














Figure 14. Example of images captured by the prototype with two and three recognized markers.

Figure 15. Example of images captured by the prototype in different light conditions.

Figure 16. Example of images captured by the prototype at different distances from the lot.
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the virtual lot (cr and cv, respectively), as reconstructed
from the procedure

dmax= max
i=1, 2, : : , 8

cr � cvk kð Þ ð3Þ

As a first application, the real lot corners were
defined manually. Although this operation may intro-
duce an error, its magnitude is considered negligible
compared to that in the lot reconstruction.

Each of the five factors was changed according to two
levels. A detailed description is reported in the following:

1. Number of recognized markers. The prototype ide-
ally can work when one marker is recognized.
However, preliminary tests showed that more
robust results in terms of lot reconstruction can be
obtained with two or more markers. For this

reason, one and three recognized markers were
chosen, respectively, as ‘21’ and ‘1’ level for this
factor.

2. Light. The experiments were done in an indoor
warehouse illuminated with artificial lights. A
1000-W halogen lamp was used. Two different
configurations of illumination have been tested,
respectively, with the halogen lamp turned off and
on. These two conditions of illumination corre-
spond to approximately 250 and 720 lx in the area
in which the pallet is placed.

3. Distance. This factor is intended as the distance
between the camera and closest marker, the two
levels are d1’ 130 cm and d2’ 230 cm.
Considering that we used square markers of side
lm=15cm, they correspond to a ratio d1/lm ’ 8.7
and d2/lm ’ 15.3, respectively.

Figure 17. Example of images captured by the prototype at different angles.

Figure 18. Example of images captured by two different acquisition devices.
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4. Angle. Two angulations between camera and pallet
were analysed: a frontal and a lateral position cor-
responding to angles of about 90� and 135�, respec-
tively, between camera axis and the closest pallet
side.

5. Camera type. Two different cameras were tested.
For both of them, the resolution was limited to
800 3 600pixels in order to facilitate the real-time
use of the prototype. The first one is the Microsoft
LifeCam NX-6000 model 1082, while the second is
the Microsoft LifeCam Cinema MSH5D-00015.

Table 1 summarizes the parameters of the configura-
tion of the experimental design.

Results analysis

The response variable is modelled as

dmax=b0 +
X5
i=1

bixi +
X4
i=1

X5
j. i

bi, jxixj

+
X3
i=1

X4
j. i

X5
k. j

bi, j, kxixjxk + e

ð4Þ

where xi with i 2 f1, 2, . . . , 5g are the values of the ith
factor. For each of the 96 considered combinations of
the factors, a value of dmax is produced. Neglecting the
residual, the response variable can be modelled as

d̂max= b̂0 +
X5
i=1

b̂ixi +
X4
i=1

X5
j. i

b̂i, jxixj

+
X3
i=1

X4
j. i

X5
k. j

b̂i, j, kxixjxk

ð5Þ

According to this notation residuals are given by

e= dmax � d̂max ð6Þ

Considering the analysed combinations, a total of 96
residuals are generated. Table 2 details the output of
the factorial fit of d̂max versus all the factors and the
considered interactions. Large values of T and conver-
sely small p values (say \ 0.05) indicate that the factors
(or interactions) have a statistically significant effect on
the response.

The high value of R2 (. 80%) indicates the good-
ness of fit of the model. This consideration is also sup-
ported by the value of the adjusted R2 (;74%) which
gives the percentage of variation explained by only
those factors (and interactions) that really affect d̂max.

29

Hence, the gap between R2 and the adjusted R2 (~6%)
can be explained by looking the significance of the fac-
tors considered for the factorial fit: the value of R2 is
slightly inflated by the presence of few factors – say
those with a p value lower than 0.05 – that are not
significant.

Also, the analysis in Figure 19(a) shows the normal
distribution of the residuals which is further confirmed
by an Anderson–Darling test. The homogeneity of resi-
dual distribution was tested with respect to all the ana-
lysed factors. As an example, Figure 19(c) reports a
plot of d̂max versus the camera factor. Furthermore,
there is no evidence of lack of independence. For
instance, Figure 19(d) shows the plot of residuals versus
order of observation.

The factorial fit shows which factors and interac-
tions are significant. These results are further confirmed
by the main effects plot and the interaction plot for the
response variable (see Figure 20).

In order of importance, light is the most significant
factor. Surprisingly, excessive lighting of the scene can
significantly worsen the performance of the prototype.
This is probably due to the fact that the recognition of
a marker is done by isolating a sub-image based on the
white frame surrounding each marker (see section ‘Step
2 – marker localization’). Increasing the lighting may
generate an overexposed image with many ‘white’ parts
which may complicate the recognition of the markers.
In this case, it would probably be reasonable to expect
an optimal value of illumination beyond which the pro-
totype performance worsens.

As expected, the increase in the number of markers
improves the performance of the prototype. Obviously,
the recognition of a single marker allows the recon-
struction of the lot with a lower accuracy with respect
to the reconstruction obtained by the recognition of
three markers.

Another important factor is distance. In general, the
increase in the distance between camera and pallet
results in a reduction in the reconstruction error. This
is because the difference between the virtual reconstruc-
tion of the lot and the real lot is more evident when the

Table 1. Summary of the parameters of the design of experiment.

Factors Levels Replications

21 1

A: Number of recognized markers 1 3 3
B: Light Off (250 lx) On (720 lx) 3
C: Distance d1 = 130 cm d2 = 230 cm 3
D: Angle Frontal (a1 ’ 90�) Lateral (a2 ’ 135�) 3
E: Camera type LifeCam NX-6000 LifeCam Cinema MSH5D-00015 3

10 Proc IMechE Part B: J Engineering Manufacture



camera is closer to the lot, and the error, in terms of
pixels, is larger. Even in this case, the behaviour of the
response variable is probably not linear: while increas-
ing the distance may have a positive effect, on the other
hand, it is also reasonable to expect a degradation of
performance from large distances, when the markers
on the pallet are not easily recognizable.

Another factor that has a significant effect is the
camera type. The quality of the components and the
different firmware settings of the analysed devices have
a significant effect on the prototype. In this case, the
second camera is the best.

The angle causes an increase in the error for images
from angled perspectives. It must be noted that in these
tests it was decided to use only markers on one side of the
pallet. In normal use, when the camera is angled with
respect to the lot-pallet, the prototype is able to see up to
six markers. In order to keep under control the number of
recognized markers, nine of the markers on the pallet (i.e.
all markers apart from those on one side) were hidden.

Figure 20(b) shows the interaction plot for the
response variable versus camera and light factors. The
interaction between light and camera is noteworthy.
This can be explained by the camera settings which
causing different reactions to light exposure.

Three-way interactions marker–angle–camera and
marker–light–angle are less important but significant.
It is hard to give a practical explanation of the
significance of such interactions: as for the marker–

angle–camera interaction, we can think that the differ-
ent types of camera – which have different lenses and
settings – can react differently to shots of different mar-
kers more or less angled; considering the marker–light–
angle interaction, one can imagine that depending on
the angle and the marker, there are lighting conditions
that allow a better reconstruction of the lot.

Being a screening, this analysis is far from being
exhaustive. In particular, the behaviour of some factors,
such as light or camera type, has still to be deepened.
However, we remark that the maximum reconstruction
error is in the order of a few pixels, that is, a tolerable
value for practical applications.

Conclusion

This article introduced the concept of AAS, which
entails conceiving and developing real-time tools for
driving the AS operators in manual sampling opera-
tions while reducing the risk of errors due to distrac-
tion, fatigue and lack of training.

Preliminary results, concerning the implementation
of a prototype, able to recognize and track a lot
arranged on a pallet labelled with special markers, were
presented. An experimental screening showed that the
most significant factors affecting the performance of
the prototype are lighting conditions, the number of
markers used, the position with respect to the pallet
and the type of camera used.

Table 2. Factorial fit: d̂max versus markers, light, distance, angle and camera.

Estimated effects and coefficients for error (coded units)

Term Effect Coef T p

Constant b̂0 = 3:8020 64.16 0.000
Markers (x1) 20.9203 b̂1 = � 0:4602 27.77 0.000
Light (x2) 0.9240 b̂2 = 0:4620 7.80 0.000
Distance (x3) 20.7643 b̂3 = � 0:3822 26.45 0.000
Angle (x4) 0.6595 b̂4 = 0:3298 5.56 0.000
Camera (x5) 0.6609 b̂5 = 0:3305 5.58 0.000
Markers 3 light 0.0773 b̂1, 2 = 0:0386 0.65 0.517
Markers 3 distance 20.0982 b̂1, 3 = � 0:0491 20.83 0.410
Markers 3 angle 0.1169 b̂1, 4 = 0:0584 0.99 0.327
Markers 3 camera 0.0524 b̂1, 5 = 0:0262 0.44 0.660
Light 3 distance 0.0338 b̂2, 3 = 0:0169 0.29 0.776
Light 3 angle 0.1301 b̂2, 4 = 0:0650 1.10 0.276
Light 3 camera 20.5626 b̂2, 5 = � 0:2813 24.75 0.000
Distance 3 angle 20.1067 b̂3, 4 = � 0:0534 20.90 0.371
Distance 3 camera 20.2333 b̂3, 5 = � 0:1166 21.97 0.053
Angle 3 camera 20.0828 b̂4, 5 = � 0:0414 20.7 0.487
Markers 3 light 3 distance 20.1010 b̂1, 2, 3 = � 0:0505 20.85 0.397
Markers 3 light 3 angle 0.3397 b̂1, 2, 4 = 0:1699 2.87 0.005
Markers 3 light 3 camera 0.1270 b̂1, 2, 5 = 0:0635 1.07 0.288
Markers 3 distance 3 angle 20.1191 b̂1, 3, 4 = � 0:0595 21.00 0.319
Markers 3 distance 3 camera 20.1899 b̂1, 3, 5 = � 0:0950 21.60 0.114
Markers 3 angle 3 camera 0.4502 b̂1, 4, 5 = 0:2251 3.80 0.000
Light 3 distance 3 angle 20.2956 b̂2, 3, 4 = � 0:1478 22.49 0.015
Light 3 distance 3 camera 0.1092 b̂2, 3, 5 = 0:0546 0.92 0.360
Light 3 angle 3 camera 20.0583 b̂2, 4, 5 = � 0:0292 20.49 0.624
Distance 3 angle 3 camera 0.0699 b̂3, 4, 5 = 0:0349 0.59 0.557

R2 = 80.65% and R2 (adj) = 73.74%.
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Figure 19. Residual analysis: (a) normal probability plot, (b) histogram of residuals, (c) residual versus camera and (d) residual
versus order plot. Residual are expressed in pixels.

Figure 20. (a) Main effect plot for the mean of the design of experiment response variable and (b) interaction plot for the mean of
the response variable versus camera and light factors.
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The good performance of the prototype implementa-
tion corroborates the fact that the proposed tool, if
properly used by AS operators, may lead to remove
human errors concerning the non-random selection of
the sample units. A rigorous quantification of this kind
of improvement, in real industrial environments, is left
to further analysis.

In its current state, the main limitations of the proto-
type can be summarized as follows:

� The system is able to recognize and track a generic
lot, but a procedure for guiding lot disassembly and
re-assembly remains yet to be fully developed.

� To date, the prototype is only able to handle
images in which at least one marker of the pallet is
recognizable.

To be truly applicable, future developments of the
prototype need to address and overcome these issues.
Efforts in this direction would allow the application of
innovative ways of performing lot-by-lot sampling in
industrial environments, opening the possibility of
reaching new levels of operational efficiency.
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Appendix 1

Transformation matrix

This appendix provides further details about Step 3 of
the procedure schematized in Figure 9. The goal of this
step is to determine the relative position of the image
acquisition device with respect to the lot-pallet. With
reference to the problem described in Figure 11 and the
notation introduced in section ‘Step 3 – transformation
matrix estimation’, the aim of this phase is to estimate
the transformation matrix W, which links the coordi-
nates of Q, in the local reference system of the markers
(XQ,m,YQ,m,ZQ,m)

T, to the coordinates of Q in the
camera reference system (XQ, c,YQ, c,ZQ, c)

T. This trans-
formation can be expressed as a roto-translation in
homogeneous coordinates as

XQ, c

YQ, c

ZQ, c

1

0
BBB@

1
CCCA=

r1, 1 r1, 2 r1, 3 t1

r2, 1 r2, 2 r2, 3 t2

r3, 1 r3, 2 r3, 3 t3

0 0 0 1

0
BBB@

1
CCCA �

XQ,m

YQ,m

ZQ,m

1

0
BBB@

1
CCCA

=
R T

0 1

� �
�

XQ,m

YQ,m

ZQ,m

1

0
BBB@

1
CCCA=W �

XQ,m

YQ,m

ZQ,m

1

0
BBB@

1
CCCA

ð7Þ

The transformation matrix W, which is composed of
a rotation (R) and a translation (T) component, only
depends on the relative position between the camera
and the marker of interest. Since the camera and the

lot-pallet may move,W has to be estimated in real time,
that is, for each of the frames captured.

The projection matrix P, that is, the function link-
ing the coordinates of Q in the camera reference sys-
tem (XQ, c,YQ, c,ZQ, c)

T to the coordinates of the
same point (or its projection Q#) in the camera screen
reference system (XQ, s,YQ, s)

T, is assumed to be
known

hXQ0, s

hYQ0, s

h

1

0
BBBBB@

1
CCCCCA

=

P1, 1 P1, 2 P1, 3 0

0 P2, 2 P2, 3 0

0 0 1 0

0 0 0 1

0
BBBBB@

1
CCCCCA
�

XQ, c

YQ, c

ZQ, c

1

0
BBBBB@

1
CCCCCA

=P �

XQ, c

YQ, c

ZQ, c

1

0
BBBBB@

1
CCCCCA

ð8Þ

This matrix is a function only of the intrinsic camera
parameters (focal length, principal point, scale factors),
so it does not depend on the position of the image
acquisition device. P can be determined through appro-
priate calibration procedures;31Appendix 2 will give
more details about them.

Combining equations (7) and (8), we obtain

hXQ0, s

hYQ0, s

h

1

0
BBBBB@

1
CCCCCA

=P �W �

XQ,m

YQ,m

ZQ,m

1

0
BBBBB@

1
CCCCCA

ð9Þ

Knowing the four pairs of coordinates of the marker
corners in the camera screen reference system (i.e. the
output of Step 2), equation (9) can be reversed to find
W. Focusing on W, R and T are estimated separately.
In particular, R is estimated basing on the following
geometric considerations. When two parallel sides of a
square marker are projected on the image, the equa-
tions of the line segments in the camera screen reference
system are

a1Xs + b1Ys + c1 =0
a2Xs + b2Ys + c2 =0

)
a1 b1 c1
a2 b2 c2
0 0 1

0
@

1
A � Xs

Ys

1

0
@

1
A=

0
0
1

0
@

1
A ) A �

Xs

Ys

1

0
@

1
A=

0
0
1

0
@

1
A ð10Þ

being (Xs,Ys)
T generic coordinates in camera screen

reference system. Using equation (8), equation (10) can
be reformulated as a function of generic coordinates in
camera reference system (i.e. (Xc,Yc,Zc)

T)
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A �
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Ys

1

0
@

1
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0
0
1

0
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1
A) A � P �

Xc

Yc

Zc

1

0
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1
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0
0
1

0
@

1
A ð11Þ

In matrix form, equation (11) expresses the equation
of two bundles of plans including the two parallel sides
of the marker. Normal vectors of these planes n1 and n2
are

n1 =( a1P11 a1P12 + b1P22 a1P13 + b1P23 + c1 )
T

n2 =( a2P11 a2P12 + b2P22 a2P13 + b2P23 + c2 )
T

ð12Þ

Thus, the direction vector of two parallel sides of the
marker can be obtained as the cross product n1 3 n2.
Given the two sets of parallel sides of the marker, two
nominally perpendicular unit direction vectors (u1 and
u2) can be obtained. The cross product among u1 and
u2 gives a third unit vector (u3) so that the rotation
component R in the transformation matrix W can be
expressed as

R= u1
T u2

T u3
T

� �
ð13Þ

Given R, the translation component of W can be
estimated by equation (7). In each frame, the coordi-
nates of the four marker corners are known both in the
marker and in the camera screen reference system.
Thus, a system of eight equations in three unknown
parameters (T=( t1 t2 t3 )

T) is defined for every
frame.

Ideally, the recognition of a single marker is suffi-
cient for the recognition and reconstruction of the
entire lot-pallet. However, for a robust recognition, up
to 12 markers were used (i.e. 3 in each side; see

Figure 12). Finally, W=
R T
0 1

� �
is estimated.

Appendix 2

Projection matrix

The goal of camera calibration is finding the projection
matrix (P) introduced in equation (8).32 The camera
calibration is performed using a simple cardboard
frame with a ruled grid of lines. The coordinates of all

intersection points are a priori known in the cardboard
local three-dimensional (3D) coordinates. The card-
board frame is captured by the camera from different
points of view. Also, the coordinates of intersection
points in the camera screen reference system are identi-
fied by image processing.

Considering the generic intersection point Ii on the
cardboard frame, the relationship among its camera
screen coordinates (XIi, s,YIi, s)

T, the camera coordi-
nates (XIi, c,YIi, c,ZIi, c)

T and cardboard coordinates
(XIi,m,YIi,m,ZIi,m)

T can be modelled as
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where P is the projection matrix to be estimated. Since
many pairs of (XIi, s,YIi, s)

T and (XIi,m,YIi,m,ZIi,m)
T are

generally obtained, matrix C can be estimated by a least
square approach. Combining equations (9) and (14), we
obtain

P1, 1 P1, 2 P1, 3 0

0 P2, 2 P2, 3 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA �

r1, 1 r1, 2 r1, 3 t1

r2, 1 r2, 2 r2, 3 t2

r3, 1 r3, 2 r3, 3 t3

0 0 0 1

0
BBB@

1
CCCA

=

C1, 1 C1, 2 C1, 3 C1, 4

C2, 1 C2, 2 C2, 3 C2, 4

C3, 1 C3, 2 C3, 3 1

0 0 0 1

0
BBB@

1
CCCA ð15Þ

Notice that matrix C has 11 independent variables,
while P and W 5 and 6 (three rotation angles and three
translation components), respectively. As a result, the
matrix C can be easily decomposed into P and W, con-
sidering the upper triangular form of P.
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