α2α3α4

v1
vol(C) − β1 + β2 + β3

N

where

β1 = E

⎡⎣ 1

N

N∑
k=1

1

N

α2Nv2(X
k
1 )�∑

m=1

1

N

Nα3v3(X
k
1 ,Xmk

2 )�∑
n=1

ε4

⎤⎦ ;

β2 = E

⎡⎣ 1

N

N∑
k=1

1

N

α2Nv2(X
k
1 )�∑

m=1

E

[
ε3α4

vol(S2(X
k
1 , X

mk
2 ))

v3(Xk
1 , X

mk
2 )

∣∣∣∣Xk
1

]⎤⎦ ;

β3 = E

[
ε2α3α4

vol(S1(X
k
1 ))

v2(Xk
1 )

]
;

ε2 ∈ [0, 1]; ε3 ∈ [0, 1]; ε4 ∈ [0, 1].

Since β1, β2 and β3 above are bounded functions of N , there exists a
constant β such that

− β

N
≤ E

[
Nt

N4

]
− α2α3α4

v1
vol(C) ≤ 0.

Next consider

E

[
NA
N4

]
= E

⎡⎣ 1

N4

N∑
k=1

α2Nv2(X
k
1 )�∑

m=1

Nα3v3(X
k
1 ,Xmk

2 )�∑
n=1

Nα4v4(X
k
1 ,Xmk

2 ,Xnmk
3 )�∑

l=1

IXk
1 ∈R1,Xmk

2 ∈R2,Xnmk
3 ∈R3,Xnmkl

4 ∈R4

⎤⎦
where I denotes the indicator function; i.e.,

IXk
1 ∈R1,Xmk

2 ∈R2,Xnmk
3 ∈R3,Xnmkl

4 ∈R4

=

⎧⎨⎩
1 ifXk

1 ∈ R1, X
mk
2 ∈ R2, X

nmk
3 ∈ R3, X

nmkl
4 ∈ R4;

0 otherwise.
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Indeed, by using conditional expectations again, it follows that

E

⎡⎣ 1

N

Nα4v4(X
k
1 ,Xmk

2 ,Xnmk
3 )�∑

l=1

IXk
1 ∈R1,Xmk

2 ∈R2,Xnmk
3 ∈R3,Xnmkl

4 ∈R4

∣∣∣∣∣∣
Nα4v4(X

k
1 ,Xmk

2 ,Xnmk
3 )�∑

l=1

Xk
1 ∈ R1, X

mk
2 ∈ R2, X

nmk
3 ∈ R3

⎤⎦
=

1

N
�Nα4v4(X

k
1 , X

mk
2 , Xnmk

3 ) dx4

v4(Xk
1 , X

mk
2 , Xnmk

3 )

= α4dx4 − 1

N
ε̃4

dx4

v4(Xk
1 , X

mk
2 , Xnmk

3 )

where ε̃4 ∈ [0, 1]. Repeating this reasoning for the other three coordinates
leads to the following result:

E

[
NA
N4

]
= dx1dx2dx3dx4

α2α3α4

v1
vol(C) − γ1 + γ2 + γ3

N

where

γ3 = E

⎡⎣ 1

N3

N∑
k=1

α2Nv2(X
k
1 )�∑

m=1

Nα3v3(X
k
1 ,Xmk

2 )�∑
n=1

ε̃4
dx4

v4(Xk
1 , X

mk
2 , Xnmk

3 )

⎤⎦
γ2 = E

⎡⎣ 1

N2

N∑
k=1

α2Nv2(X
k
1 )�∑

m=1

ε̃3
dx3dx4

v3(Xk
1 , X

mk
2 )

⎤⎦
γ1 = E

[
1

N

N∑
k=1

ε̃2
dx2dx3dx4

v2(Xk
1 )

]
ε̃2 ∈ [0, 1]; ε̃3 ∈ [0, 1]; ε̃4 ∈ [0, 1].

Since γ1, γ2 and γ3 above are bounded function of N , there exists a constant
γ such that

− γ

N
≤ E

[
NA
N4

]
− dx1dx2dx3dx4

α2α3α4

v1
vol(C) ≤ 0.

The proof is completed by noting that given the results above, one can deter-
mine constants k1, k2 and k3 such that∣∣∣∣E[NA]

E[Nt]
− vol(A)

vol(C)

∣∣∣∣ =

∣∣∣∣E[NA/N4]

E[Nt/N4]
− vol(A)

vol(C)

∣∣∣∣
≤ 1

N

k1

k2 + k3

N

.

�
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Summary. This chapter addresses the utility of sampling techniques in studying
stability of nonlinear systems, and in certain instances expanding the stability re-
gion obtained from Lyapunov-like analysis. To this end, we provide an overview of
random and quasi-random methods, error bounds and various transformations of
general nonlinear systems into their polynomial-like counterparts for which prelim-
inary Lyapunov analysis is feasible.

14.1 Introduction

Many practical control problems are so complex that they defy traditional
analysis and design methods. Consequently, sampling methods that provide
approximate solutions to such ‘difficult’ problems have emerged in recent
years. Sampling techniques in general fall into three categories: gridding, ran-
dom [135, 175], and quasi-random [244]. Due to the ‘curse of dimensional-
ity’ [33], gridding techniques produce a number of samples that grows expo-
nentially with the dimension of the problem. Hence, we revert to random and
quasi-random techniques that require a fixed number of samples irrespective
of the dimension, to produce approximate answers. In a recent paper by the
authors [163], both methods were compared with respect to their convergence
ability when the number of samples increases. The quality of the resulting an-
swer in both cases was studied by the authors in the random sense [189,190]
and in the deterministic sense [164].

In this chapter, we review random and quasi-random sampling techniques,
and adapt them to the problem of stability analysis for nonlinear systems. We
reformulate the nonlinear stability problem through various transformations
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(approximation, S-procedure, generalized Sum-of-Squares) and project it into
the smaller subclass of nonlinear polynomial systems. The approximation and
the S-procedure techniques provide a mapping from the original nonlinear sys-
tem into a polynomial domain and indirectly provides stability guarantees of
the original system through the study of the polynomial system and the cor-
responding mapping. The generalized Sum-of-Squares technique studies the
nonlinear system directly by partitioning the system’s state-space equations
into polynomial and non-polynomial parts. Throughout our proposed work,
the main tool for studying the stability of the nonlinear system, or its counter
part in the polynomial-like subclass, will be Lyapunov functions and the neg-
ativity of their derivatives along the trajectories of the corresponding state
equations. All such techniques provide sufficient stability conditions.

Some of the issues we will address: an overview of random and quasi-
random methods, error bounds, transformation of general nonlinear systems
into their polynomial-like counterparts, stability analysis via Lyapunov meth-
ods either of the original nonlinear system or its polynomial-like counterpart,
performance verification of the different methods via simulations. Moreover,
since Lyapunov techniques are conservative in most cases, we propose to ex-
tend the stability region beyond that obtained analytically by sampling out-
side the guaranteed stability regions within a set ([−ε,+ε]n), where ε > 0 ∈ R

and n is the dimension of the problem, and increasing ε until we hit the first
instability point. This method, although not guaranteed to provide an error
bound on the quality of our answer under deterministic sampling, is still use-
ful from the practical point of view when analytical results fail to exist for the
extended region.

The chapter starts by reviewing the concepts of random and quasi-random
sampling methods in Sections 14.2 and 14.3, respectively. In Section 14.4 we
present some transformations that allow us to study the stability of non-
polynomial nonlinear systems. Section 14.6 provides a brief example that
illustrates some of the concepts discussed, and Section 14.7 concludes the
chapter. It is important to note that the authors became aware of similar
work on Sum-of-Squares transformations in [256,257].

14.2 Monte Carlo Method

The Monte Carlo method was first published in 1949 by Metropolis and Ulam
at Los Alamos National laboratory. Since then it has been used extensively
in various areas of science such as statistical and stochastic physical systems
[175], derivative estimation [228], and integral evaluation [135].

Loosely defined, Monte Carlo is a numerical method based upon random
sampling of the parameters space. Given a function g(x), it is required to find∫

Id g(x)dx (Id - the d-dimensional unit hypercube). Usually the dimension ‘d’
is high, and numerical solutions are computationally expensive. That is when
Monte Carlo method comes into the picture, because it overcomes the curse
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of dimensionality. The first step is to equip the integration region with a d-
dimensional probability density Π, usually uniform if no prior knowledge is
available. The second step is to integrate with respect to the probabilistic
distribution as follows:

φ =

∫
Id

g(x)dx = λd(I
d)

∫
Id

g(η)dη = E{g(η)} (14.1)

where λd is an d-dimensional Lebesgue measure and I
d is transformed into a

probability space equipped with a probability density dη = dx
λd(Id)

[135, 244].

Finally, the integral is replaced by a summation over samples drawn according
to a specific strategy. As a result, the problem of evaluating the integral has
been simply transformed into evaluating the ‘empirical’ expected value on the
probability space, which provides an approximate answer. For an extensive
overview on Monte Carlo methods in robust control problems see [95, 189,
190,359,360].

The dimension d may be extremely large in some applications, but the
probabilistic results obtained using Monte Carlo methods are dimension-
independent. Finally, the convergence error in (14.1) between empirical and
actual expected values is of order O(N−1/2), where N is the number of sam-
ples. The constant by which the order is multiplied is a function of the vari-
ance of the samples. That is why different Monte Carlo methods are usually
targeted at decreasing the variance of the samples (see [135]). Figure 14.1
illustrates uniform random sampling in the two-dimensional unit plane. It
can be easily spotted that there are several clusters in the sample set, and
substantial gaps as a result.

14.3 Quasi-Monte Carlo Methods

In this section we review the basic definitions involved in quasi-Monte Carlo
(QMC) methods and state the basic inequalities governing the quality of the
approximation of integrals using deterministic sampling methods. The main
idea in QMC methods is to evaluate an integrand at specific points and ap-
proximate the integral by the average of the results obtained at these specific
points. While this is exactly the same approach adopted in Monte Carlo sam-
pling, the critical difference between the two approaches resides in the actual
choice of sample points, the first being random and the second deterministic.

14.3.1 Discrepancy

The discrepancy is a measure of the ‘regularity in distribution’ of a set of
points in the sample space [244]. In order to define it mathematically, we need
to define the following counting function:
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Figure 14.1. Uniform random sampling in 2D for 1000 points

A(B,P ) =

N∑
i=1

IB(Xi)

where B ⊂ I
d is an arbitrary set, P = (X1, . . . , XN ) is a set of points, N is the

number of sample points, and IB is an indicator function. Thus A(B,P ) mea-
sures the number of points taken from P that happen to land inside the set B.

Definition 1. The general formula for the evaluation of the discrepancy is
given by

DN (B, P ) = sup
B∈B

∣∣∣∣A(B,P )

N
− λd(B)

∣∣∣∣ (14.2)

where λd(B) is the d-dimensional Lebesgue measure of the arbitrary set B
(⊂ I

d) and B is the family of all lebesgue measurable subsets B of I
d.

Definition 1 can be specialized into the following two cases:

• The star discrepancy D�
N (X1, . . . , XN ) is obtained by restricting B in

(14.2) to be defined as follows:

B� =

{
B : B =

d∏
i=1

[0, ui)

}

i.e. the set of all d-dimensional subsets of I
d that have a vertex at the origin,

and ui’s being arbitrary points in the corresponding one-dimensional space.
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• The extreme discrepancy DN (X1, . . . , XN ) is obtained by letting B in

(14.2) be defined as follows B =
{
B : B =

∏d
i=1[vi, ui)

}
, where vi’s and

ui’s are both arbitrary points in the corresponding one-dimensional space.

The star discrepancy and extreme discrepancy are related through the follow-
ing inequality D�

N (P ) ≤ DN (P ) ≤ 2dD�
N (P ).

14.3.2 Point Sets Generation

In this section we briefly describe how to generate quasi-Monte Carlo low
discrepancy points in an d-dimensional sample space. Since the points result
from a deterministic method of generation, they possess a certain regularity
property of distribution in the sample space described by their discrepancy.

For brevity, we are not going to present the various methods used in the
generation of the sample points. Instead, we refer the reader to [163] for a
compact presentation and [244] for a more involved one.

Van der Corput

The van der Corput sequence in base b ∈ N, where b ≥ 2, is a one-dimensional
sequence of points that possesses the property of having a low discrepancy
in the unit interval I = [0, 1] ⊂ R. The main idea is to express every integer
n ∈ N in base b and then reflect the expansion into the unit interval I. This is
done as follows:

1. Let Rb = {0, 1, . . . , b− 1} be the remainder set modulo b.
2. Any integer n ≥ 0 can be expanded in base b as, n =

∑∞
k=0 ak(n)bk, where

ak(n) ∈ Rb,∀k.
3. Finally, we get the sequence {Xn} throughXn = φb(n) =

∑∞
k=0 ak(n)b−k−1.

As will be seen, the van der Corput sequence will be used to generate
higher dimensional vector samples, by varying the expansion base b. Finally,
the star discrepancy of the van der Corput sequence is calculated to be:
D�

N (X1, . . . , XN ) = O(N−1 log(N)), with the order constant depending on
the base of expansion.

Halton sequence

The Halton sequence is a generalization of the van der Corput sequence to span
a d-dimensional sample space. The main idea is to generate d one-dimensional
sequences and form the corresponding d-dimensional vector sample points. Let
b1, b2, . . . , bd be the corresponding expansion bases for each dimension, prefer-
ably relatively prime.3 Let φb1 , φb2 , . . . , φbd

be the corresponding reflected

3Choosing the expansion bases relatively prime reduces the discrepancy, hence
the error bound.
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expansions according to the corresponding bases. Then the d-dimensional se-
quences {Xd

n} are formed as follows:

Xn = (φb1 , φb2 , . . . , φbd
) ∈ I

d (14.3)

Assume that the bases for the expansion are relatively prime, then the star
discrepancy is bounded by (see [244])

D�
N (X1, . . . , XN ) <

d

N
+

1

N

d∏
i=1

(
bi − 1

2 log bi
logN +

bi + 1

2

)
.

14.3.3 Total Variation

The problem of bounding the error involved in evaluating the integral of a
function using QMC methods depends on our ability to obtain the value of
total variation of the function under consideration, as will be seen in the next
section. Consequently, in this section we will concentrate on defining several
notions of variation of a function defined on an interval [0, 1]d.

Definition 2. [65] A finite function f(x) defined on interval [0, 1] is said
to have ‘bounded variation’ if there exists a number M , such that for any
partition p of the interval [0, 1]

vp =

n∑
i=1

|f(Xi) − f(Xi−1)| < M.

Moreover, the ‘total variation’ of f(x) on [0, 1] is defined as V (f) = supp∈P (vp),
where P is the set of all partitions on [0, 1].

Notice that Definition 2 pertains to functions of a single variable and does
not require that the function be continuous. However, the function has to
have a countable number of discontinuities on the interval under study. If it
is further assumed that the function f(x) is differentiable on [0, 1], then the
total variation is found to be

V (f) =

∫ 1

0

∣∣∣∣ dfdx
∣∣∣∣ dx (14.4)

Remark 1. The total variation of a function can be understood as the sum
of all the heights of monotone segments. That is why we integrate over the
absolute value of the gradient in (14.4).

The total variation of a function f defined on a one-dimensional unit in-
terval I = [0, 1] is fairly easy to calculate. However, if f is defined on I

d the
problem of calculating V (d)(f) (the d-dimensional total variation) is more in-
volved (see [167, 244]). In what follows we only present the definitions of the
total variation for continuous and differentiable functions.
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Figure 14.2. Plot of f(x1, x2) = x1 + x2

Definition 3. The total variation of a function f defined on I
d in the sense

of Vitali is defined as

V (d) =

∫ 1

0

. . .

∫ 1

0

∣∣∣∣ ∂(d)f

∂η1∂η2 . . . ∂ηd

∣∣∣∣ dη1dη2 . . . dηd (14.5)

whenever the indicated partial derivative is continuous on I
d. If V (d) < +∞,

then the function f is said to have a ‘bounded total variation in the sense of
Vitali’.

Note that the Definition 3 only measures the variation of f over all the vari-
ables at once. However, the indicated partial derivative in (14.5) might be
zero, but still the variation over the domain is not equal to zero as illustrated
in the following example.

Example 1. Let f(x1, x2) = x1 + x2 ⇒ ∂(2)f
∂x1∂x2

= 0 and the total variation
as defined in (14.5) is equal to zero. However, when we plot the function
f(x1, x2), it is varying over the interval [0, 1]2 as seen in Figure 14.2.

The problem encountered in the Definition 3 can be remedied via the
following enhanced definition of the total variation.

Definition 4. [194,244] Let f be a function defined on I
d with bounded vari-

ation in the sense of Vitali. Suppose that the restriction of f to each face F
of I

d of dimension k = 1, 2, . . . , d− 1 is also of bounded variation on F in the
sense of Vitali. Then the function f is said to be of ‘bounded variation in the
sense of Hardy and Krause’.
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Remark 2. The restriction of the function f to the face F in Definition 4 is
achieved through setting the d− k variables equal to 1.

Definition 4 overcomes the difficulties we encountered with Definition 3 as
seen in the following example.

Example 2. Let us revisit the same function in Example 1. Using Definition 4
we get the following formula for the total variation of this second order func-
tion

V (2)(f) =

∫ 1

0

∫ 1

0

∣∣∣∣∂2f(x1, x2)

∂x1∂x2

∣∣∣∣ dx1dx2

+

∫ 1

0

∣∣∣∣∂f(x1, 1)

∂x1

∣∣∣∣ dx1 +

∫ 1

0

∣∣∣∣∂f(1, x2)

∂x2

∣∣∣∣ dx2.

(14.6)

Substituting and performing the necessary partial differentiation and integra-
tion we get V (2)(f) = 2.

The second order total variation has been used in [353,354], and the following
intuitive bound on the variation on (14.6) was suggested in [353]:

V (2)(f) ≤ max
x1,x2

∣∣∣∣∂2f(x1, x2)

∂x1∂x2

∣∣∣∣
+ max

x1

∣∣∣∣∂f(x1, 1)

∂x1

∣∣∣∣+ max
x2

∣∣∣∣∂f(1, x2)

∂x2

∣∣∣∣ .
14.3.4 Error in Quasi-Monte Carlo

The error in quasi-Monte Carlo methods integration over the unit hypercube
for N samples is defined as follows:

e =

∫
Id

f(η)dη − 1

N

N∑
n=1

f(Xn). (14.7)

The following two theorems provide bounds on the error (14.7), for the
cases of one-dimensional and d-dimensional integration, respectively.

Theorem 1. Koksma’s Inequality [244]
Let f(·) be a function defined on I = [0, 1] of bounded total variation V (f).
Then ∣∣∣∣∣

∫
Id

f(η)dη − 1

N

N∑
i=1

f(Xn)

∣∣∣∣∣ ≤ V (f)D�
N (X1, . . . , XN )
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Theorem 2. Koksma-Hlawka Inequality [244]
Let f(·) be a function defined on I

d of bounded variation in the sense of Hardy
and Krause. Then∣∣∣∣∣

∫
Id

f(η)dη − 1

N

N∑
i=1

f(Xn)

∣∣∣∣∣ ≤ V (d)(f)D�
N (X1, . . . , XN ).

In fact, Theorems 1 and 2 state that the magnitude of the error depends
on the total variation (defined in Section 14.3.3) of the function and the star
discrepancy of the point set chosen. That is why we always seek low star dis-
crepancy point sets in quasi-Monte Carlo methods. It is also worth mentioning
that the error bounds are conservative, i.e. if the variation of the function is
large, we get a large bound on the error, although the actual error might be
small.

In what follows we review a class of nonlinear systems for which sam-
pling techniques may be used to provide stability results, and state how QMC
methods may be used to do so.

14.4 Stability of Non-Polynomial Systems

Studying the stability of general nonlinear systems is usually reduced to the
difficult task of identifying Lyapunov function candidates. Such a task is
slightly simplified when the class of nonlinear systems at hand is restricted.
We proceed by giving a formal definition of the class of systems we deal with
in the remainder of this chapter.

Definition 5. Consider the class S of a nonlinear multivariate function de-
fined as follows

S = {f : f(x) =

l∑
i=1

pi(x)gi(x), pi : R
n → R, monomials

gi : Dn
1 → D2, nonlinear functions, D

n
1 ⊆ R

n,

D2 ⊆ R, l ∈ N}.

In particular, the elements of class S are sums of polynomial functions, non-
polynomial functions, and product of both.

Definition 6. Recall again the class S of multivariate functions defined in
Definition 5 as the functions composed by a sum of terms in which there are
polynomial and non-polynomial elements. Consider a subset S1 ⊂ S in which
only part of the variables appear in the polynomial functions p(x), i.e.

f(x) =
∑

i

pi(x)gi(Xg), x ∈ R
n, Xg ∈ R

(n−k)

Xg(j) = x(j), j = k + 1, ..., n, k ≤ n
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where pi are multivariate polynomial functions and gi are multivariate non
polynomial functions. Observe that the first k components of x only appear in
the polynomial part and form a so-called polynomial vector Xp(i) = x(i), i =
1, . . . , k where Xp ∈ R

k. We refer to these variables as ‘polynomial variables’
and to the remaining variables in the state vector as ‘global variables’, and
they form a ‘global vector’ Xg(j) = x(j), j = k + 1, . . . , n and Xg ∈ R

(n−k),
we have x = [Xp Xg]

T . The meaning of such notation will be made clearer
next.

Definition 7. Consider the class of systems that produce a derivative of the
quadratic Lyapunov function along the trajectory that belongs to the class S1

defined in Definition 6, we refer to this class of system as ‘decoupled state sys-
tems’, in which the state vector can be split into two parts, the first part of the
state vector only contribute to the dynamic of the system through polynomial
functions, i.e.

ẋ = P (x)G(Xg), x ∈ R
n, Xg ∈ R

(n−k) (14.8)

Xg(j) = x(j) j = k + 1, ..., n, k ≤ n

where P and G are respectively a vector polynomial function and a vector
non-polynomial function. Consider the state vector x and split it into two
parts x = [ξ ϕ]T , in which ξ is the vector of polynomial variables and ϕ is
the vector of global variables as defined in Definition 6, we can then rewrite
(14.8) as follows: [

ξ̇
ϕ̇

]
= P (ξ, ϕ)G(ϕ)

ξ(i) = xi i = 1, . . . , k

ϕ(j) = xj j = k + 1, . . . n k ≤ n.

14.4.1 S-Procedure Approach

Our goal in this section is to simplify the structure of non-polynomial func-
tions through a transformation that allows us to rewrite the function as a
multivariate polynomial whose variables are subject to some inequality con-
straints. The positivity of the original function can then be investigated, by
studying the new set of inequalities, of the transformed function and the con-
straints. In [261] a technique to test the polynomial non-negativity over a
finite set described by polynomial equalities and inequalities is proposed. We
propose here an alternative approach. The S-procedure will allow us to ob-
tain sufficient conditions for the positivity of the system of inequalities. We
start by stating the problem of determining the positivity of a multivariate
nonlinear function over R

n.

Problem 1. Consider a multivariate nonlinear function composed of sum of
an arbitrary number of nonlinear functions, f =

∑l
1 fi, fi : Dn

1 → D2 where
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Dn
1 ⊆ R

n and D2 ⊆ R. Our objective is to determine if f(x) is non-negative
for all x ∈ Dn

1 .

Next we consider the problem of deciding positivity of a multivariate polyno-
mial function, whose variables are subject to inequality constraints.

Problem 2. Consider a multivariate polynomial function p : R
n → R where

D is an n-dimensional domain. We aim to determine if p(x) is non-negative
for all x ∈ R

n subject to inequality constraints i.e. p(x) ≥ 0, ∀x ∈ R
n, xi <

xi < xi, i = 1, . . . , n.

Using a special transformation as in [222], Problem 1 can be reformulated as
Problem 2. Then the S-procedure [59] can be used to solve Problem 2. The
S-procedure is briefly stated next.

S-procedure for quadratic functions

Let F0 . . . , Fk be quadratic functions of the variables z ∈ R
n:

Fi(z) = zTTiz + 2uT
i z + vi, i = 0, . . . , k

where Ti = TT
i , are n × n, ui are n × 1 vectors and vi are scalars. Then a

sufficient condition for the following statement

∀ z such that Fi(z) ≥ 0, i = 1, . . . k ⇒ F0 ≥ 0

is that there exists τ1, . . . , τk ≥ 0 such that

F0 ≥ τ1F1 + · · · + τkFk.

14.4.2 Generalized Sum of Squares Decomposition

In [260], it was shown how SOS programming can be applied to analyze the
stability of nonlinear systems described by polynomial functions. The tool
has also been extended to several applications other than stability analysis
[170, 262]. We aim in this section to extend this approach to systems that
are not characterized by polynomial functions. The main advantage of the
proposed approach is the computational tractability of the SOS decomposition
for multivariate polynomials. See [222] for a more detailed exposure to this
section.

As stated repeatedly in this chapter, many problems in nonlinear systems
can be reduced to the basic problem of checking the global non-negativity of a
function of several variables [56]. First, we will show that using semi-definite
programming (SDP) it is possible to test if a given polynomial admits an SOS
decomposition [260].

Theorem 3. Given a multivariate polynomial p : x ∈ R
n → R of degree 2m,

a sufficient condition for the existence of SOS representation p(x) = p(z) =
zTQz is Q � 0 where z is a vector of monomials in x of degree m.



376 P.F. Hokayem, S. Mastellone, C.T. Abdallah

So the test for SOS of a polynomial function has been reduced to a linear
matrix inequality (LMI) [59]. Then for a symmetric matrix Q we obtain the
following eigenvalue factorization [9]: Q = LTTL, from which follows the de-
composition p(x) =

∑
i(Lz)

2
i . In general we have that the SOS representation

might not be unique, depending on the choice of the components of the z
vector. In particular, different choices of the vector z correspond to different
matrices Q that satisfy the SOS representation. It could be that only some
of those matrices are PSD, so the existence of SOS decomposition for a poly-
nomial may depend on the representation. If at least one of the matrices of
the linear subspace is positive semidefinite (i.e. the intersection of the lin-
ear subspace of matrices satisfying the SOS representation with the positive
semidefinite matrix cone is non-empty), then p(x) is SOS and therefore PSD.
In general we will choose the components of z to be linearly independent, and
we will say that the corresponding representation is minimal.

14.4.3 SOS Generalization: A Partial State Vector Approach

We will show how, under certain assumptions, it is possible to apply the
SOS procedure to a nonlinear, non-polynomial function. The main idea is
based on the use of SOS procedure, considering the generic nonlinear function
as a polynomial function, in which the non-polynomial parts are treated as
coefficients of the function. Rewriting the function as a quadratic form we get
f(x) = z(Xp)

TQ(Xg)z(Xp) where z is a vector of monomials formed from the
polynomial variables x1, . . . , xk which are elements of the polynomial vector
Xp (defined in Section 14.4), and Q is a matrix of appropriate dimension,
which depends on the global variables xk+1, . . . , xn which form the global
vector Xg (also defined earlier in Section 14.4). From SOS theory, a sufficient
condition for f(x) > 0 is that Q(Xg) is positive definite. In order to apply
the SOS procedure to a generic nonlinear non-polynomial function, we need
to restrict the class of systems we deal with, in particular we will consider the
class of systems defined in (7). The state vector x is divided into two parts,
ϕ and ξ. In choosing a quadratic Lyapunov function V = xTx and applying
the SOS procedure to determine the sign of −V̇ we aim to find conditions on
ϕ that guarantee V is decreasing along the trajectory of the system for all ξ
i.e.

−V̇ = z(ξ)TQ(ϕ)z(ξ) > 0 ∀ξ ∈ R
k

14.5 Nonlinear Stability Analysis via Sampling

In the previous sections we have reviewed several concepts pertaining to stabil-
ity of non-polynomial systems and the QMC technique for deterministic sam-
pling. In what follows we propose linking these concepts in order to analyze
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the stability of non-polynomial systems. Starting with a positive definite Lya-
punov function and taking its derivative along the state trajectories, we pro-
pose two approaches to study the stability of the underlying non-polynomial
nonlinear systems:

• The deterministic sampling (QMC) method which determines with certain
guaranties, depending on the total variation, the sign definiteness of the
derivative of the Lyapunov function along the state trajectories.

• The transformation methods discussed earlier (Approximation, S-procedure
and Generalized SOS) in order to conservatively identify, using always a
Lyapunov framework, a subregion of the state-space where the system is
asymptotically stable.

Moreover, in the second scenario it is also possible to use the approximation
approach, to further explore beyond the stability region obtained above via
sampling. Such a process may be iterated in order to reduce with certain error
guarantees the conservativeness in the Lyapunov approach. It is important
however to realize that the approximation method gives a sure answer, while
the extension beyond this certain stability region involves certain error due to
our inability to test the continuum of the initial conditions in the state-space.

1. Consider a non-polynomial system ẋ = f(x), x ∈ R
n for which we de-

termined using one of the transformation techniques provided in Section
14.4 a subregion of stability, say [−c, c]n.

2. Augment the region with an ε > 0 obtaining a new subregion, [−c− ε, c+
ε]n\[−c, c]n.

3. Using random or quasi-random sampling, generate points in the above
subregion and test the stability at each point by either:
a. Simulating the response of the initial conditions using the state equa-

tions, in which case we cannot get a definite bound on the performance
of the method, or

b. In the case of extending the region of stability obtained via the approx-
imation technique, we can obtain a deterministic bound on the error
through the total variation of the derivative of the Lyapunov function.

14.6 Example

We aim to apply the approaches described above to study the stability of a
mobile robot model described in [94].Consider the dynamic model of a vehicle

mẍ = −ηẋ+ (Fs + Fp) cos θ

mÿ = −ηẏ + (Fs + Fp) sin θ

Jθ̈ = −ψθ̇ + (Fs − Fp)r

where (x, y) are the position coordinates, θ is the orientation angle. As for the
physical parameters, m is the mass of the vehicle, J is the rotational inertia,
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Fs and Fp are respectively the starboard and the port fan forces, r is the
moment arm of the forces and η and ψ are the coefficients of viscous friction
and rotational friction, respectively.

In order to achieve controllability [94], consider the error dynamics around
a constant velocity ẋnom, ẏnom and heading θ̇ are given by

mẍe = −η(ẋe + ẋnom) + (Fs + Fp) cos(θe + θnom)

mÿe = −η(ẏe + ẏnom) + (Fs + Fp) sin(θe + θnom)

Jθ̈e = −ψθ̇e + (Fs − Fp)r

with nominal input Fs = Fp = (ηẋnom)
2 cos θnom

. We use the following nominal values

for linear velocity and angular position: ẋnom = ẏnom = 10, θ̇nom = π
4 . Let us

consider the state vector ξ = [x y θ ẋ ẏ θ̇]T we get the following system:

ξ̇1 = ξ4

ξ̇2 = ξ5

ξ̇3 = ξ6

ξ̇4 = − η

m
(ξ4 + ẋnom) +

Fs + Fp

m
cos(ξ3 + θnom)

ξ̇5 = − η

m
(ξ5 + ẏnom) +

Fs + Fp

m
sin(ξ3 + θnom)

ξ̇6 = −ψ

J
ξ6 +

Fs − Fp

J
m.

We aim to study how the stabilizing controller designed for a linearized sys-
tem perform on the real system; in other words if designing a controller for
stabilizing the linearized system we can guarantee the stability of the origi-
nal system at least in a neighborhood of the point around which we did the
approximation.

The first step is to linearize the original system around an equilibrium
point that chosen for simplicity as the origin. Using the numerical values
J = .05, ψ = .084, η = 5.5, and m = 5.15 we observe that the linearized
system is unstable. Since the system is controllable, we design a controller in
order to achieve a stable closed-loop system

ξ̇ = Aξ +Bu

u = −Kξ

where u = [Fs Fp]
T , and the resulting controller gain matrix K is

K =

[
3.2122 3.3217 1.8706 3.0078 3.1102 0.7258
3.3217 3.2122 −1.8706 3.1102 3.0078 −0.7258

]
.

We can now proceed to studying the stability of the closed loop nonlinear
system. In particular we want to compare the three results we get by applying
the described procedures.
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At first, since we know the closed loop system is stable at the origin we
can think of exploring the neighborhood in order to determinate the region
of attraction. By using the QMC approach and picking samples in the region
of the hypercube [−5, 5]6 we get that the system is stable in that region as it
is shown in the graphic of Figure 14.3. In particular the dynamics of the six
state variables, the errors on the linear and angular position and velocity, are
plotted and for initial condition inside the region [−5, 5]6 they converge.

θ
’

Figure 14.3. Error dynamics

Then using a Lyapunov based analysis and employing the techniques de-
scribed in Section 14.4, we obtain a stability region [−0.5, 0.5]6, which is much
more conservative than the answer obtained earlier, yet more precise.

14.7 Conclusion

In this chapter we have reviewed the main ideas pertaining to the sampling
methods used in control systems analysis and design, in particular quasi-
Monte Carlo method. We also presented various transformation techniques
that allow us to change the problem of stability analysis of general nonlinear
systems into that of studying the stability of a polynomial or partial polyno-
mial systems.
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Summary. Robust controllers for nonlinear systems with uncertain parameters can
be reliably designed using probabilistic methods. In this chapter, a design approach
based on the combination of stochastic robustness and dynamic inversion is pre-
sented for general systems that have a feedback-linearizable nominal system. The
efficacy of this control approach is illustrated through the design of flight control sys-
tems for a hypersonic aircraft and a highly nonlinear, complex aircraft model. The
proposed stochastic robust nonlinear control explores the direct design of nonlinear
flight control logic; therefore the final design accounts for all significant nonlineari-
ties in the aircraft’s high-fidelity simulation model. Monte Carlo simulation is used
to estimate the likelihood of closed-loop system instability and violation of perfor-
mance requirements subject to variations of the probabilistic system parameters.
The stochastic robustness cost function is defined in terms of the probabilities that
design criteria will not be satisfied. We use randomized algorithms, in particular
genetic algorithms, to search the design parameters of the parameterized controller
with feedback linearization structure. The design approach is an extension of earlier
methods for probabilistic robust control of linear systems. Prior results are reviewed,
and the nonlinear approach is presented.

15.1 Introduction

Control systems should be designed to run satisfactorily not only with as-
sumed plant parameters but with possible variations in operating conditions.
Perfect models of systems to be controlled are rarely available when con-
trollers are being designed, parameters of similar plants are likely to vary
from one example to the next, and dynamic characteristics may change as
parts wear or operating points shift. Control system designs must be tolerant
of these differences for practical control to take place, that is, they must be ro-
bust. For parametric uncertainty, guaranteed stability-bound estimates often
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are unduly conservative, and the resulting controller usually needs very high
control effort. With respect to computational complexity, many worst-case
deterministic robust control problems are proved to be NP hard. If instead
of worst-case guaranteed conclusions, probabilistic robustness is acceptable,
computational complexity can be reduced significantly. In probabilistic robust
control design, randomized algorithms with polynomial complexity are used
to characterize system robustness and to identify satisfactory controllers.

Many problems in system synthesis can be formulated as the minimization
of an objective function with respect to the parameters of a parameterized con-
troller. The probabilistic robust control problem is transformed to a stochas-
tic optimization problem. Combinations of a variety of pre-existing control
methodologies and the probabilistic approach to robustness have been applied
to control designs such as Linear-Quadratic-Gaussian regulators [217, 273],
transfer function sweep designs [391], quadratic stabilization for linear sys-
tems [25], robust Linear Matrix Inequality (LMI) or Quadratic Matrix In-
equality (QMI) [76], Linear-Parameter-Varying control [129], robust H2 con-
trol [201] and Model Predictive control [177].

The probabilistic approach is readily applied to nonlinear designs as well
as to linear designs. We present a framework for nonlinear robust control that
merges the stochastic approach with feedback linearization. There has been
intensive research in deterministic nonlinear robust control using, for example,
Lyapunov redesign, backstepping, sliding-mode control, and neural network
based adaptive robust control [165]. The probabilistic approach to control
design could reduce design conservativeness significantly, and it provides a
viable treatment for system robustness with respect to uncertain parameters
that may enter the system in an arbitrary way. In this chapter, the proposed
stochastic feedback linearization approach is illustrated through two flight
control applications. The first application is to the control of the longitudinal
motion of a NASA Langley hypersonic aircraft [333] cruising at a Mach num-
ber of 15 and at an altitude of 110, 000 ft. There are 28 uncertain parameters
in characterizing the aircraft’s inertial and aerodynamic model. Robustness
metrics include system stability and 38 performance specifications for veloc-
ity and altitude command responses in the presence of uncertain parameter
variations. The probabilistic robust control design is formulated as a stochas-
tic optimization of a cost function that is a weighted quadratic sum of these
probabilities of violation of design specifications. Due to the non-convex and
non-deterministic nature of this stochastic optimization problem, genetic al-
gorithms are used here to search the controller parameters. We apply a similar
approach to the probabilistic robust control of the six-degree-of-freedom mo-
tion of a High Incidence Research Model (HIRM) [210] whose highly nonlinear
aerodynamic model is described by a combination of analytic equations and
look-up tables. Due to the complexity of the system model, a two-time-scale
decomposition is used in the design of controller structure. The resulting non-
linear control design is evaluated and compared against existing designs with
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respect to handling qualities for a wide range of flight envelopes and in the
presence of system parametric uncertainties.

This chapter is organized as follows. Section 15.2 summarizes prior results
in the probabilistic design of constant-coefficient controllers for linear systems.
In Section 15.3, we present a general approach for probabilistic robust control
of nonlinear systems. In Section 15.4, the proposed approach is applied to the
flight control design for a NASA Langley hypersonic aircraft model and the
design for the High Incidence Research Model is presented in Section 15.5;
simulation results are presented for stability and performance robustness of
the closed-loop system.

15.2 Stochastic Analysis and Design for Linear,
Time-Invariant Systems

15.2.1 Stochastic Robustness Analysis (SRA)

Stochastic stability theory provides a logical starting point, as satisfactory
stability is often a necessary condition for satisfactory performance. A typical
problem is to determine bounds on the parameter vector p of an unforced,
continuous-time system [192,195],

ẋ(t) = f [p(t), x(t)], x ∈ R
n, x(0) = x0, f ∈ R

n, p ∈ R
l

where x is the dynamic state and p(t) is a random process, such that stability
can be expected with a probability of one (or arbitrarily close to one). A
corresponding linear control problem is to find a satisfactory control gain
matrix C for the linear plant and control law,

ẋ(t) = F [p(t), t]x(t) +G[p(t), t]u(t), u ∈ R
m, F ∈ R

n×n, G ∈ R
n×m (15.1)

u(t) = −Cx(t), C ∈ R
m×n.

The system dynamics vector f(·) becomes

f [p(t), x(t)] = {F [p(t), t] −G[p(t), t]C}x(t)

and the uncertainty is contained in the varying values of [F (·), G(·)]. Proba-
bilistic stability criteria have been developed using expectations of Lyapunov
functions, and they require consideration of stochastic integrals and transfor-
mations [169, 402]. Analogous discrete-time problems are discussed in [197].
Given infinite (e.g., Gaussian) parameter distributions, the probability of in-
stability is finite, and the escape (or exit) time may be of interest [93].

The principal focus of current robustness research is on ensembles of linear
systems for which p is a random constant rather than a random process. For
a particular parameter value pk, Fpk

is uncertain but fixed. Deterministic
stability criteria apply to each member of the ensemble. Because each dynamic
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system is linear and time-invariant, its stability is entirely determined by its
eigenvalues, that is, the solutions λj to the equation

|λjI − FT (pk)| = 0, j = 1, · · · , n. (15.2)

Given a vector of the probability density functions of p, fp(p), equation
(15.2) provides an implicit transformation for computing the probability den-
sity functions, fp(λj), of the corresponding ensemble of eigenvalues λj , j =
1, · · · , n. An evaluation of the cumulative probability of (in)stability induced
by fp(p) requires integration of the fp(λj) over the (right) left-half complex
plane. Linear eigenvalue sensitivities, ∂λj/∂p, can be derived and applied for
analytic evaluation of the integral [207, 268], and additional studies of eigen-
value and eigenvector sensitivities can be found in [120,143,166,231,345,346].

Analytical solutions to this integral have limited utility for evaluating the
probability of (in)stability. The most practical approach for evaluating the
probability of (in)stability in the general case is to use numerical computation,
as expanded below. Numerical evaluation of probabilities involves sampling of
parameter probability distributions [229,259] and computation of their conse-
quences using either exhaustive sampling or Monte Carlo methods [66]. In the
first case, all possible parameter combinations in a finite set are sampled, and
the exact probability of hypothesis H (in the current discussion, the stability
or instability of the controlled system) is computed as

P(H) = NH/NTotal (15.3)

where NH is the number of instances of H, and NTotal is the total number of
trials. For the second method, each scalar parameter is represented by a ran-
dom number generator, whose characteristics are shaped by the parameter’s
statistical description. There is no restriction on the shapes or correlations
of probability distributions (i.e., they may be bounded, non-Gaussian, etc.),
and parameters may have different distribution types. For a single trial, each
element of pk is generated, and the related hypothesis is computed. The prob-
ability of a hypothesis is computed as before in (15.3), but there is uncertainty
in the estimate, as discussed below.

For linear, time-invariant (LTI) systems, the probability of instability P
can be estimated from repeated eigenvalue calculation [347]. Given a system
with l parameters, each of which takes w values with equal probability, P can
be calculated exactly from wl evaluations using exhaustive sampling (equa-
tion (15.3)), with NH equal to the number of unstable cases, and NTotal equal
to wl. For Monte Carlo evaluation, the closed-loop eigenvalues, λj , are eval-
uated NTotal times with each element of pk, k = 1, · · · , NTotal, specified by a
random number generator whose individual outputs are shaped by fp(p). The
probability-of-(in)stability estimate becomes increasingly precise as NTotal be-
comes large:

P(stable) = P = lim
NTotal→∞

N(σmax ≤ 0)

NTotal
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P(unstable) = P = 1 − P(stable)

N(·) is the number of cases for which all elements of σ, the vector of the real
parts of the closed-loop eigenvalues (λ = σ + jω), are less than or equal to
zero, that is, for which σmax ≤ 0, where σmax is the maximum real eigenvalue
component in σ . For NTotal < ∞, the Monte Carlo evaluation is an estimate,
P̂ , whose uncertainty is characterized by a confidence interval.

Because P is a binomial variable (i.e., the outcome of each trial takes
one of two values: stable or unstable), confidence intervals are calculated us-
ing the binomial test, where lower (L) and upper (U) intervals satisfy the
following [92]:

P(NU ≤ n− 1) =

n−1∑
k=0

(NTotal, k)Lk(1 − L)NTotal−k = 1 − α

2
(15.4)

P(NU ≤ n) =

n∑
k=0

(NTotal, k)Uk(1 − U)NTotal−k =
α

2
(15.5)

NU is the actual number of unstable cases after NTotal evaluations (NU =
NTotalP̂ ), (NTotal, k) is the binomial coefficient, NTotal!

k!(NTotal−k)! , and (1 − α) is

the confidence coefficient. Explicit approximations of the binomial test [7, 8]
avoid an iterative solution of (15.4) and (15.5) for (L,U), and they are accurate
to within 0.1% [347].

The number of evaluations required to estimate a binomial probability dis-
tribution for specified interval widths and a 95% confidence coefficient varies
with the true P (Figure 15.1), see [347]. For narrow intervals and small P ,
large numbers of evaluations are required; however, large percentage interval
widths may be acceptable if P is small.

The number of Monte Carlo evaluations needed to yield P̂ with a given
confidence level is independent of the number of uncertain parameters or their
probability distributions. This result has broad implications for the robustness
evaluation of complex systems. While exact or approximate exhaustive sam-
pling may be useful when there are few parameters, Monte Carlo simulation
has broad application for systems with large numbers of uncertain parameters.
Chernoff bounds and related analysis have been used to derive the number of
required Monte Carlo evaluations to estimate the probability, see [74]. When
the distribution of the underlying uncertain parameters is unknown, the ef-
fect of sampling distribution on the stochastic robustness analysis has been
investigated in [24], where a uniform parameter distribution is found to be
the worst-case unimodal distribution.

15.2.2 Stochastic Robustness Design (SRD)

Design for stochastic robustness follows analysis by incorporating search. The
simplest approach is to choose the best from an ensemble of controllers, with-
out regard to the design algorithms employed for each controller. For example,
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Figure 15.1. Number of evaluations required to estimate a binomial probability
distribution for given confidence interval widths and 95% confidence coefficient;
interval width is given as percent of P or (1 − P ) (from [347])

given the Benchmark Control Problem [398], we could compare the probabil-
ities of instability, Pi, excess control usage, Pu, and excess settling time, PTs

,
for the ten design solutions, selecting the one that appears most suitable.
The relative importance of the three criteria must be known to make the
selection, and the probability distributions of the uncertain parameters that
induce them should be well motivated. Guidelines for comparing controller
pairs are contained in [288].

Probabilistic synthesis of control systems is a natural adjunct to probabilis-
tic analysis; the random or randomized search is a dual to Monte Carlo eval-
uation. Building on [342], random-search methods of finding control system
gains are explored in [20,368,406]. There are similarities to directed searches
that minimize multi-objective cost functions [325], to parameter-space meth-
ods [2, 336], and to fine-tuning of control gains by search [6]. A genetic al-
gorithm – which performs randomized reproduction, crossover, and mutation
on candidate control-gain strings – has been used to design controllers [193],
while the stochastic robustness analysis is extended to control design using
sequential line searches in [286–290,347]. Statistical learning theory has been
applied to control design in [381]. By exploring the convex structure of certain
control design problems, sequential stochastic gradient algorithms are used in
the minimization of a convex stochastic cost function, see [76, 129, 177, 252]
and [359] with references therein.
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A typical design procedure has four steps: 1) define cost function of ob-
jective probabilities, 2) define controller structure, 3) perform stochastic ro-
bustness analysis of the closed-loop system, and 4) conduct numerical search
to minimize the cost function.

As an example for Step 1, the quadratic cost function

J = αP 2
i + βP 2

u + γP 2
Ts

(15.6)

weights the squares of the probabilities to emphasize large values and de-
emphasize small values. α, β, and γ are scalar weights on the relative im-
portance of instability, excess control usage, and excess settling time over the
range of parameter uncertainty. Pi, Pu, and PTs

are in (0, 1). With an LQG
controller, the control law and associated estimator for Step 2 are

u(t) = −Cx̂ (15.7)

˙̂x = F x̂+Gu+K(z −Hx̂) (15.8)

and the weighting matrices for the LQG problem are chosen as the control de-
sign parameters. For a single-input/single-output compensator, the controller
structure may simply be a transfer function whose numerator and denomi-
nator coefficients are the design parameters. In Step 3, an ensemble of trials
is evaluated to compute the probability (15.3) using the dynamic system of
(15.1) with randomly generated parameter vectors, p, and closed-loop con-
trol specified by (15.7) and (15.8). This Monte Carlo evaluation forms an
‘inner loop’ for the minimization algorithm in Step 4. A genetic algorithm is
used to minimize (15.6) through the choice of control design parameters. As
an alternative, simulated annealing could be used for the optimization [233].
Execution time for this computationally intensive process can be decreased
greatly through the use of parallel computation [321].

15.3 Stochastic Robust Control of Nonlinear Systems

The nonlinear control design is an extension of the probabilistic robust control
of linear systems in Section 15.2. A combination of probabilistic robustness
with feedback linearization is presented. First, we design a feedback lineariza-
tion control law for the nominal system, then introduce parametric uncertainty
and reformulate the problem in a probabilistic format. The control design pa-
rameters are searched to minimize a stochastic robustness cost function that
is a weighted quadratic sum of probabilities of violating design specifications.

Consider a nonlinear system that has a nominal system as follows:

ẋ = f(x) +G(x)u,G(x) =
[
g1(x) g2(x) · · · gm(x)

]
y = h(x) (15.9)
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where f and gj (j = 1, 2, · · · ,m) are smooth vector fields on R
n, and h is

a smooth function mapping R
n → R

m. If this nominal system is feedback
linearizable, there exists a nonlinear coordinate transformation ς = T (x)⎧⎪⎪⎪⎨⎪⎪⎪⎩

ςi
1 = hi

ςi
2 = dhi

dt = Lfhi

...

ςi
λi

= d(λi−1)hi

dt = Lλi−1
f hi

i = 1, 2, · · · ,m

such that the nominal system is transformed to a set of decoupled linear
systems,⎧⎪⎪⎪⎨⎪⎪⎪⎩

ς̇i
1 = ςi

2

ς̇i
2 = ςi

3
...

ς̇i
λi

= Lλi

f hi +
∑m

j=1 Lgj
(Lλi−1

f hi)uj = vi

i = 1, 2, · · · ,m (15.10)

where the Lie derivatives are defined as Lfhi = ∂hi(x)
∂x f(x), Lk

fhi = Lf (Lk−1
f hi),

and Lgj
hi = ∂hi(x)

∂x gj(x).

For the decoupled linear systems (15.10), the control law v =
[
v1 v2 · · · vm

]T
could be designed using any existing technique, such as, a linear quadratic con-
trol that is parameterized in terms of weighting matrices Q and R. By (15.10),
the nonlinear control u is calculated through the new control input v as

u = −[G∗(x)]−1f∗(x) + [G∗(x)]−1v (15.11)

where

f∗(x) =

⎡⎢⎢⎢⎢⎣
Lλ1

f h1

Lλ2

f h2

...

Lλm

f hm

⎤⎥⎥⎥⎥⎦

G∗(x) =

⎡⎢⎢⎢⎣
Lg1

Lλ1−1
f h1 Lg2

Lλ1−1
f h1 · · · Lgm

Lλ1−1
f h1

Lg1
Lλ2−1

f h2 Lg2
Lλ2−1

f h2 · · · Lgm
Lλ2−1

f h2

· · · · · · · · · · · ·
Lg1

Lλm−1
f hm Lg2

Lλm−1
f hm · · · Lgm

Lλm−1
f hm

⎤⎥⎥⎥⎦ .
After the control design is derived for the nominal system, we consider the
uncertain nonlinear vector fields (f(x, q), G(x, q)) subject to parametric un-
certainty q ∈ Q. According to system design requirements, a set of robustness
metrics is defined and a stochastic robustness cost function is formulated as a
weighted quadratic sum of the probabilities of violating these robustness met-
rics. We use the parameterized control law of the nominal system as the con-
troller structure for the system with uncertainties, and tune the control design
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parameters to minimize the stochastic robustness cost function. The input-
to-state stability of the nominal closed-loop system is guaranteed, and the
stability and other performance metrics of the uncertain system are evaluated
by Monte Carlo simulation. As addressed in Section 15.2, the discrepancy be-
tween the Monte Carlo estimate and the true value results in apparent ‘noise’
in the evaluation of the cost function. Furthermore, the cost function may be
non-convex, having large plateaus and corners, so traditional gradient-based
search algorithms can get stuck in local minima and not escape from large
plateau areas. A series of randomized algorithms such as stochastic gradient
methods, sequential line search, clustering algorithms, genetic algorithms and
simulated annealing has been investigated [215, 233]. In this chapter, genetic
algorithms are used to minimize the stochastic robustness cost function.

In the following two sections, we illustrate the application of the above
stochastic robust nonlinear control to two flight control examples: a NASA
Langley hypersonic aircraft and the High Incidence Research Model. One of
the major challenges in the design of flight control systems is model uncertain-
ties and parameter variations in characterizing an aircraft and its operating
environment. While many gains have been made in robust control theory over
the past several decades, the gap between the new methods and conventional
flight control design approaches has precluded their widespread use. The pro-
posed stochastic robust control framework takes into account the engineering
design requirements during the design phase, and it gives a direct answer to
the likelihood that the design metrics are not satisfied.

15.4 Stochastic Robust Control Design For a Hypersonic
Aircraft Model

15.4.1 System Model and Design Specifications

Consider the control of the longitudinal motion of a hypersonic aircraft cruis-
ing at a Mach number of 15 and at an altitude of 110, 000 ft [333]. The dynamic
equations are

V̇ =
T cosα−D

m
− µ sin γ

r2

γ̇ =
L+ T sinα

mV
− (µ− V 2r) cos γ

V r2

ḣ = V sin γ

α̇ = q − γ̇

q̇ = Myy/Iyy

where

L =
1

2
ρV 2SCL(α)
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D =
1

2
ρV 2SCD(α)

T =
1

2
ρV 2SCT (δT, α)

Myy =
1

2
ρV 2Sc̄[CM (α) + CM (δE) + CM (q)]

r = h+RE

We have used relatively simple functions to fit the aerodynamic coefficients
and air data around the nominal cruising condition. Twenty-eight inertial and
aerodynamic parameters (identified in [389]) are assumed to be uncertain.
Each parameter is multiplied by an element of the uncertainty vector, ν, that
is assumed to follow a normal distribution with a mean of 1 and a standard
deviation of 0.1. At the trimmed cruise condition (M = 15, V = 15, 060
ft/s, h = 110, 000 ft, α = 0.0315 rad, δT = 0.183, δE = −0.0066 rad, and
T = 4.6853 × 104 lbf), a linearized model of the nominal open-loop dynamics
has eigenvalues of −0.8, 0.687, −0.0001 + 0.0263j, and 0.0008. The first two
eigenvalues represent a statically unstable short-period mode; the complex
pair of eigenvalues portrays a lightly damped phugoid mode, and the last real
eigenvalue indicates a mildly unstable height mode. Consequently, cruising
flight would be subject to attitude and height divergence that would require
stabilizing feedback control.

Three aspects of flight control robustness are of concern in this design: sta-
bility, performance in velocity command response, and performance in altitude
command response. The command responses are initiated at the trimmed con-
dition. State histories of the aircraft’s nonlinear response to the velocity and
altitude commands are evaluated for stability and performance. Table 15.1
lists 39 stability and performance metrics that characterize the responses to
a step velocity command change of 100 ft/s and a step altitude command
change of 2000 ft. The indicator functions with subscripts ‘V ’ and ‘h’ denote
the metrics for velocity and altitude command responses.

The cost function chosen to guide the design is a weighted quadratic sum
of the 39 probabilities of design requirement violation:

J =
39∑

j=1

wjP
2
j . (15.12)

As indicated in Table 15.1, the stability weight w1 is chosen as 10, the weight
for each more-demanding performance metric is selected as 1, and the weight
for each less-demanding performance metric is 0.1.

Controller structure

First we consider the nominal dynamics of the hypersonic aircraft with velocity
and altitude commands:
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Table 15.1. Stability and performance metrics for a hypersonic aircraft

Metric Weight Indicator Design requirement
in J function

1 10 Ii Stability

2 (3) 0.1 (1.0) IV,Ts25 (IV,Ts50) 10% settling time less than 25s (50s)

4 (5) 0.1 (1.0) IV,R25 (IV,R50) 90% rise time less than 25s (50s)

6 0.1 IV,Rev No reversal of response in V before peaking

7 (8) 0.1 (1.0) IV,D5 (IV,D10) 10% dwell time less than 5s (10s)

9 (10) 0.1 (1.0) IV,OS10 (IV,OS20) Overshoot less than 10% (20%)

11 (12) 0.1 (1.0) IV,∆α0.5 (IV,∆α1) Max change in α less than 0.5◦ (1◦)

13 (14) 0.1 (1.0) IV,g1 (IV,g2) Max load factor less than 1g (2g)

15 (16) 0.1 (1.0) IV,∆h0.25 (IV,∆h0.5) Max change of h less than 0.25% (0.5%)

17 (18) 0.1 (1.0) IV,δT50 (IV,δT100) Max change in thrust less than 50% (100%)

19 (20) 0.1 (1.0) IV,δE5 (IV,δE10) Max change in δE less than 5◦ (10◦)

21 (22) 0.1 (1.0) Ih,Ts50 (Ih,Ts100) 10% settling time less than 50s (100s)

23 (24) 0.1 (1.0) Ih,R50 (Ih,R100) 90% rise time less than 50s (100s)

25 0.1 Ih,Rev No reversal of response in h before peaking

26 (27) 0.1 (1.0) Ih,D10 (Ih,D20) 10% dwell time less than 10s (20s)

28 (29) 0.1 (1.0) Ih,OS20 (Ih,OS40) Overshoot less than 20% (40%)

30 (31) 0.1 (1.0) Ih,∆α0.5 (Ih,∆α1) Max change in α less than 0.5◦ (1◦)

32 (33) 0.1 (1.0) Ih,g1 (Ih,g2) Max load factor less than 1g (2g)

34 (35) 0.1 (1.0) Ih,∆V 0.25 (Ih,∆V 0.5) Max change of V less than 0.25% (0.5%)

36 (37) 0.1 (1.0) Ih,δT50 (Ih,δT100) Max change in thrust less than 50% (100%)

38 (39) 0.1 (1.0) Ih,δE5 (Ih,δE10) Max change in δE less than 5◦ (10◦)

ycom =

[
V
h

]
.

Integral compensation is used to minimize the steady-state error of the com-
mand response; hence define

VI =
∫ t

0
(V (τ) − V ∗)dτ, hI =

∫ t

0
(h(τ) − h∗)dτ

where V ∗ and h∗ are the commanded values.
Dynamic extension is used to ensure that the vector relative degree is well

defined; we assume that engine dynamics take a second-order form,

δ̈T = k1
˙δT + k2δT + k3δTcom

where choosing k1 = k2 = 0 and k3 = 1 provides a suitable model.
By augmenting the state variables as

x1 =

⎡⎣VI

V
γ

⎤⎦ , x2 =

⎡⎢⎢⎣
δT
hI

h
α

⎤⎥⎥⎦ , x3 =

[
˙δT
q

]

and defining the control vector as
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u =

[
δTcom

δE

]
the state equation can be put into a triangular form, i.e. it is feedback lin-
earizable.

Using the notation
zT =

[
V γ α δT h

]
we have ⎧⎨⎩

V̇ = T cos α−D
m − µ sin γ

r2

V̈ = 1
mω1ż

V (3) = 1
m (ω1z̈ + żTΩ2ż)

(15.13)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ḣ = V sin γ

ḧ = V̇ sin γ + V γ̇ cos γ

h(3) = V̈ sin γ + 2V̇ γ̇ cos γ − V γ̇2 sin γ + V γ̈ cos γ

h(4) = V (3) sin γ + 3V̈ γ̇ cos γ − 3V̇ γ̇2 sin γ + 3V̈ γ̈ cos γ
− 3V γ̇γ̈ sin γ − V γ̇3 cos γ + V γ(3) cos γ

(15.14)

where {
γ̈ = π1ż
γ(3) = π1z̈ + żTΞ2ż

.

The vectors ω1, π1 and matrices Ω2, Ξ2 are omitted here for brevity; they can
be found in [389].

By separating α̈ and δ̈T into control-independent and control-dependent
parts,

α̈ = α̈0 + α̈δEδE

δ̈T = δ̈T 0 + δ̈T comδTcom

where α̈δE represents the first derivatives of α̈ with respect to δE, and δ̈T com

represents the first derivative of δ̈T with respect to δTcom, z̈T can be written
as

z̈T =
[
V̈ γ̈ α̈ δ̈T ḧ

]
=
[
V̈ γ̈ α̈0 δ̈T 0 ḧ

]
+
[
δTcom δE

]
·
]

0 0 0 δ̈T com 0
0 0 α̈δE 0 0

]
= z̈T

0 + uT z̈T
u .

Therefore, by (15.13) and (15.14), we have[
V (3)

h(4)

]
= f∗(x) +G∗(x)u

with f∗ and G∗ as
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f∗ =

⎡⎣ 1
mω1z̈0 + 1

m żTΩ2ż

3V̈ γ̇ cos γ − 3V̇ γ̇2 sin γ + 3V̇ γ̈ cos γ − 3V γ̇γ̈ sin γ − V γ̇3 cos γ
+
(

1
mω1z̈0 + 1

m żTΩ2ż
)
sin γ + V cos γ(π1z̈0 + żTΠ2ż)

⎤⎦
G∗ =

[ TδT cos α
m δTcom

Tα cos α−T sin α−Dα

m α̈δE
TδT sin(α+γ)

m δTcom
T cos(α+γ)+Tα sin(α+γ)+Lα cos γ−Dα sin γ

m α̈δE

]
.

The determinant of G∗ is calculated as

det(G∗) =
TδT δ̈T comα̈δE

m2
cos γ(T + Lα cosα+Dα sinα)

where Lα, Dα and Tα denote the partial derivatives of L, D, and T with
respect to the angle of attach α; TδT denotes the partial derivative of T with
respect to the throttle setting δT . The nonsingular condition for G∗ can be
represented as

det(G∗) �= 0 ⇔ (T + Lα cosα+Dα sinα) cos γ �= 0.

Therefore, G∗ is nonsingular unless the flight path is vertical or (T+Lα cosα+
Dα sinα) = 0.

By assuming desired command-rates as zero, and using (15.13) and (15.14),
we define a nonlinear coordinate transformation, ξ = T1(x, V

∗) and η =
T2(x, h

∗), as

⎧⎪⎪⎨⎪⎪⎩
ξ1 =

∫ t

0
(V (τ) − V ∗)dτ

ξ2 = V − V ∗

ξ3 = V̇

ξ4 = V̈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η1 =

∫ t

0
(h(τ) − h∗)dτ

η2 = h− h∗

η3 = ḣ

η4 = ḧ
η5 = h(3)

.

This results in decoupled subsystems

ξ̇ = A1ξ + b1v1 (15.15)

η̇ = A2η + b2v2 (15.16)

where

A1 =

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ , b1 =

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦

A2 =

⎡⎢⎢⎢⎢⎣
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ , b2 =

⎡⎢⎢⎢⎢⎣
0
0
0
0
1

⎤⎥⎥⎥⎥⎦ .
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For the transformed linear systems, (15.15) and (15.16), we design the new
inputs v1 and v2 as linear-quadratic control laws. Considering intermediate
objective functions

J1 =

∫ ∞

0

(ξTQ1ξ + r1v
2
1)dt (15.17)

and

J2 =

∫ ∞

0

(ηTQ2η + r2v
2
2)dt (15.18)

the new input v1 is derived by minimizing J1 subject to (15.15):

v1 = −r−1
1 bT1 P1ξ

where P1 is the positive-definite solution to the algebraic Riccati equation
with design parameters Q1 and r1,

AT
1 P1 + P1A1 − r−1

1 P1b1b
T
1 P1 +Q1 = 0, (Q1 � 0, r1 > 0).

Similarly, minimizing J2 subject to (15.16) gives

v2 = −r−1
2 bT2 P2η

where P2 is the positive-definite solution to the Riccati equation with design
parameters Q2 and r2,

AT
2 P2 + P2A2 − r−1

2 P2b2b
T
2 P2 +Q2 = 0, (Q2 � 0, r2 > 0).

The nonlinear control law u is obtained by inserting v =
[
v1 v2

]T
into (15.11),

u = −(G∗(x))−1f∗(x) + (G∗x)−1

[
−r−1

1 bT1 P1ξ
−r−1

2 bT2 P2η

]
.

In the next step we consider the system robustness subject to the variations
of the uncertain aerodynamic parameters. Appropriate Q1, r1, Q2, and r2 in
the intermediate objective functions are found by minimizing the stochastic
robustness cost function (15.12). For simplicity, we choose the design param-
eters Q1 = diag{q1, q2, q3, q4} and Q2 = diag{q5, q6, q7, q8, q9}, and the design
parameter vector is

d =
[
q1, q2, · · · , q9, r1, r2

]
. (15.19)

Satisfactory values of the eleven design parameters in (15.19) are computed
by applying a genetic algorithm to Monte Carlo estimates of the stochastic
robustness cost function (15.12).
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15.4.2 Stochastic Robustness Analysis of the Design Result

The design parameter vector (15.19), found by a genetic algorithm after 20
generations, is given as

d = [8.54 × 10−6, 0.34, 0.86, 47.93, 1.1 × 10−11, 2.35 × 10−3,
0.52, 220.6, 57.12, 0.89, 1.05].

(15.20)

The performance for the nominal closed-loop system is shown in Fig-
ure 15.2. Figure 15.2(a) shows the response due to a 100 ft/s step-velocity
command from the trimmed condition (V = 15, 060 ft/s, h = 110, 000 ft).
The velocity converges to the command value in 30 s with little change in
altitude and with a change of angle of attack of less than 0.06◦. We note
that the use of thrust is unrealistically high, as there are limits to the thrust
available. Nevertheless, the example illustrates the effectiveness of the design
approach for the specified criteria. Figure 15.2(b) shows the velocity, altitude
change, and control input time histories to a 2000 ft step-altitude command.
The altitude converges to the command value in 75 s, with a change of angle
of attack of less than 0.5◦. Figure 15.2 demonstrates that the nominal system
has good performance.

Figure 15.3 shows the robustness comparison of the current feedback lin-
earization control (nonlinear dynamic inversion NDI) in (15.20) to a linear
quadratic (LQ) design [219] based on 2000 Monte Carlo evaluations. The
nonlinear design (NDI) has a cost of J = 1.23, while the linear design LQ has
a cost of J = 1.72. The closed-loop probability of instability of the nonlinear
design equals zero with a 95% confidence interval of (0, 0.0018); it has 5% to
56% lower probability of exceeding settling time than the LQ design (Metrics
2-3 and 21-22) and 15% to 80% lower probability of exceeding rise time (Met-
rics 7-8 and 26-27). The nonlinear design has also reduced the probability of
exceeding load factor by more than 80% compared to the LQ design (Metrics
13-14 and 32-33).

The NDI has larger probability of exceeding control effort corresponding
to Metric 18, IV,δT100, and Metric 36, Ih,δT50 , due to the possibility that non-
linear dynamic inversion may cancel some useful nonlinearities. Furthermore,
in (15.17) and (15.18), the weights r1 and r2 penalize large inputs v1 and v2

instead of penalizing thrust directly as in LQ. We can see that NDI performs
better than LQ in Metric 19 (20), IV,δE5 (IV,δE10), and Metric 38 (39), Ih,δE5

(Ih,δE10). The robustness profiles can be adjusted by changing the weights in
the robustness cost function. For example, trade-offs between using less thrust
and accepting longer rise time, or putting heavy weight on Ph,Ts

to decrease
the probability of exceeding settling-time can be easily examined.
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Figure 15.2. (a) Response to a 100 ft/s step-velocity command; (b) Response to a
2000 ft step-altitude command
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Figure 15.3. Comparison of the robustness profiles of the stochastic robust control
based on linear quadratic regulator structure (LQ), and nonlinear dynamic inversion
structure (NDI)

15.5 Stochastic Robust Control Design for the High
Incidence Research Model

The HIRM aircraft configuration has canard and tailplane control surfaces
plus an elongated nose. The mathematical model uses aerodynamic data ob-
tained from wind tunnel and flight tests of an unpowered, scaled drop model.
Engine, sensor, and actuator models have been added to the mathematical
model to create a representative nonlinear simulation of a twin-engine mod-
ern fighter. The aircraft is basically stable both longitudinally and laterally,
although there are some combinations of angle of attack and control surface
deflections that cause the aircraft to be unstable. Reference [235] described
in detail the six-degree-of-freedom nonlinear High Incidence Research Model
including nonlinear actuator and sensor models. We first present the dynamic
equations of motion for a general aircraft, and then address the aerodynamics
for the HIRM problem.

15.5.1 System Model and Design Metrics

Equations of motion

The dynamic equations of motion for an aircraft in a combined wind and body
axes are written as follows [123]:

V̇ =
Fwx

m
− g sin γ (15.21)

α̇ = q − qw

cosβ
− p cosα tanβ − r sinα tanβ (15.22)
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β̇ = rw + p sinα− r cosα (15.23)

γ̇ = qw cosϕ− rw sinϕ

ϕ̇ = pw + (qw sinϕ+ rw cosϕ) tan γ

ψ̇ =
qw sinϕ+ rw cosϕ

cos γ

q̇ =
1

Iyy
[M + Ixz(r

2 − p2) + (Izz − Ixx)rp] (15.24)

[
ṗ
ṙ

]
=

[
Ixx −Ixz

−Ixz Izz

]−1 [ L + Ixzpq + (Iyy − Izz)qr
N − Ixzqr + (Ixx − Iyy)pq

]
(15.25)

with

qw = −Fwz

mV
− g

V
cos γ cosϕ (15.26)

rw =
Fwy

mV
+

g

V
cos γ sinϕ (15.27)

pw = p cosα cosβ + (q − α̇) sinβ + r sinα cosβ (15.28)⎡⎣ L
M
N

⎤⎦ =

⎡⎣ LA

MA

NA

⎤⎦+

⎡⎣ LT

MT

NT

⎤⎦ (15.29)

⎡⎣Fwx

Fwy

Fwz

⎤⎦ = −

⎡⎣DS
L

⎤⎦+

⎡⎣Twx

Twy

Twz

⎤⎦ . (15.30)

Here, V = flight path velocity, α = angle of attack, β = sideslip angle, (γ, ϕ, ψ)
= wind-axis Euler angles, (p, q, r) = body-axis angular rates, (pw, qw, rw)
= wind-axis angular rates; (L,M,N ) = body-axis total rolling, pitching,
and yawing moments, (LA,MA,NA) = body-axis aerodynamic moments,
(LT ,MT ,NT ) = body-axis moments due to engine thrust, (Fwx, Fwy, Fwz)
= wind-axis total forces, (D,S,L) = drag, side, and lift force in wind axis,
and (Twx, Twy, Twz) = wind-axis thrust.

The transformation matrix from body axis to wind axis is defined as

LWB =

⎡⎣ cosα cosβ sinβ sinα cosβ
− cosα sinβ cosβ − sinα sinβ

− sinα 0 cosα

⎤⎦ .
The Mach number M is defined as the ratio of airspeed V and sound speed
a, i.e. M = V/a.
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Aerodynamics

Body-axis aerodynamic forces and moments, (FxA, FyA, FzA) and (LA,MA,NA),
are represented in terms of the non-dimensional aerodynamic coefficients
(CX , CY , CZ) and (Cl, Cm, Cn) as follows:⎧⎨⎩

Fx = 1
2ρV

2SCX

Fy = − 1
2ρV

2SCY

Fz = 1
2ρV

2SCZ

,

⎧⎨⎩
LA = 1

2ρV
2SbCl

MA = 1
2ρV

2ScCm

NA = 1
2ρV

2SbCn

where ρ denotes the air density, S denotes the aircraft’s wing planform area,
b denotes the span, and c denotes the mean aerodynamic chord. The aerody-
namic force and moment coefficients are highly nonlinear functions of angle
of attack α, sideslip angle β, airspeed V , angular rates p, q, r, and control
deflections (symmetrical and differential taileron deflections δTS and δTD,
symmetrical and differential canard deflections δCS and δCD, rudder deflec-
tion δR, and engine throttle δTH). Each component of the aerodynamic force
and moment coefficients is represented by a look-up table. Details on the
high-fidelity model can be found in [235].

Pilot commands

The pilot commands should control the responses as follows: lateral stick
deflection commands velocity-vector roll rate pwc, which is a roll performed
at constant angle of attack and zero sideslip; longitudinal stick deflection
commands pitch rate qc; rudder pedal deflection commands sideslip angle
βc; throttle lever deflection commands velocity-vector air speed Vc, which
represents a step command from its trim value Vtrim.

Design envelope

The flight envelope that is specified by the GARTEUR/HIRM competition
and used in comparison has Mach number within (0.15, 0.5), angle of attack
(−10◦, 30◦), sideslip angle (−10◦ , 10◦), and altitude (100 ft, 20000 ft).

Modelling errors

The control system should be robust to the errors in the aerodynamic mo-
ment derivatives and to the biases in the total moment coefficients. The varia-
tion of Cmw

is within (−0.001, 0.001), variation of Clv is within (−0.01, 0.01),
and the variation of Cnv

is within (0.002, 0.002). The variations of Cmq
,

Clp , Cnr
, Clr , Cnp

, CmT S
, CmCS

, ClT D
, ClCD

, ClRUDDER
, CnT D

, CnCD
, and

CnRUDDER
are within (−10%, 10%) of the derivative’s trim values. Though

these uncertainties are proposed for linear analysis in [235], we include these
aerodynamic-moment-derivative uncertainties in the assessment of nonlinear
time responses. We assume that the uncertainties take uniform distributions
in the designated ranges.
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Formulation of the robustness metrics

In Table 15.2, we formulate robustness metrics in keeping with performance
requirements in the assessments of a set of required maneuvers. All the robust-
ness metrics are evaluated by Monte Carlo simulations with random number
generators providing possible values of the uncertain aerodynamic parame-
ters. It is assumed that the uncertain parameters take uniform distributions
in the designated ranges.

Table 15.2. Formulation of robustness metrics

Metric Weight Indicator Design requirement
in J function

1 10 Ii Stability at all flight conditions

Pitch rate command response

2,3 1.0 I3q qTs 10% settling time less than 2s for pitch rate
I5q qTs command response at M=0.3 and 0.5

4,5,6 0.1 I2q amax −10◦ < α < 30◦ for pitch rate
I3q amax demand response at M=0.2, 0.3, and 0.5
I5q amax

7,8,9 0.1 I2q zmax −3g < anz < 7g for pitch rate
I3q zmax demand response at M=0.2, 0.3, and 0.5
I5q zmax

Velocity command response

10 1.0 I3V V Ts 10% settling time less than 15s
for velocity response at M=0.3

11 0.1 I3V qt Pitch rate transient less than 10◦/s
for velocity response at M = 0.3

Sideslip command response

12,13,14 1.0 I2b Sideslip command response
I3b lies within specified boundaries
I5b at M=0.2, 0.3, and 0.5

Roll rate command response

15,16 1.0 I3p pTs 10% settling time less than 2s for
I5p pTs roll rate command response at M=0.3 and 0.5

17,18 0.1 I3p qt Pitch rate transient less than 5◦/s
I5p qt for roll rate command response at M=0.3 and 0.5

In Table 15.2, the first indicator function, Ii, measures system stability.
The system stability is evaluated in terms of the simulation of nonlinear time
response. If all of the step command responses listed in Table 15.2 do not have
finite escape time, we specify Ii = 0; otherwise, Ii = 1. Indicator functions
2-9 characterize the nonlinear time responses to step pitch-rate commands at
different flight conditions. The angles of attack during pitch-rate commands
should be within the specified limits with maximum overshoot less than 5◦.
The normal acceleration should be within the specified limits with maximum
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overshoot less than 0.5g. The settling time requirement is not specified for
the pitch-rate response at M = 0.2 because the necessity of an angle-of-
attack limiter could cause transients of the pitch rate. Indicator functions
10-11 characterize the step velocity command response at M = 0.3. Indicator
functions 12-14 are for sideslip-angle command responses. The step response to
sideslip command should lie within some specified boundaries [235]. Indicator
functions 15-18 illustrate the requirements for roll-rate command responses.

The stochastic robustness cost function chosen to guide the design is a
weighted quadratic sum of the eighteen probabilities of design metric viola-
tions:

J =
18∑

j=1

wjP
2
j .

The weight for each probability is given in Table 15.2.

15.5.2 Controller Structure

The design of the controller structure is based on nonlinear dynamic inversion.
It is possible to separate system dynamics into two time scales if one subset of
the state components (referred to as ‘fast dynamics’) is known to evolve in a
much faster time scale than the other subset (referred to as ‘slow dynamics’).
The inversion performed here is based on the assumption that the dynamics
of angular rates are faster than those of angles of attack and sideslip. The
design of controller structure is separated into two steps relating to the slow
and fast dynamics.

Inversion of

Slow Dynamics

Inversion of

Fast Dynamics

Pilot Inputs

V

rqp

c
Vc
pwc

qc

Controller for slow dynamics

Controller for fast dynamics

cc pr ,TH

Angle-of

-Attac k

Limiter

Pilot Inputs

qpilot

limit

R

CD

CS

TD

TS

cc pr ,

qc

Figure 15.4. Controller structure designed using two-time-scale nonlinear dynamic
inversion

For the slow dynamics, commanded angular rates are derived through ei-
ther direct pilot inputs or the inversion of the force equations. The engine
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throttle position is derived through the inversion of the velocity dynamics.
The values of yaw rate and engine throttle are obtained in terms of design pa-
rameters that characterize desired dynamics of sideslip angle and velocity. For
the fast dynamics, control surface deflections are derived explicitly through
the inversion of a first-order differentiation of angular velocities. They are
defined in terms of design parameters that characterize desired dynamics of
angular rates. The procedure of this two-time-scale nonlinear dynamic inver-
sion is illustrated in Figure 15.4.

Slow dynamics

Design of the controller for slow dynamics shown in Figure 15.4 deals with
force equations and the kinematics’ equation for velocity-vector roll rate. The
purpose of this inversion is to derive command angular rates (pc, rc) for the
fast dynamics from the pilot commands (pwc, βc), and to derive engine throttle
position δTH from the pilot command velocity Vc.

First, we rewrite the equations for α̇, β̇, V̇ , and pw in appropriate forms.
The wind-axis thrust induced by the two engines is derived from the body-axis
thrust:⎡⎣Txw

Tyw

Tzw

⎤⎦ = LWB

⎡⎣Tx

Ty

Tz

⎤⎦ = LWB

⎡⎣2FE

0
0

⎤⎦ =

⎡⎣ 2FE cosα cosβ
−2FE cosα sinβ

−2FE sinα

⎤⎦ . (15.31)

By (15.31), equation (15.30) becomes⎡⎣Fwx

Fwy

Fwz

⎤⎦ =

⎡⎣−D + 2FE cosα cosβ
−S − 2FE cosα sinβ

−L− 2FE sinα

⎤⎦ .
We define wind axis load factors as

nwx =
Fwx

mg
=

−D + 2FE cosα cosβ

mg

nwy =
Fwy

mg
=

−S − 2FE cosα sinβ

mg

nwz =
Fwz

mg
=

−L− 2FE sinα

mg
.

Equations (15.26) and (15.27) are rewritten in terms of wind-axis load factor
as,

qw = − g

V
(cos γ cosϕ+ nwz) (15.32)

rw =
g

V
(cos γ cosϕ+ nwy). (15.33)

By setting α̇ and β to zero in (15.28), we have
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pwc = (p cosα+ r sinα). (15.34)

With (15.33) and (15.34), equation (15.23) becomes

β̇ = − r

cosα
+ pwc tanα+

g

V
(nwy + cos γ cosϕ) cosα. (15.35)

By (15.30), equation (15.21) becomes

V̇ =
2FE cosα cosβ −D

m
− g sin γ. (15.36)

Next, we formulate the state and control inputs for the slow dynamics.
Integral compensation is used to minimize steady-state error of the command
response. Therefore, we define new state variables

VI =

∫ t

0

[V (τ) − (Vtrim + Vc)]dτ

βI =

∫ t

0

(β(τ) − βc)dτ.

The corresponding augmented state vector for slow dynamics is defined as:

xs =
[
VI V βI β

]T
.

The dynamic model for xs is⎡⎢⎢⎣
V̇I

V̇

β̇I

β̇

⎤⎥⎥⎦ =

⎡⎢⎢⎣
V − (Vtrim + Vc)

−2ξV ωV [V − (Vtrim + Vc)] − ω2
V VI

β − βc

−2ξβωβ(β − βc) − ω2
ββI

⎤⎥⎥⎦ (15.37)

where ξV , ωV , ξβ , and ωβ are design parameters. ξV and ωV denote the desired
damping ratio and frequency for velocity dynamics, while ξβ and ωβ denote
the desired damping ratio and frequency for the dynamics of sideslip angle.

The control vector for slow dynamics consists of the thrust of each engine
FE and the commanded yaw rate rc for the fast dynamics. Utilizing (15.35),

equations (15.36) and (15.37), we derive the control vector us =
[
FE rc

]T
,

FE =
m

2 cosα cosβ

{
D

m
+ g sin γ − 2ξV ωV [V − (Vtrim + Vc)] − ω2

V VI

}
(15.38)

rc = pwc cosβ sinα+
g

V
(nwy + cos γ sinϕ) cosα

+ [2ξβωβ(β − βc) + ω2
ββI ] cosα. (15.39)

By (15.34) and (15.39), we derive the commanded roll rate pc for the fast
dynamics as
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pc = pwc cosβ cosα− g

V
(nwy + cos γ sinϕ) sinα

+ [−2ξβωβ(β − βc) − ω2
ββI ] sinα. (15.40)

In terms of the engine model in [235], the throttle position is

δTH =

⎧⎨⎩
FE

ρ0
ρ −FIDLE

FMD−FIDLE
, FE

ρ0

ρ < FMD

1 +
FE

ρ0
ρ −FMD

FMR−FMD
, FMD ≤ FE

ρ0

ρ ≤ FMR

with FE given by (15.38). FIDLE , FMD, and FMR denote the idle thrust,
maximum dry thrust, and maximum reheat thrust for the engine.

The computation of rc, pc, and FE is conducted as follows. Through the
transformation from body axes to wind axes LWB , the wind-axis load factor
nwy in (15.39) and (15.40) is calculated from the body-axis accelerations anx,
any, and anz, which are measured variables. Also through LWB , drag D in
(15.38) is calculated from body-axis aerodynamic forces FxA, FyA, and FzA,
which are computed in terms of the aerodynamic force coefficients CX , CY and
CZ by (15.31). The calculation of CX , CY and CZ depends on the values of
control surface deflections, which are unknown and are computed in the phase
of fast dynamics. In this chapter, the values of control surface deflections of the
previous time iteration are used in computing aerodynamic force coefficients
CX , CY , and CZ .

An angle-of-attack limiter is important because the commanded pitch rate
qc, which is an input for the fast dynamics, should be chosen as the minimum
of the pilot-commanded pitch rate qpilot and the pitch rate qlimit that would
induce the maximum allowable angle of attack αlimit,

qc = min(qpilot, qlimit).

In terms of equations (15.22) and (15.32), qlimit is derived as

qlimit = (p cosα+ r sinα) tanβ

− g

V

nwz + cos γ cosϕ

cosβ
+ α̇LIM (15.41)

where the maximum allowable angle-of-attack rate, α̇LIM , is calculated from

α̇LIM = −ωα(α− αlimit)

where ωα is a design parameter that denotes the bandwidth of the angle-of-
attack control loop; α is the current angle of attack. The limit of angle of
attack αlimit equals 30◦.

Fast dynamics

Design of the controller corresponding to the fast dynamics in Figure 15.4
consists of the inversion of the moment equations. The purpose of this in-
version is to derive a vector of control surface deflections for a given set of
commanded angular rates pc, qc and rc.
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Integral compensation minimizes the steady-state error of the pitch rate
command response; thus we define a new state variable,

qI =

∫ t

0

(q(τ) − qc)dτ.

The state vector for the fast dynamics is

xf =
[
p r qI q

]T
.

The dynamic model for angular rates is

ṗ = −ωp(p− pc) (15.42)

ṙ = −ωr(r − rc) (15.43)

q̇ = −2ξqωq(q − qc) − ω2
qqI (15.44)

where ξq, ωq, ωp, and ωr are design parameters. ξq and ωq denote the desired
damping ratio and frequency for the dynamics of pitch rate while ωp and ωr

denote the desired bandwidths for p and r.
The vector of control inputs for the fast dynamics consists of control sur-

face deflections of the taileron, canard, and rudder:

uf =
[
δTS δTD δCS δCD δR

]T
.

From (15.24), (15.25), (15.29), and (15.42), (15.43), (15.44), we have⎡⎣ LA

NA

MA

⎤⎦ = −

⎡⎣ LT

NT

MT

⎤⎦+

⎡⎣ −Ixzpq + (Izz − Iyy)qr
Ixzqr + (Iyy − Ixx)pq

(Ixx − Izz)rp+ Ixz(p
2 − r2)

⎤⎦
+

⎡⎣ Ixx −Ixz 0
−Ixz Izz 0

0 0 Iyy

⎤⎦⎡⎣ −ωp(p− pc)
−ωr(r − rc)

−2ξqωq(q − qc) − ω2
qqI

⎤⎦ . (15.45)

Note that the aerodynamic moments LA, NA, and MA are nonlinear func-
tions of the control surface deflections uf ; the inverse mappings of these non-
linear functions have to be calculated in order to derive the control surface
deflections uf . For simplicity of calculation, we approximate the aerodynamic
moments by their first-order expansions with respect to control surface de-
flections around the values of control surface deflections at the previous time
iteration: ⎡⎣ LA

NA

MA

⎤⎦ ∼=
1

2
ρV 2S̄Λ(uf − u∗f ) +

1

2
ρV 2S̄Υ. (15.46)

Matrices Λ and Υ , which are functions of the control surface deflections at
the previous time iteration u∗f , are given in [389].
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Note that in (15.46), we have more unknown variables (uf consists of
five control surface deflections) than equations (three equations); hence, the
solution of uf is not unique. We derive the control uf in terms of Λ�, which
is the pseudo-inverse of matrix Λ,

uf = u∗f + Λ�

⎧⎨⎩ 1
1
2ρV

2S̄

⎡⎣ LA

NA

MA

⎤⎦− Υ

⎫⎬⎭
where

[
LA NA MA

]T
is given by (15.45). The (right) pseudo-inverse opera-

tion used here corresponds to a minimization of the normalized control surface
deflections.

We concatenate the control design parameters in (15.37) and (15.42),
(15.43), (15.44) into a single design vector as

d =
[
ξV ωV ξβ ωβ ωα ξq ωq ωp ωr

]T
. (15.47)

15.5.3 Control Design Results

The design parameter vector in (15.47) for our robust HIRM controller is
found by using a genetic algorithm as follows:

d =
[
0.419 1.046 2.872 0.489 4.983 1.448 3.063 4.023 2.663

]T
. (15.48)

The performance of the nominal closed-loop system is illustrated by a set
of maneuvers in Figures 15.5 and Figure 15.6; the time responses for other
maneuvers can be found in [210]. The figures show histories of the command
variables and state variables of interest. The command values of pitch-rate,
velocity-vector-roll-rate, airspeed, and sideslip angle are plotted using dashed
lines. The response to command is good in all cases. For the 5◦/s pitch rate
commanded response at M = 0.2, Figure 15.5(a) shows angle of attack being
limited to the maximum value, 30◦. The pitch-rate transient that occurs at
t = 5 s is due to this limiting. With the increase of the pitch attitude, the
gravitational force component from the mass of the aircraft induces an addi-
tional force in the wind x-axis that results in the variation of the airspeed.
The thrust is increased to compensate for the change in attitude. For the
70◦/s roll rate commanded response at M = 0.5, Figure 15.5(b) shows good
performance. The roll rate follows the command input quite well, with 10%
settling time less than 2 s. The coupling to sideslip angle is less than 1.5◦, and
the coupling to pitch rate is less than 1◦/s.

Figure 15.6(a) illustrates the responses due to a 10◦/s step command on
sideslip angle at M = 0.3. The time history of the sideslip angle is well within
the specified boundaries. It follows the command input with 10% settling time
of less than 2 s. The couplings into roll and pitch rate are low. Figure 15.6(b)
shows a 51.48 m/s (100 kn) step on velocity commanded response at M = 0.3.
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Figure 15.5. (a) Pitch rate command response at M = 0.2; (b) Roll rate command
response at M = 0.5
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Figure 15.6. (a) Sideslip angle command response at M = 0.3; (b) Velocity com-
mand response at M = 0.3

The 10% settling time is less than 15 s, and the overshoot is within 3%. The
pitch rate transient is low and returns to zero quickly. The engine is fully
used for the rapid speed command change. The maximum throttle position
is attained. The noise in the time history of normal acceleration az is due to
the relatively high bandwidth of the velocity. The control system shows good
performance for the entire flight envelope including extreme flight conditions
such as 30◦ angle of attack. It is demonstrated that the controller has strong
ability to account for significant nonlinearities.
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15.5.4 Comparison of Present Design with Controllers Developed
for GARTEUR Competition

A set of control designs has been presented for the HIRM control chal-
lenges in the GARTEUR competition [210]. They include controllers based
on linear-quadratic (LQ) methods [4], H∞ loop-shaping approaches [258],
µ-synthesis [149, 213], nonlinear dynamic inversion combined with linear-
quadratic regulator (NDI/LQ) [122], and robust inverse dynamics estimation
approaches (RIDE) [236]. The first three design approaches are linear tech-
niques. Gain scheduling of linear feedback gains was utilized to cover the
whole operating envelope of the aircraft. Reference [122] used a two-level
controller structure consisting of a nonlinear-dynamic-inversion feedforward
controller and a linear-quadratic feedback controller. In [122], the simulations
for the nonlinear time responses were performed with the nonlinear-dynamic-
inversion feedforward controller alone, without the linear-quadratic correc-
tion. Reference [236] combined dynamic inversion with proportional and in-
tegral feedback loops. Robustness issues were not directly taken into account
in [236].

It is difficult to compare the present controller against the designs pre-
sented in the GARTEUR competition because they were not intended to min-
imize the probabilities of metric violations subjected to expected parameter
variations, as is the present design. In the evaluation software provided by
GARTEUR, a single set of values of uncertain parameters is used to test a
control system’s robustness (deterministic characterization of uncertainties).
Furthermore, very limited simulation results were presented for each design.
Nevertheless, we provide a comparison of the present controller with the ear-
lier designs based on the available information.

Performance in nominal control responses

For each design in the GARTEUR competition, maneuver simulations are of-
fered only at some of the flight conditions. There are no results shown for the
commanded time responses in the presence of parameter uncertainties. A com-
parison of the performance of nominal time responses for a set of maneuvers
between the present controller and previous designs is given in Table 15.3.

In Table 15.3, Ts denotes a 10% settling time for a command response.
Tw represents the overshoot wash-out time for the angle of attack above its
limiting value. A 2s wash-out time is required. We use ‘-’ to denote unavailable
results. Inadequate performances of each control design are highlighted.

The linear-quadratic design has quite good performance except that there
is a slight excess of overshoot in the velocity command response, compared
to the desired specification of less than 3%. The H∞ loop-shaping controller
has excess wash-out time for angle-of-attack overshoot above 30◦ in the pitch-
rate command response, excess steady-state offsets of the roll-rate command
response, and excess overshoot in the velocity command response. The first
µ-synthesis design has large steady-state offsets for the pitch-rate command
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response and excess settling time for the roll-rate command response. The sec-
ond µ-synthesis design has very good performance, except the settling time
is longer than the required two seconds for the pitch rate command response.
The NDI/LQ design has large overshoot in the velocity command response;
otherwise, it demonstrates excellent nominal performance. The RIDE design
has no overshoot in velocity, but there are slight steady-state offsets, and
it has relatively long settling time for the sideslip-angle command response.
Compared to previous designs in the GARTEUR competition, the controller
presented in this chapter shows less overshoot in the velocity command re-
sponse, faster response in all the maneuvers, and more accurate tracking of
the commands without steady state offsets.

Table 15.3. Comparison of nominal performance for a set of controllers (‘o.s.’
denotes overshoot)

LQ H∞ µ-1 µ-2 NDI/LQ RIDE Present

Pitch rate command responses

- α > 30◦ - - α ≤ 30◦ - α ≤ 30◦

M=0.2 w/ 1.5◦ w/o w/o
o.s., o.s. o.s.

Tw > 2s

M=0.3 Ts < 2s - Ts < 2s Ts > 2s - - Ts < 2s

M=0.4 - - - - - α ≤ 30◦ -
w/o o.s.

M=0.5 - - q offset - - - Ts < 2s
= 14%

Roll rate command responses

Ts < 2s |q| < 5◦/s Ts > 2s - - - Ts < 2s
M=0.3 |q| <7◦/s |β| < 1.2◦ |q| <8◦/s |q| < 4◦/s

|β| < 4◦ p offset |β| < 0.7◦ |β| < 2◦

= 20%

M=0.4 - - - - Ts < 2s Ts < 2s, -
|q| < 2◦/s |q| <3◦/s

M=0.5 - - - Ts < 2s - - Ts < 2s
|q| < 1◦/s |q| < 1◦/s

Sideslip angle command response

M=0.2 - - - - - - Ts < 2s

M=0.3 Ts < 2s - - - - - Ts < 2s

M=0.4 - - - - Ts < 2s Ts > 2s -

M=0.5 - Ts < 2s - - - - Ts < 2s

Velocity command response

M=0.3 6.7% o.s. 8% o.s. - - 20% o.s. w/o o.s. < 3% o.s.
6% offset 4.5% offset
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Performance robustness in linear frequency responses with parametric
uncertainties

In the GARTEUR competition, the evaluation software analyzes linear fre-
quency responses of controllers in the presence of parametric uncertainties in
moment derivatives. Linear frequency specifications have less value for our
nonlinear control law; therefore, we do not include them in the formulation
of our cost function. Nevertheless, our controller is evaluated against linear
frequency requirements specified in the GARTEUR competition for compari-
son with earlier designs. The open-loop Nichols plot of the frequency response
between each actuator demand u and the corresponding error signal e should
avoid a gain-phase exclusion region. The evaluation is made in the presence of
parametric uncertainties as: Cmv

= −0.001, Clv = −0.01, Cnv
= −0.002, Clr ,

Cnp
= 10%, and Cmq

, Clp , Cnr
, CmT S

, CmCS
, ClT D

, ClCD
, ClRUDDER

, CnT D
,

CnCD
, CnRUDDER

= −10%.
Open-loop Nichols plots for the present controller with parametric uncer-

tainties are plotted in Figure 15.7 for a flight condition at Mach 0.24, 20000
ft altitude, 28.9◦ angle of attack, and zero sideslip angle. This flight condition
represents an edge of the flight envelope, which is likely to cause stability and
actuator-limiting problems. Figure 15.7 shows that the frequency responses
for all of the six control loops (differential and symmetrical taileron loops; dif-
ferential and symmetrical canard loops; rudder loop, and thrust loop) avoid
the specified gain-phase exclusion zone. In comparison to existing designs, for
each of the controllers except the NDI/LQ and H∞ (lack of robustness infor-
mation) in the GARTEUR competition, one loop’s linear frequency response
cannot satisfy the robustness criteria. We conclude that the nonlinear con-
troller of this chapter shows better performance robustness than the earlier
designs as portrayed by linear frequency analysis.

Linear frequency analysis is inadequate for evaluating nonlinear dynamic
systems and nonlinear control laws. Furthermore, a single set uncertainty
that is not proved to be the worst case for the parametric uncertainties is not
enough to quantify system robustness. Two thousand Monte Carlo evaluation
of the present design with controller parameters in (15.48) give the prob-
abilistic robustness profile in Figure 15.8. The confidence interval for each
probability is not shown due to space limitations and can be found in [389].
In the Monte Carlo simulations, random number generators with uniform dis-
tributions provide the possible values of the system uncertain parameters.
The design cost equals 1.14. The control system has a zero probability of
instability (Metric 1) with a 95% confidence interval of (0, 0.0018). For the
pitch-rate command response at M = 0.2, adding the angle-of-attack limiter
causes transients in pitch rate; therefore, the settling-time specification is not
evaluated. The pitch-rate command response at M = 0.3 is quite good, with
low probability of excess settling time (Metric 2, I3q qTs

). The probability of
violating settling-time condition at M = 0.5 (Metric 3, I5q qTs

) is more than
double the probability at M = 0.3. It is within expectation because M = 0.2
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Figure 15.7. Open loop Nichols plots of the present controller in the presence of
parametric uncertainties with a flight condition at M = 0.24. The trapezoid denotes
the gain-phase exclusion region.

and 0.5 represent edge-of-the-envelope flight conditions, and M = 0.3 rep-
resents a nominal flight condition within the envelope. The probabilities of
exceeding angle-of-attack and normal-acceleration limits in pitch-rate com-
mand responses equal zero (Metric 4-9) for all flight conditions with 95%
confidence intervals of (0, 0.0018). Figure 15.8 shows that the probability of
exceeding settling time for the velocity-command response is relatively high
(Metric 10, I3V V Ts

), which is caused by the uncertainties in yawing moments
and derivatives. The probability of pitch-rate coupling for velocity command
is low (Metric 11, I3V qt). The performance robustness for sideslip-angle com-
mand responses is fine for each flight condition. The probabilities of violating
settling time condition are about 20% (Metrics 12-14). For roll-rate command
responses, there are about 30% probability of excess settling time (Metrics
15-16) and less than 20% probability of pitch-rate coupling for all flight con-
ditions (Metrics 17-18).

15.5.5 Effects on Robustness Profiles by Changing Weights in the
Robustness Cost Function

Trade-offs between satisfying different aspects of robustness can be balanced
through changing the weights in the robustness cost function. In this sec-
tion, the controller structure is unchanged, and the weights for the pitch-rate
settling-time metric I5q qTs

, roll-rate settling-time metrics I3p pTs
and I5p pTs

are increased to 10. The new design based on the cost function with modified
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Figure 15.8. Robustness profile of the present controller for the HIRM challenge

weights is obtained as

d =
[
0.7529 0.6514 0.8099 0.5753 4.95 1.233 2.951 4.165 3.51

]T
(15.49)

Figure 15.9 shows the variations in the robustness profile of designs due
to different weights in the robustness cost function. In Figure 15.9, white bars
(weight 1) represent the probabilities of violating design metrics for the design
in (15.48), and dark bars (weight 2) denote the probabilities for the design in
(15.49). Figure 15.9 shows that the probabilities of violating I5q qTs

, I3p pTs
,

and I5p pTs
(Metrics 3, 15 and 16) have decreased by almost two thirds. The

probability of violating I3q qTs
(Metric 2), and the probabilities of violating

I3p qt and I5p qt (Metrics 17-18) have fallen to zero. However, the improvement
in robustness for these metrics is achieved at the expense of increasing the
probability of violating some other metrics. It is shown that the probabilities
of violating requirements in sideslip-angle command responses (Metrics 12-14)
are doubled, and the probability of violating the settling-time requirement in
the velocity command response (Metric 10) has increased, too.

This comparison illustrates the limitation of redesign within a fixed con-
troller structure. Changing cost function weights can improve specific re-
sponses, but it may do so at the expense of degrading the robustness of other
responses. Comparing the original design vector (15.48) with the revised de-
sign vector (15.49), we see that the improved pitch and roll-rate responses
led to higher airspeed and sideslip-angle damping, lower airspeed bandwidth,
and stiffer yaw rate response. Further improvements would require revisions
to the specified structures for slow and fast controllers.
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15.6 Conclusion

Stochastic robustness analysis and synthesis break the computation complex-
ity barrier suffered by deterministic worst-case approaches; Monte Carlo sim-
ulation and randomized search have polynomial complexity in computation.
Instead of trying to guarantee that stability and performance specifications
are satisfied for the worst-case scenario, the stochastic approach minimizes
the likelihood of violating design requirements in the presence of expected
variations in plant parameters. By focusing on the uncertainties most likely to
occur in real engineering problems, the stochastic approach avoids undue con-
servativeness that could sacrifice nominal performance, cause extra controller
complexity, and increase the possibility for control saturation. With Monte
Carlo evaluation of probabilities of violating design metrics as an inherent
feature of the control design process, a wide range of design specifications
can be taken into account. Randomized algorithms such as genetic algorithms
allow efficient tuning of design parameters for control problems formulated in
a general and realistic fashion. The robustness profile of the final design and
the choice of weights in the cost function provide sufficient information and
flexibility for engineers to make tradeoffs between satisfying different aspects
of robustness.

A stochastic robust nonlinear control design methodology is proposed by
combining probabilistic robustness with feedback linearization (nonlinear dy-
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namic inversion). The proposed approach is demonstrated through two design
examples for robust flight control systems, where the high-fidelity models con-
tain large dimensional uncertain parameters and complicated design specifica-
tions. The combination of stochastic robustness with nonlinear control design
methodologies provides the ability to account for all significant nonlineari-
ties and to produce better stability and performance robustness than linear
robust control design with gain scheduling. The approach also reduces the
complexity of control systems and the possibility of control saturation com-
pared to the deterministic worst-case approaches to nonlinear robust control.
It demonstrates engineering utility in addition to pure mathematical beauty,
enhances the applicability of modern control theories, and reduces the gap
between theory and practice.
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Summary. In this chapter, we develop efficient randomized algorithms for estimat-
ing probabilistic robustness margin and constructing robustness degradation curve
for uncertain dynamic systems. One remarkable feature of these algorithms is their
universal applicability to robustness analysis problems with arbitrary robustness re-
quirements and uncertainty bounding sets. We have developed efficient methods such
as probabilistic comparison, probabilistic bisection, backward iteration and sample
reuse to facilitate the computation. In particular, confidence interval for binomial
random variables has been frequently used in the estimation of probabilistic robust-
ness margin and in the accuracy evaluation of estimating robustness degradation
function. Motivated by the importance of fast computation of binomial confidence
interval in the context of probabilistic robustness analysis, we have recently derived
an explicit formula for constructing the confidence interval of binomial parameter
with guaranteed coverage probability. The formula overcomes the limitation of nor-
mal approximation which is asymptotic in nature and thus inevitably introduces
unknown errors in applications. Moreover, the formula is extremely simple and very
tight in comparison with classic Clopper-Pearson’s approach.

16.1 Introduction

In recent years, there have been growing interests on the development of prob-
abilistic methods for robustness analysis and design problems aimed at over-
coming the computational complexity and the issue of conservatism of deter-
ministic worst-case framework (see, e.g., [22, 24, 26–28, 73, 74, 85–87, 129, 163,
176,182,190,198,200,218,251,272,290,304,347,358,359,381,384,392], and the
references therein). In the deterministic worst-case framework, one is inter-
ested in knowing if the robustness requirement is guaranteed for every value
of the uncertainty. However, it should be borne in mind that the uncertainty
set may include worst cases which never happen in reality. Instead of seeking
the worst-case guarantee, it is sometimes ‘acceptable’ that the robustness re-
quirement is satisfied for most of the cases. It has been demonstrated that the
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proportion of systems guaranteeing the robustness requirement can be close
to 1 even if the radii of uncertainty set are much larger than the worst case
deterministic robustness margin (see, e.g., [26, 27, 74, 272] and the references
therein). Therefore, it is of practical importance to construct a function which
describes quantitatively the relationship between the proportion of systems
guaranteeing the robustness requirement and the radius of uncertainty set.
This function can serve as a guide for control engineers in evaluating the ro-
bustness of a control system once a controller design is completed. Such a
function, referred as robustness degradation function, has been proposed by a
number of researchers. For example, Barmish and Lagoa [24] have constructed
a curve of robustness margin amplification vs risk in a probabilistic setting. In
a similar spirit, Calafiore, Dabbene and Tempo [74] have constructed a prob-
ability degradation function in the context of real and complex parametric
uncertainty. It is important to note that the robustness degradation function
can be done in a distribution-free manner. This can be justified by the Trun-
cation Theory established by Barmish, Lagoa and Tempo [26] and can also
be illustrated by relaxing the deterministic worst-case paradigm.

In this work, we consider robustness analysis problems with arbitrary ro-
bustness requirement and uncertainty bounding set. To construct a robustness
degradation curve of practical interest, the selection of uncertainty radius in-
terval is itself a question. Clearly, the range of uncertainty radius for which
robustness degradation curve is significantly below 1 is not of practical inter-
est since only a small risk can be tolerated in reality. From application point
of view, it is only needed to construct robustness degradation curve for the
range of uncertainty radius such that the curve is above an a-priori specified
level 1− ε where risk parameter ε ∈ (0, 1) is acceptably small. We develop effi-
cient randomized algorithms for estimating probabilistic robustness margin ρε

which is defined as the maximal uncertainty radius such that the probability
of guaranteeing the robust requirements is at least 1 − ε. We have also de-
veloped fast algorithms for constructing robustness degradation curve which
is above an a-priori specified level 1 − ε. In particular, we have developed
efficient mechanisms such as probabilistic comparison, probabilistic bisection
and backward iteration to reduce the computational complexity.

In our algorithms, confidence interval for binomial random variables has
been frequently used to improve the efficiency of estimating probabilistic ro-
bustness margin and in the accuracy evaluation of robustness degradation
function. Obviously, fast construction of binomial confidence interval is im-
portant to the efficiency of the randomized algorithm. Therefore, we have de-
rived an explicit formula for constructing the confidence interval of binomial
parameter with guaranteed coverage probability. The formula overcomes the
limitation of normal approximation which is asymptotic in nature and thus
inevitably introduces unknown errors in applications. Moreover, the formula is
extremely simple and very tight in comparison with classic Clopper-Pearson’s
approach.
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This chapter is organized as follows. Section 16.2 is the problem formula-
tion. Section 16.3 discusses binomial confidence interval. Section 16.4 is de-
voted to probabilistic robustness margin. Section 16.5 presents algorithms for
constructing robustness degradation curve. Illustrative examples are given in
Section 16.6. Section 16.7 is the conclusion.

16.2 Problem Formulations

We adopt the assumption, from the classical robust control framework, that
the uncertainty is deterministic and bounded. We formulate a general robust-
ness analysis problem in a similar way as [74,87] as follows.

Let R denote a robustness requirement. The definition of R can be a fairly
complicated combination of requirements such as stability or D-stability, H∞
(or H2) norm, overshoot, rise time, settling time, steady state error, etc. Let
B(r) denote the set of uncertainties with size smaller than r. In applications,
we are usually dealing with uncertainty sets such as lp ball, spectral norm
ball, homogeneous star-shaped bounding set, etc. In general, the norm of
uncertainty X can be represented as �(X) where function �(.) guarantees
�(X) = min{r : X ∈ B(r)}.

To allow the robustness analysis be performed in a distribution-free man-
ner, we introduce the notion of proportion as follows. For any ∆ ∈ B(r) there
is an associated system G(∆). Define proportion

P (r) :=
vol({∆ ∈ B(r) : G(∆) guarantees R})

vol(B(r))

where the volume function vol(.) is a Lebesgue measure defined on uncer-
tainty parameter space. It follows that P (r) is a reasonable measure of the
robustness of the system [74,359]. Since the uncertainty set in our model may
include worst cases which never happen in reality, it would be ‘acceptable’
in many applications if the robustness requirement R is satisfied for most
of the uncertainty instances. Hence, we should obtain the value of P (r) for
uncertainty radius r which exceeds the deterministic robustness margin.

Clearly, P (r) is deterministic in nature. However, we can resort to a prob-
abilistic approach to evaluate P (r). To see this, one needs to observe that
P (r) = P{G(∆u) guarantees R} where ∆u is a random variable with uni-
form distribution over B(r). Define a Bernoulli random variable X such that
X takes value 1 if the associated system G(∆u) guarantees R and takes value
0 otherwise. Then estimating P (r) is equivalent to estimating binomial pa-
rameter PX

.
= Pr{X = 1} = P (r). It follows that a Monte Carlo method can

be employed to estimate P (r) based on i.i.d. observations of X.
Obviously, the robustness analysis problem would be completely solved

if we can efficiently estimate P (r) for all r ∈ (0,∞). However, this is in-
feasible from computational perspective. In practice, only a small risk ε can
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be tolerated by a system. Therefore, what is really important to know is
the value of P (r) over the range of uncertain radius r for which P (r) is at
least 1 − ε where ε ∈ (0, 1) is referred as the risk parameter in this chap-
ter. Our strategy is to firstly estimate the probabilistic robustness margin
ρ(ε) := sup{r : P (r) ≥ 1−ε} and consequently construct the robust degrada-
tion curve in a backward direction (in which r is decreased) by choosing the
estimate of ρ(ε) as the starting uncertainty radius.

To reduce computational burden, the estimation of probabilistic robust-
ness margin relies on the frequent use of binomial confidence interval. The
confidence interval is also served as a validation method for the accuracy of
estimating robustness degradation function. Hence, it is desirable to quickly
construct binomial confidence interval with guaranteed coverage probability.

16.3 Binomial Confidence Intervals

Clopper and Pearson [90] has provided a rigorous approach for constructing
binomial confidence interval. However, the computational complexity involved
with this approach is very high. The standard technique is to use normal ap-
proximation which is not accurate for rare events. The coverage probability
of the confidence interval derived from normal approximation can be signifi-
cantly below the specified confidence level even for very large sample size. In
the context of robustness analysis, we are dealing with rare events because the
probability that the robustness requirement is violated is usually very small.
We shall illustrate these standard methods as follows.

16.3.1 Clopper-Pearson Confidence Limits

Let the sample size N and confidence parameter δ ∈ (0, 1) be fixed. We refer
to an observation of X with value 1 as a successful trial. Let K denote the
number of successful trials during the N i.i.d. sampling experiments. Let k be
a realization of K. The classic Clopper-Pearson lower confidence limit LN,k,δ

and upper confidence limit UN,k,δ are given respectively by

LN,k,δ :=

{
0 if k = 0
p if k > 0

and UN,k,δ :=

{
1 if k = N
p if k < N

where p ∈ (0, 1) is the solution of the equation

k−1∑
j=0

(
N

j

)
pj(1 − p)N−j = 1 − δ

2
(16.1)

and p ∈ (0, 1) is the solution of the equation

k∑
j=0

(
N

j

)
pj(1 − p)N−j =

δ

2
. (16.2)
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16.3.2 Normal Approximation

It is easy to see that equations (16.1) and (16.2) are hard to solve and thus
the confidence limits are difficult to determine using Clopper-Pearson’s ap-
proach. For large sample size, it is computationally intensive. To get around
the difficulty, normal approximation has been widely used to develop simple
approximate formulas (see, for example, [151] and the references therein). Let
Φ(.) denote the normal distribution function and Z δ

2
denote the critical value

such that Φ(Z δ
2
) = 1− δ

2 . It follows from the Central Limit Theorem that, for

sufficiently large sample size N , the lower and upper confidence limits can be

estimated respectively as L̃ ≈ k
N −Z δ

2

√
k
N (1− k

N )

N and Ũ ≈ k
N +Z δ

2

√
k
N (1− k

N )

N .

The critical problem with the normal approximation is that it is of asymp-
totic nature. It is not clear how large the sample size is sufficient for the ap-
proximation error to be negligible. Such an asymptotic approach is not good
enough for studying the robustness of control systems.

16.3.3 Explicit Formula

It is desirable to have a simple formula which is rigorous and very tight for
the confidence interval construction. Recently, we have derived the following
simple formula for constructing the confidence limits.

Theorem 1. Let L(k) = k
N + 3

4

1− 2k
N −

√
1+4θ k(1− k

N )

1+θN and U(k) = k
N +

3
4

1− 2k
N +

√
1+4θ k(1− k

N )

1+θN with θ = 9
8 ln 2

δ

. Then P {L(K) < PX < U(K)} > 1− δ.

The proof of this result is reported in the Appendix.
As can be seen from Figure 16.1, our formula is very tight in comparison

with the Clopper-Pearson’s approach. Obviously, there is no comparison on
the computational complexity. Our formula is simple enough for hand cal-
culation. Simplicity is especially important when the confidence limits are
frequently used in the context of robustness analysis.

16.4 Estimating Probabilistic Robustness Margin

In this section, we shall develop efficient randomized algorithms for construct-
ing an estimate for ρ(ε).

16.4.1 Separable Assumption

We assume that the robustness degradation curve of the system can be sepa-
rated into two parts by a horizontal line with height 1 − ε, i.e.,

P (r) < 1 − ε for all r > ρ(ε).
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Figure 16.1. Confidence Interval (N = 1000, δ = 10−2. A and B are the upper and
lower confidence limits by our formula; C and D are the upper and lower confidence
limits by Clopper-Pearson’s method)

We refer to such an assumption as the Separable Assumption. Our exten-
sive simulation experience indicated that, for small risk parameter ε, most
control systems guarantee the separable assumption. It should be noted that
it is even much weaker than assuming that P (r) is non-increasing (See illus-
trative Figure 16.2). Moreover, the non-increasing assumption is rather mild.
This can be explained by a heuristic argument as follows. Let

BR(r)
.
= {∆ ∈ B(r) : The associated system G(∆) guarantees R}.

Then

P (r) =
vol(BR(r))

vol(B(r))

and

dP (r)

dr
=

1

vol(B(r))

[
d vol(BR(r))

dr
− P (r)

d vol(B(r))

dr

]
. (16.3)

In the range of uncertainty radius such that P (r) is close to 1, vol(B(r))
increases (as r increases) much faster than vol(BR(r)) due to the constraint
of robust requirement R. Hence inequality

d vol(BR(r))

dr
≤ d vol(B(r))

dr
≈ P (r)

d vol(B(r))

dr

can be easily satisfied. It follows from equation (16.3) that dP (r)
dr ≤ 0 can be

readily guaranteed.
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Figure 16.2. Illustration of separable assumption. The robustness degradation
curve can be separated as the upper segment and lower segment by the dash hori-
zontal line with height 1− ε. In this example, the separable assumption is satisfied,
while the non-increasing assumption is violated.

When the separable assumption is guaranteed, an interval which includes
ρ(ε) can be readily found by starting from uncertainty radius r = 1 and then
successively doubling r or cutting r in half based on the comparison of P (r)
with 1−ε. Moreover, bisection method can be employed to refine the estimate
for ρ(ε). Of course, the success of such methods depends on the reliable and
efficient comparison of P (r) with 1− ε based on Monte Carlo method. In the
following subsection, we illustrate a fast method of comparison.

16.4.2 Probabilistic Comparison

In general, PX can only be estimated by a Monte Carlo method. The conven-
tional method is to compare directly K

N with 1 − ε where K is the number of
successful trials during N i.i.d. sampling experiments. There are several prob-
lems with the conventional method. First, the comparison of K

N with 1 − ε
can be very misleading. Second, the sample size N is required to be very
large to obtain a reliable comparison. Third, we don’t know how reliable the
comparison is. In this subsection, we present a new approach which allows for
a reliable comparison with much fewer samples. The key idea is to compare
binomial confidence limits with the fixed probability 1 − ε and hence reliable
judgement can be made in advance.

Algorithm 16.1 (Probabilistic comparison) Given risk parameter ε and
confidence parameter δ, returns the index d.

Step 1. Let d ← 0.
Step 2. While d = 0 do the following:
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• Sample X.
• Update N and K.
• Compute lower confidence limit L and upper confidence limit U by

Theorem 1.
• If U < 1 − ε then let d ← −1. If L > 1 − ε then let d ← 1.

The confidence parameter δ is used to control the reliability of the compar-
ison. A typical value is δ = 0.01. The implication of output d is interpreted as
follows: d = 1 indicates that PX > 1 − ε is true with high confidence; d = −1
indicates that PX < 1 − ε is true with high confidence.

Obviously, the sample size is random in nature. For ε = δ = 0.01, we sim-
ulated the Probabilistic Comparison Algorithm identically and independently
100 times for different values of PX . We observe that, for each value of PX , the
Probabilistic Comparison Algorithm makes correct judgement among all 100
simulations. Figure 16.3 shows the average sample size and the 95%-quantile
of the sample size estimated from our simulation. It can be seen from the fig-
ure that, as long as PX is not very close to 1−ε, the Probabilistic Comparison
Algorithm can make a reliable comparison with a small sample size.
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Figure 16.3. Complexity of Probabilistic Comparison. The horizontal axis repre-
sents 1−PX . The vertical axis represents sample size. The solid line and the dash-dot
line respectively show the average sample size and the 95%-quantile of the sample
size.
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16.4.3 Computing Initial Interval

Under the separable assumption, an interval [a, b] which includes ρ(ε) can be
quickly determined by the following algorithm.

Algorithm 16.2 (Initial interval) Given risk parameter ε and confidence
parameter δ, returns an initial interval [a, b].

Step 1. Let r ← 1. Apply Probabilistic comparison algorithm to compare P (1)
with 1 − ε. Let the outcome be d1.

Step 2. If d1 = 1 then let d ← d1 and do the following:

• While d = 1 do the following:
– Let r ← 2r. Apply Probabilistic comparison algorithm to compare

P (r) with 1 − ε. Let the outcome be d.
• Let a ← r

2 and b ← r.

Step 3. If d1 = −1 then let d ← d1 and do the following:

• While d = −1 do the following:
– Let r ← r

2 . Apply Probabilistic comparison algorithm to compare
P (r) with 1 − ε. Let the outcome be d.

• Let a ← r and b ← 2r.

16.4.4 Probabilistic Bisection

Once an initial interval [a, b] is obtained, an estimate R̂ for the probabilistic
robustness margin ρ(ε) can be efficiently computed as follows.

Algorithm 16.3 (Bisection) Given risk parameter ε, confidence parameter

δ, initial interval [a, b], and relative tolerance γ, returns R̂.

Step 1. While b− a > γa do the following:

• Let r ← a+b
2 . Apply Probabilistic comparison algorithm to compare

P (r) with 1 − ε. Let the outcome be d.
• If d = −1 then let b ← r, else let a ← r.

Step 2. Return R̂ = b.

16.5 Constructing Robustness Degradation Curve

We shall develop efficient randomized algorithms for constructing robustness
degradation curve, which provide more insight for the robustness of the un-
certain system than probabilistic robustness margin. First we introduce the
sample reuse algorithm developed in [87] for constructing robustness degra-
dation curve for a given range of uncertainty radius.
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Algorithm 16.4 (Sample reuse) Given sample size N , confidence param-
eter δ ∈ (0, 1), uncertainty radius interval [a, b], and number of uncertainty

radii l, returns the proportion estimate P̂i and the related confidence interval

for ri = b − (b−a)(i−1)
l−1 , i = 1, 2, · · · , l. In the following, mi1 denotes the

number of sampling experiments conducted at ri and mi2 denotes the number
of observations guaranteeing R during the mi1 sampling experiments.

Step 1. Let M = [mij ]l×2 be a zero matrix.
Step 2. (Backward iteration) For i = 1 to i = l do the following:

• Let r ← ri.
• While mi1 < N do the following:

– Generate uniform sample q from B(r). Evaluate the robustness re-
quirement R for q.

– Let ms1 ← ms1 + 1 for any s such that r ≥ rs ≥ �(q).
– If robustness requirement R is satisfied for q then let ms2 ← ms2+1

for any s such that r ≥ rs ≥ �(q).

• Let P̂i ← mi2

N and construct the confidence interval of confidence level
100(1 − δ)% by Theorem 1.

It should be noted that the idea of the sample reuse algorithm is not
simply a save of sample generation. It is actually a backward iterative mech-
anism. In the algorithm, the most important save of computation is usually
the evaluation of the complex robustness requirements R (see, e.g., [87] for
details).

Now we introduce the global strategy for constructing robustness degra-
dation curve. The idea is to apply successively the sample reuse algorithm for
a sequence of intervals of uncertainty radius. Each time the size of interval is
reduced by half. The lower bound of the current interval is defined to be the
upper bound of the next consecutive interval. The algorithm is terminated
once the robustness requirement R is guaranteed for all N samples of an un-
certainty set of which the radius is taken as the lower bound of an interval of
uncertainty radius. More precisely, the procedure is presented as follows.

Algorithm 16.5 (Global strategy) Given sample size N , risk parameter

ε and confidence parameter δ ∈ (0, 1), returns the proportion estimate P̂i, and
the related confidence interval.

Step 1. Compute an estimate R̂ for probabilistic robustness margin ρ(ε).

Step 2. Let STOP ← 0. Let a ← R̂
2 and b ← R̂.

Step 3. (Backward iteration) While STOP = 0 do the following:

• Apply sample reuse algorithm to construct robustness degradation
curve for uncertainty radius interval [a, b].

• If the robustness property R is guaranteed for all N samples of uncer-
tainty set B(r) with radius r = a then let STOP ← 1, otherwise let
b ← a and a ← b

2 .
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For given risk parameter ε and confidence parameter δ, the sample size is
chosen as

N >
2(1 − ε+ αε

3 )(1 − α
3 ) ln 2

δ

α2ε
(16.4)

with α ∈ (0, 1). It follows from Massart’s inequality [221] that such a sample
size ensures P

{∣∣PX − K
N

∣∣ < αε
}
> 1 − δ with PX = 1 − ε (See also Lemma 1

in Appendix). It should be noted that Massart’s inequality is less conservative
than the Chernoff bounds in both multiplicative and additive forms.

We would like to remark that the algorithms for estimating the proba-
bilistic robustness margin and constructing robustness degradation curve are
susceptible of further improvement. For example, the idea of sample reuse is
not employed in computing the initial interval and in the probabilistic bisec-
tion algorithm. Moreover, in constructing the robustness degradation curve,
the sample reuse algorithm is independently applied for each interval of uncer-
tainty radius. Actually, the simulation results can be saved for the successive
intervals.

16.6 Illustrative Examples

In this section we demonstrate through examples the power of randomized
algorithms in solving complicated robustness analysis problems which are not
tractable in the classical deterministic framework.

We consider a system which has been studied in [133] by a deterministic
approach. The system is as shown in Figure 16.4.

G(s,∆)
y

C(s)
r e

-

Figure 16.4. Uncertain system

The compensator is C(s) = s+2
s+10 and the plant is

G(s,∆) =
800(1 + 0.1δ1)

s(s+ 4 + 0.2δ2)(s+ 6 + 0.3δ3)

with parametric uncertainty ∆ = [δ1, δ2, δ3]
T. The nominal system is sta-

ble. The closed-loop poles of the nominal system are: z1 = −15.9178, z2 =
−1.8309, z3 = −1.1256+7.3234i, z4 = −1.1256−7.3234i. The peak value, rise
time, settling time of step response of the nominal system, are respectively,
P 0

peak = 1.47, t0r = 0.185, t0s = 3.175.
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We first consider the robust D-stability of the system. The robustness
requirement R is defined as D-stability with the domain of poles specified as:
real part < −1.5, or fall within one of the two disks centered at z3 and z4
with radius 0.3. The uncertainty set is defined as the polytope

BH(r) :=

{
r∆+ (1 − r)

∑4
i=1 ∆

i

4
: ∆ ∈ co{∆1,∆2,∆3,∆4}

}
where co denotes the convex hull of

∆i =

[
1

2
sin

(
2i− 1

3
π

)
,

1

2
cos

(
2i− 1

3
π

)
, −

√
3

2

]T

for i = 1, 2, 3 and ∆4 = [0, 0, 1]T.
Obviously, there exists no effective method for computing the deterministic

robustness margin in the literature. However, our randomized algorithms can
efficiently construct the robustness degradation curve. See Figure 16.5.

In this example, the risk parameter is a-priori specified as ε = 0.001. The
procedure for estimating the probabilistic robustness margin is explained as
follows. Let N denote the dynamic sample size which is random in nature.
Let K denote the number of successful trials among N i.i.d. sampling experi-
ments as defined in Section 16.2 and Subsection 16.3.1 (i.e., a successful trial
is equivalent to an observation that the robustness requirement is guaranteed).
Let confidence parameter δ = 0.01 and choose tolerance γ = 0.05. Starting
from r = 1, after N = 7060 simulations we obtain K = 7060, the probabilistic
comparison algorithm determined that P (1) > 1−ε since the lower confidence
limit L > 1 − ε. The simulation is thus switched to uncertainty radius r = 2.
After N = 65 times of simulation, it is found that K = 61. The probabilistic
comparison algorithm detected that P (2) < 1 − ε because the upper confi-
dence limit U < 1 − ε. So, initial interval [1, 2] is readily obtained. Now the
probabilistic bisection algorithm is invoked. Staring with the middle point of
the initial interval (i.e., r = 1+2

2 = 3
2 ), after N = 613 times of simulations, it

is found that K = 607, the probabilistic comparison algorithm concluded that
P ( 3

2 ) < 1 − ε since the upper confidence limit U < 1 − ε. Thus simulation is

moved to r =
1+ 3

2

2 = 5
4 . It is found that K = 9330 among N = 9331 times of

simulations. Hence, the probabilistic comparison algorithm determined that
P ( 5

4 ) > 1− ε since the lower confidence limit L > 1− ε. Now the simulation is

performed at r =
5
4+ 3

2

2 = 11
8 . After N = 6653 simulations, it is discovered that

K = 6636. The probabilistic comparison algorithm judged that P ( 11
8 ) < 1− ε

based on calculation that the upper confidence limit U < 1 − ε. At this point
the interval is [54 ,

11
8 ] and the bisection is terminated since tolerance condition

b−a ≤ γa is satisfied. The evolution of intervals produced by the probabilistic
bisection algorithm is as follows:

[1, 2] −→
[
1,

3

2

]
−→

[
5

4
,
3

2

]
−→

[
5

4
,
11

8

]
.
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Now we have obtained an interval [54 ,
11
8 ] which includes ρ(0.001), so the

sample reuse algorithm can be employed to construct robustness degradation
curve. In this example, the number of uncertainty radii is l = 100 and the con-
fidence parameter is chosen as δ = 0.001. A constant sample size is computed
by formula (16.4) with α = 0.5 as N = 50, 631. The interval from which we
start constructing robustness degradation curve is [1116 ,

11
8 ]. It is determined

that K = N = 50, 632 at uncertainty radius r = 11
16 . Therefore, the Sample

reuse algorithm is invoked only once and the overall algorithm is terminated
(If K �= N for r = 11

16 , then the next interval would be [1132 ,
11
16 ]). Although

P (r) is evaluated for l = 100 uncertainty radii with the same sample size
N , the total number of simulation is only 153, 358 << Nl = 100N . To give
an accuracy for all the estimates of P (r), confidence limits are computed by
Theorem 1.
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Figure 16.5. Robustness degradation curve

We now apply our algorithms to a robustness problem with time spec-
ifications. Specifically, the robustness requirement R is: stability, and rise
time tr < 135% t0r = 0.25, settling time ts < 110% t0s = 3.5, overshoot
Ppeak < 116% P 0

peak = 1.7. The uncertainty set is B∞(r) := {∆ : ||∆||∞ ≤ r}.
In this case, the risk parameter is a-priori specified as ε = 0.01. It is

well known that, for this type of problem, there exists no effective method for
computing the deterministic robustness margin in the literature. However, our
randomized algorithms can efficiently construct the robustness degradation
curve. See Figure 16.6.

We choose γ = 0.25 and δ = 0.01 for estimating ρ(0.01). Starting from
uncertainty radius r = 1, the initial interval is easily found as [18 ,

3
16 ] through
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the following evolution:[
1

2
, 1

]
−→

[
1

4
,
1

2

]
−→

[
1

8
,
1

4

]
.

The sequence of intervals produced by the probabilistic bisection algorithm is
as follows: [

1

8
,
1

4

]
−→

[
1

8
,

3

16

]
−→

[
1

8
,

5

32

]
.

So, we obtained an estimate for the probabilistic robustness margin ρ(0.01) as
5
32 . To construct robustness degradation curve, the number of uncertainty radii
is l = 100 and the confidence parameter is chosen as δ = 0.01. A constant
sample size is computed by formula (16.4) with α = 0.2 as N = 24, 495.
The interval from which we start constructing robustness degradation curve
is [ 5

64 ,
5
32 ]. We found that this is also the last interval of uncertainty radius

because it is determined that K = N at uncertainty radius r = 5
64 .
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Figure 16.6. Robustness degradation curve

16.7 Conclusions

In this contribution, we have established efficient techniques which apply to
robustness analysis problems with arbitrary robustness requirements and un-
certainty bounding set. The key mechanisms are probabilistic comparison,
probabilistic bisection and backward iteration. Motivated by the crucial role
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of binomial confidence interval in reducing the computational complexity, we
have derived an explicit formula for computing binomial confidence limits.
This formula overcomes the computational issue and inaccuracy of standard
methods.

16.8 Appendix: Proof of Theorem 1

To show Theorem 1, we need some preliminary results. The following Lemma
1 is due to Massart [221].

Lemma 1. P
{

K
N ≥ PX + ε

}
≤ exp

(
− Nε2

2(PX+ ε
3 ) (1−PX− ε

3 )

)
for all ε ∈ (0, 1 −

PX).

Of course, the above upper bound holds trivially for ε ≥ 1 − PX . Thus,
Lemma 1 is actually true for any ε > 0.

Lemma 2. P
{

K
N ≤ PX − ε

}
≤ exp

(
− Nε2

2(PX− ε
3 ) (1−PX+ ε

3 )

)
for all ε > 0.

Proof. Define Y = 1 − X. Then PY = 1 − PX . At the same time when we
are conducting N i.i.d. experiments for X, we are also conducting N i.i.d.
experiments for Y . Let the number of successful trials of the experiments
for Y be denoted as KY . Obviously, KY = N − K. Applying Lemma 1 to

Y , we have P
{

KY

N ≥ PY + ε
}

≤ exp
(
− Nε2

2(PY + ε
3 ) (1−PY − ε

3 )

)
. It follows that

P
{

N−K
N ≥ 1 − PX + ε

}
≤ exp

(
− Nε2

2(1−PX+ ε
3 ) [1−(1−PX)− ε

3 ]

)
. The proof is thus

completed by observing that P
{

N−K
N ≥ 1 − PX + ε

}
= P

{
K
N ≤ PX − ε

}
. �

The following lemma can be found in [91].

Lemma 3.
∑k

j=0

(
N
j

)
xj(1 − x)N−j decreases monotonically with respect to

x ∈ (0, 1) for k = 0, 1, · · · , N .

Lemma 4.
∑k

j=0

(
N
j

)
xj(1 − x)N−j ≤ exp

(
− N(x− k

N )2

2 ( 2
3 x+ k

3N ) (1− 2
3 x− k

3N )

)
∀x ∈

( k
N , 1) for k = 0, 1, · · · , N .

Proof. Consider binomial random variable X with parameter PX > k
N . Let

K be the number of successful trials during N i.i.d. sampling experiments.
Then

∑k
j=0

(
N
j

)
P j

X(1 − PX)N−j = Pr{K ≤ k}. Note that Pr{K ≤ k} =

Pr
{

K
N ≤ PX −

(
PX − k

N

)}
. Applying Lemma 2 with ε = PX − k

N > 0, we
have

k∑
j=0

(
N

j

)
P j

X(1 − PX)N−j ≤ exp

(
−

N(PX − k
N )2

2(PX − PX− k
N

3 ) (1 − PX +
PX− k

N

3 )

)

= exp

(
−

N(PX − k
N )2

2 (2
3PX + k

3N ) (1 − 2
3PX − k

3N )

)
.
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Since the argument holds for arbitrary binomial random variable X with
PX > k

N , thus the proof of the lemma is completed. �

Lemma 5.
∑k−1

j=0

(
N
j

)
xj(1−x)N−j ≥ 1−exp

(
− N(x− k

N )2

2 ( 2
3 x+ k

3N ) (1− 2
3 x− k

3N )

)
∀x ∈

(0, k
N ) for k = 1, · · · , N .

Proof. Consider binomial random variable X with parameter PX < k
N . Let

K be the number of successful trials during N i.i.d. sampling experiments.
Then

k−1∑
j=0

(
N

j

)
P j

X(1 − PX)N−j = Pr{K < k} = Pr

{
K

N
< PX +

(
k

N
− PX

)}
.

Applying Lemma 1 with ε = k
N − PX > 0, we have that

k−1∑
j=0

(
N

j

)
P j

X(1 − PX)N−j ≥ 1 − exp

(
−

N( k
N − PX)2

2(PX +
k
N −PX

3 ) (1 − PX −
k
N −PX

3 )

)

= 1 − exp

(
−

N(PX − k
N )2

2 (2
3PX + k

3N ) (1 − 2
3PX − k

3N )

)
.

Since the argument holds for arbitrary binomial random variable X with
PX < k

N , thus the proof of the lemma is completed. �

Lemma 6. Let 0 ≤ k ≤ N . Then LN,k,δ < UN,k,δ.

Proof. Obviously, the lemma is true for k = 0, N . We consider the case that
1 ≤ k ≤ N − 1. Let S(N, k, x) =

∑k
j=0

(
N
j

)
xj(1− x)N−j for x ∈ (0, 1). Notice

that S(N, k, p) = S(N, k − 1, p) +
(
N
k

)
pk(1 − p)N−k = δ

2 . Thus

S(N, k − 1, p) − S(N, k − 1, p) = 1 − δ

2
−
[
δ

2
−
(
N

k

)
pk(1 − p)N−k

]
.

Notice that δ ∈ (0, 1) and that p ∈ (0, 1), we have

S(N, k − 1, p) − S(N, k − 1, p) = 1 − δ +

(
N

k

)
pk(1 − p)N−k > 0.

By Lemma 3, S(N, k − 1, x) decreases monotonically with respect to x, we
have that p < p. �

We are now in position to prove Theorem 1. It can be checked that UN,k,δ ≤
U(k) for k = 0, N . We need to show that UN,k,δ ≤ U(k) for 0 < k < N .
Straightforward computation shows that U(k) is the only root of equation

exp

(
−

N(x− k
N )2

2 (2
3x+ k

3N ) (1 − 2
3x− k

3N )

)
=

δ

2
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with respect to x ∈ ( k
N ,∞). There are two cases: U(k) ≥ 1 and U(k) < 1. If

U(k) ≥ 1 then UN,k,δ ≤ U(k) is trivially true. We only need to consider the
case that k

N < U(k) < 1. In this case, it follows from Lemma 4 that∑k
j=0

(
N
j

)
[U(k)]

j
[1 − U(k)]N−j ≤ exp

(
− N(U(k)− k

N )2

2 ( 2
3U(k)+ k

3N ) (1− 2
3U(k)− k

3N )

)
= δ

2 .

Recall that
∑k

j=0

(
N
j

)
U j

N,k,δ(1 − UN,k,δ)
N−j = δ

2 , we have

k∑
j=0

(
N

j

)
U j

N,k,δ(1 − UN,k,δ)
N−j ≥

k∑
j=0

(
N

j

)
[U(k)]

j
[1 − U(k)]N−j .

Therefore, by Lemma 3, we have that UN,k,δ ≤ U(k) for 0 < k < N . Thus, we
have shown that UN,k,δ ≤ q for all k.

Similarly, by Lemma 5 and Lemma 3 we can show that LN,k,δ ≥ L(k).
Hence, by Lemma 6, we have L(k) ≤ LN,k,δ < UN,k,δ ≤ U(k). Finally, the
proof of Theorem 1 is completed by invoking the probabilistic implication of
the Clopper-Pearson confidence interval. �
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277. A. Prékopa. On logarithmic concave measures and functions. Acta Scientiar-
ium Mathematicarum (Szeged), 34:335–343, 1973.
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314. A. Ruszczyński and A. Shapiro. Optimization of convex risk functions. E-print
available at http://www.optimization-online.org, 2004.



References 449

315. K.K. Sabelfeld and N.A. Simonov. Random Walks on Boundary for Solving
PDEs. VSP Intl. Science Publishers, 1994.

316. M.G. Safonov. Stability margins of diagonally perturbed multivariable feed-
back systems. IEE Proceedings, 129(D):251–256, 1982.

317. G. Salinetti. Approximations for chance constrained programming problems.
Stochastics, 10:157–169, 1983.

318. R.S. Sánchez-Peña and M. Sznaier. Robust Systems: Theory and Applications.
John Wiley, New York, 1998.

319. A.H. Sayed, V.H. Nascimento, and S. Chandrasekaran. Estimation and control
with bounded data uncertainties. Linear Algebra and Applications, 248:259–
306, 1999.

320. C.W. Scherer. LPV control and full block multipliers. Automatica, 37:361–375,
2001.

321. W.M. Schubert and R.F. Stengel. Parallel stochastic robustness synthesis for
control system design. IEEE Transactions on Control Systems Technology,
6(6):701–706, 1998.

322. D. Schuurmans and R. Patrascu. Direct value-approximation for factored
MDPs. In Advances in Neural Information Processing Systems, volume 14,
2001.

323. H.-P. Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1995.
324. P. Schweitzer and A. Seidmann. Generalized polynomial approximations in

Markovian decision processes. Journal of Mathematical Analysis and Applica-
tions, 110:568–582, 1985.

325. A.A. Schy and D.P. Geisy. Multiobjective insensitive design of airplane control
systems with uncertain parameters. In Proceedings of the AIAA Guidance,
Navigation and Control Conference, 1981.

326. S. Sen. Relaxations for the probabilistically constrained programs with discrete
random variables. Operations Research Letters, 11:81–86, 1992.

327. R.J. Serfling. Approximation Theorems of Mathematical Statistics. Wiley, New
York, 1980.

328. U. Shaked. Improved LMI representation for the analysis and the design of
continuous-time systems with polytopic type uncertainty. IEEE Transactions
on Automatic Control, 46(4):652–656, 2001.

329. D.F. Shanno and R.J. Vanderbei. Interior point methods for noncovex non-
linear programming: Orderings and higher order methods. Mathematical Pro-
gramming, Ser. B, 87:303–316, 2000.

330. A. Shapiro. Asimptotic properties of statistical estimators in stochastic pro-
gramming. Annals of Statistics, 17:841–858, 1989.

331. A. Shapiro. Duality, optimality conditions, and perturbation analysis. In
H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors, Handbook of Semidefi-
nite Programming: Theory, Algorithms, and Applications, pages 68–92. Kluwer,
Boston, USA, 2000.

332. A. Shapiro. Monte Carlo sampling methods. In A. Rusczyński and A. Shapiro,
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α-concave
function, 54
measure, 54

H2 space, 334
H∞ space, 334

affine uncertainty, 217
approximate linear program, 194
ARMA models, 276, 279

barrier function, 77

Carathéodory-Fejér theorem, 354
cash matching problem, 94
chance constraints, 4, 50, 120

optimization under, 29, 170
iterative approximation for, 35

semidefinite, 40
Chebychev inequality, 44
Clopper-Pearson intervals, 418
concentration property, 15
cone generation method, 87
confidence parameter, 4, 12, 163
constraints

qualification, 70
sampling, 162, 189, 196

control design
aircraft lateral model, 183, 326
HIRM aircraft model, 397
hypersonic aircraft model, 389
mobile robot model, 377
Tetris strategy, 198
tower crane model, 311

cutting plane method, 76

discrepancy, 367
dynamic programming, 193

ellipsoid algorithm, 34, 227, 306
empirical mean, 208, 267
evolution strategies, 106, 114

convergence rate, 108
evolutionary computation, 106

floating body, 56

genetic algorithms, 106, 115, 395
convergence rate, 110

geometric ergodicity, 291

Halton sequence, 369
Helly theorem, 185
Hoeffding inequality, 5, 169

importance sampling, 9

Koksma-Hlawka inequality, 373

learning theory, 208, 275
least squares

regularized, 204, 206
robust, 204, 224
with stochastic uncertainty, 204

linear matrix inequalities, 27, 40, 174
parameter dependent, 162, 305

linear parameter-varying systems, 176
LMI, see linear matrix inequalities
log-concave

function, 54
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sequence, 56
LPV, see linear parameter-varying

systems
Lyapunov

converse theorem, 296
functions, 245, 311, 374

parameter dependent, 173, 303
stability, 27, 32, 373

Markov
chain, 287

invariant measure, 287
stationary distribution, 287

hidden model, 293
inequality, 114
parameters, 337

Minkowski function, 22
model invalidation, 344
Monte Carlo, 6, 76, 164, 169, 244, 332,

336, 366, 384
multi-disk design, 349
multistage optimization, 149

Nevanlinna-Pick interpolation, 342, 355
non-arbitrage condition, 96

P-dimension, 209, 276, 279
p-efficient points, 64
Parrott theorem, 353
polynomial interpolation, 215
portfolio, 94, 162
primal-dual method, 81
probabilistic robustness, 165, 180, 305,

318, 384, 395, 417, 419
degradation curve, 423

probability distribution
α-concave, 55
beta, 58
Cauchy, 58
Dirichlet, 57
gamma, 59
log-concave, 55
majorization of, 12
normal, 17, 57
Pareto, 59
Student, 57
uniform, 15, 19, 57, 337, 341
Wishart, 58

probable near

maximum, 320
minimax value, 323
minimum, 319
saddle value, 325

quadratic control, 177, 394
robust, 327

quadratic stability, 173
quasi-concave

function, 54
quasi-Monte Carlo, 367, 372

random search, 101, 112
receding-horizon estimation, 219
response surface method, 86
risk

coherent measures of, 122
functions, 121, 127
mapping, 146
optimization of, 139

robust
H2 synthesis, 176
control, 172, 317, 381, 387
convex programs, 161
Kalman filtering, 237
state feedback design, 175, 326

S-procedure, 374
sample complexity, 168, 274
sample reuse, 424
sampled convex programs, 162, 170

generalization rate of, 165
scenario

approach, 7, 10, 30
optimization, 162

semi-infinite programming, 245, 251
semidefinite programs, see LMI
separation oracle, 34
simulated annealing, 104, 113
SPSA, 102, 112
stochastic

control, 191
dominance, 51, 132
gradient, 213
optimization, 50, 100, 119, 204, 213,

248, 382
processes

α-mixing, 282
β-mixing, 282
φ-mixing, 282
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mixing coefficients, 281
sum of squares decomposition, 375
support constraints, 185
system identification, 265, 271

transfer functions
random, 342
rational, 334

two-stage optimization, 144

UCEM, 209, 273

uncertain systems, 173, 351, 383, 425
utility function, 120

value at risk, 50, 53
conditional, 52, 120, 131, 138

van der Corput sequence, 369
VC-dimension, 168, 209
violation probability, 163

Youla parameterization, 335
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