Democracy and the role of minorities in Markov chain models Non-reversible perturbations of Markov chains models

Fabio Fagnani, Politecnico di Torino

joint work with Giacomo Como, Lund University

Lund, 19-10-2012

Perturbation of dynamical networks

The stability of a complex large-scale dynamical network under localized perturbations is one of the paradigmatic problem of these decades.

Key issues:

- Correlation: understand how local perturbation affect the overall behavior.
- Resilience find bounds on the perturbation 'size' which the network can tolerate.
- Phase transitions

Perturbation of dynamical networks

State of the art:

- Most of the results available in the literature are on connectivity issues.
- Analysis of how the perturbation is altering the degree distribution of the network.
- Degrees are in general not sufficient to study dynamics.
- Example: non-reversible Markov chain models.

Perturbation of dynamical networks

What type of perturbations:

- Failures in nodes or links in sensor or computer networks. Sensor with different technical properties.
- Heterogeneity in opinion dynamics models: minorities, leaders exhibiting a different behavior
- A subset of control nodes in the network...

In this talk:

- Non-reversible perturbations of Markov chain models
- Applications to consensus dynamics

Outline

- Perturbation of consensus dynamics.
- ► The general setting: perturbation of Markov chain models.
- An example: heterogeneous gossip model.
- Results on how the perturbation is affecting the asymptotics.
- Conclusions and open issues.

Consensus dynamics

G = (V, E) connected graph

 y_v initial state (opinion) of node v

Dynamics: y(t+1) = Py(t), y(0) = y $P \in \mathbb{R}^{V \times V}$ stochastic matrix on $G(P_{uv} > 0 \Leftrightarrow (u, v) \in E)$

Consensus: $\lim_{t\to+\infty} (P^t y)_u = \pi^* y$ for all u (* means transpose) $\pi \in \mathbb{R}^V_+, \ \pi^* P = \pi^*, \ \sum_u \pi_u = 1$ (invariant probability)

Consensus dynamics

G = (V, E) connected graph

Example: (SRW) $P_{uv} = \frac{1}{d_u}$, d_u degree of node uExplicit expression for π : $\pi_u = \frac{d_u}{2|E|}$

 π essentially depends on local properties of ${\it G}.$

This holds true for general reversible Markov chains.

Consensus dynamics

G = (V, E) connected graph

Dynamics: y(t + 1) = Py(t), y(0) = yConsensus: $\lim_{t\to+\infty} (P^t y)_u = \pi^* y$ for all u

Two important parameters:

- the invariant probability π responsible for the asymptotics
- the mixing time τ responsible for the transient behavior (speed of convergence)

Perturbation of consensus dynamics

G = (V, E) connected graph

- $P \in \mathbb{R}^{V \times V}$ stochastic matrix on G
- Perturb *P* in a small set of nodes: $\tilde{P}_{uv} = P_{uv}$ if $u \notin W = \{w_1, w_2, w_3\}$.

Perturbation of consensus dynamics

G = (V, E) connected graph

- $P \in \mathbb{R}^{V \times V}$ stochastic matrix on G
- Perturb P in a small set of nodes: $\tilde{P}_{uv} = P_{uv}$ if $u \notin W = \{w_1, w_2, w_3\}$.
- Cut edges

Perturbation of consensus dynamics

G = (V, E) connected graph

- $P \in \mathbb{R}^{V \times V}$ stochastic matrix on G
- ▶ Perturb *P* in a small set of nodes: $\tilde{P}_{uv} = P_{uv}$ if $u \notin W = \{w_1, w_2, w_3\}$.
- Cut edges. Add new edges.

(Acemoglu et al. 2009)

 $G = (V, E), W \subset V$ a minority of influent (stubborn) agents

- At each time t choose an edge $\{u, v\}$ at random.
- ► If $u, v \in V \setminus W$, $y_u(t+1) = y_v(t+1) = (x_u(t) + x_v(t))/2$ (reg. interaction)

(Acemoglu et al. 2009)

G = (V, E), $W \subset V$ a minority of influent (stubborn) agents

▶ At each time *t* choose an edge {*u*, *v*} at random.

• If $u \in W$, $v \in V \setminus W$,

- ► $y_u(t+1) = y_u(t), y_v(t+1) = \varepsilon y_v(t) + (1-\varepsilon)y_u(t)$ with probability p (forceful interaction)
- ► $y_u(t+1) = y_v(t+1) = (x_u(t) + x_v(t))/2$ with probability 1 - p (reg. interaction)

(Acemoglu et al. 2009)

 $G = (V, E), W \subset V$ a minority of influent (stubborn) agents

- ▶ At each time *t* choose an edge {*u*, *v*} at random.
- If $u, v \in W$ nothing happens.

•
$$y(t+1) = P(t)y(t)$$

- y(t) converges to a consensus almost surely if p ∈ [0, 1). But what type of consensus?
- ► If no forceful interaction is present (p = 0), $y(t)_u \rightarrow N^{-1} \sum_v y(0)_v$ for every u.
- $\blacktriangleright \mathbb{E}(P(t)) = P_p$
- P_p and P_0 only differ in the rows having index in $W \cup \partial W$.

Perturbation of Markov chain models

The abstract setting:

- G = (V, E) family of connected graphs. $N = |V| \rightarrow +\infty$.
- $W \subseteq V$ perturbation set
- P, \tilde{P} stochastic matrices on $G. \tilde{P}_{uv} = P_{uv}$ if $u \notin W$

•
$$\pi^* P = \pi^*$$
, $\tilde{\pi}^* \tilde{P} = \tilde{\pi}^*$.

► Study $||\pi - \tilde{\pi}||_{\text{TV}} := \frac{1}{2} \sum_{v} |\pi_{v} - \tilde{\pi}_{v}|$ (as a function of *N*) Notice that $|\tilde{\pi}^{*}y - \pi^{*}y| \leq ||\pi - \tilde{\pi}||_{\text{TV}}||y||_{\infty}$

The ideal result: $\pi(W)
ightarrow 0 \ \Rightarrow \ || ilde{\pi} - \pi ||_{\mathrm{TV}}
ightarrow 0$

A counterexample

$$P_{u,u+1} = P_{u,u-1} = 1/2$$
, π uniform

A counterexample

$$P_{u,u+1} = P_{u,u-1} = 1/2, \quad \pi \text{ uniform}$$

 $\tilde{P}_{1,2} = 1, \ \tilde{P}_{1,n} = 0, \quad \tilde{\pi}_1 = 1/n, \ \tilde{\pi}_j = \frac{2(n-j+1)}{n^2} \text{ for } j \ge 1$

 $||\pi - \tilde{\pi}||_{\mathrm{TV}} \asymp \mathrm{cost.}$

Perturbation of Markov chain models

▶ G = (V, E) family of connected graphs. $N = |V| \rightarrow +\infty$.

• $W \subseteq V$ perturbation set

•
$$P, \tilde{P}$$
 stochastic matrices on $G. \quad \tilde{P}_{uv} = P_{uv}$ if $u \notin W$

•
$$\pi^*P=\pi^*$$
, $ilde{\pi}^* ilde{P}= ilde{\pi}^*$,

If the chain mixes slowly, the process will pass many times through the perturbed set W before getting to equilibrium. $\tilde{\pi}$ will be largely influenced by the perturbed part.

Consequence: $||\pi - \tilde{\pi}||_{\mathrm{TV}} \not\rightarrow 0$

Perturbation of Markov chain models

▶ G = (V, E) family of connected graphs. $N = |V| \rightarrow +\infty$.

- $W \subseteq V$ perturbation set
- P, \tilde{P} stochastic matrices on $G. \ \tilde{P}_{uv} = P_{uv}$ if $u \notin W$
- $\pi^* P = \pi^*$, $\tilde{\pi}^* \tilde{P} = \tilde{\pi}^*$.

A more realistic result:

P mixes suff. fast, $\pi(W) \to 0 \implies \tilde{\pi} - \pi \to 0$

Recall: mixing time $\tau := \min\{t \mid ||\mu^*P^t - \pi^*||_{\text{TV}} \le 1/e \ \forall \mu\}$ SRW on *d*-grid with *N* nodes, $\tau \asymp N^{2/d} \ln N$ SRW on Erdos-Renji, small world, configuration model $\tau \asymp \ln N$ Perturbation of Markov chain models: the literature

- G = (V, E) family of connected graphs. $N = |V| \rightarrow +\infty$.
- $W \subseteq V$ perturbation set
- P, \tilde{P} stochastic matrices on $G. \tilde{P}_{uv} = P_{uv}$ if $u \notin W$

•
$$\pi^* P = \pi^*$$
, $\tilde{\pi}^* \tilde{P} = \tilde{\pi}^*$.

$$||\tilde{\pi} - \pi||_{\text{TV}} \le C\tau ||\tilde{P} - P||_1$$
 (Mitrophanov, 2003)

To measure perturbations of P, the 1-norm is not good to treat localized perturbations: if P and \tilde{P} differ just in one row u and $|P_{uv} - \tilde{P}_{uv}| = \delta$, then, $||P - \tilde{P}||_1 \ge \delta$ and will not go to 0 for $N \to \infty$. In our context, the bound will always blow up.

Perturbation of Markov chain models

- ▶ G = (V, E) family of connected graphs. $N = |V| \rightarrow +\infty$.
- $W \subseteq V$ perturbation set
- ▶ P, \tilde{P} stochastic matrices on $G. \tilde{P}_{uv} = P_{uv}$ if $u \notin W$

•
$$\pi^* P = \pi^*$$
, $\tilde{\pi}^* \tilde{P} = \tilde{\pi}^*$.

A more realistic result:

P mixes suff. fast, $\pi(W) \to 0 \Rightarrow \tilde{\pi} - \pi \to 0$

There is another problem: if P mixes rapidly, nobody guarantees that \tilde{P} will also do...

Perturbation of Markov chain models: first result

- ▶ G = (V, E) family of connected graphs. $N = |V| \rightarrow +\infty$.
- $W \subseteq V$ perturbation set
- ▶ P, \tilde{P} stochastic matrices on $G. \tilde{P}_{uv} = P_{uv}$ if $u \notin W$

•
$$\pi^* P = \pi^*$$
, $\tilde{\pi}^* \tilde{P} = \tilde{\pi}^*$.

Theorem
$$||\tilde{\pi} - \pi||_{TV} \le \tau \tilde{\pi}(W) \log \frac{e^2}{\tau \tilde{\pi}(W)}$$
. (1)

or, symmetrically,

$$||\tilde{\pi} - \pi||_{TV} \le \tilde{\tau}\pi(W) \log \frac{e^2}{\tilde{\tau}\pi(W)} \,. \tag{2}$$

Proof: Coupling technique.

Perturbation of Markov chain models: first result

Corollary $au\pi(W) \to 0, \ ilde{ au} = O(au) \Rightarrow || ilde{\pi} - \pi||_{TV} \to 0$ $au\pi(W) \to 0, \ ilde{\pi}(W) = O(\pi(W)) \Rightarrow || ilde{\pi} - \pi||_{TV} \to 0$

The perturbation, in order to achieve a modification of the invariant probability, necessarily has to

- slow down the chain
- ▶ increase the probability on the perturbation subset *W*.

 π and τ are intimately connected to each other!

Perturbation of Markov chain models: first result

Slowing down the chain and putting weight on W look quite connected to each other and essentially amounts to decrease the probability of exiting W:

A deeper analysis

Lemma

$$ilde{\pi}(W) \leq rac{1}{1 + ilde{\phi}_W^* au_W^*} \, ,$$

where

 $\begin{aligned} \tau^*_W &:= \min\{\mathbb{E}_v[T_W] : v \in V \setminus W\},\\ \text{minimum entrance time to } W\\ \text{it depends on } P \end{aligned}$

 $\tilde{\phi}_{W}^{*} := \frac{\sum_{w \in W} \sum_{v \in V \setminus W} \tilde{\pi}_{w} \tilde{P}_{wv}}{\tilde{\pi}(W)}$ bottleneck ratio of W it depends on \tilde{P}

Proof From Kac's lemma

$$ilde{\pi}(W)^{-1} = \mathbb{E}_{ ilde{\pi}_{\mathcal{W}}}[\mathcal{T}^+_{\mathcal{W}}] = 1 + \sum_w \sum_v rac{ ilde{\pi}_w}{ ilde{\pi}(W)} ilde{\mathcal{P}}_{wv} \mathbb{E}_v[\mathcal{T}_W] \geq 1 + ilde{\phi}^*_W au^*_W.$$

A deeper analysis

► bottleneck ratio \longleftrightarrow exit probability from W: $\mathbb{P}_w(T_{V \setminus W} \le d) \ge \alpha \ \forall w \in W \implies \tilde{\phi}^*_W \ge d/\alpha$

If $\mathbb{P}_w(T_{V \setminus W} \leq d) \geq \alpha$ for fixed $d, \alpha > 0$ and for every $w \in W$, then

$$ilde{\pi}(W) \leq rac{1}{1+ ilde{\phi}_W^* au_W^*} symp (au_W^*)^{-1}$$
, $au ilde{\pi}(W) = O\left(rac{ au}{ au_W^*}
ight)$

Hence,

$$rac{ au}{ au_W^*} o 0 \; \Rightarrow \; || ilde{\pi} - \pi||_{TV} o 0$$

A deeper analysis

• minimum entrance time $\leftrightarrow \pi(W)$:

 $\tau_{W}^{*} := \min\{\mathbb{E}_{v}[T_{W}]\} \asymp \pi(W)^{-1} \text{ (Conjecture)}$

(Kac's lemma: $\pi(\mathcal{W})^{-1} = 1 + \sum_{w} \sum_{v} \frac{\pi_{w}}{\pi(W)} P_{wv} \mathbb{E}_{v}[T_{W}]$ $\Rightarrow \mathbb{E}_{v}[T_{W}] \asymp \pi(\mathcal{W})^{-1}$ for some v....)

 $\mathbb{P}_w(\mathcal{T}_{V \setminus W} \leq d) \geq \alpha$ for every $w \in W$ plus conjecture imply

$$rac{ au}{ au_W^*} symp au \pi(W) o 0 \; \Rightarrow \; || ilde{\pi} - \pi||_{TV} o 0$$

Examples

The conjecture

$$\tau_W^* := \min\{\mathbb{E}_v[T_W]\} \asymp \pi(W)^{-1}$$

holds if P is the simple random walk SRW on

- *d*-grids with $d \ge 3$, |W| bounded.
- ▶ Erdos-Renji, configuration model (w.p. 1) if $|W| = o(N^{1-\epsilon})$

(techniques: electrical network interpretation, effective resistance; locally tree-like graphs)

Recall that

• *d*-grid, $\tau \simeq N^{d/2} \ln N$

• Erdos-Renji, configuration model (w.p. 1) $\tau = O(\ln N)$

Examples

Theorem

- ▶ G = (V, E) family of connected graphs. $N = |V| \rightarrow +\infty$.
- $W \subseteq V$ perturbation set
- ▶ *P* SRW on *G*, $\tilde{P}_{uv} = P_{uv}$ if $u \notin W$

$$\blacktriangleright \pi^* P = \pi^*, \, \tilde{\pi}^* \tilde{P} = \tilde{\pi}^*.$$

▶ $\mathbb{P}_w(T_{V \setminus W} \leq d) \geq \alpha$ for fixed $d, \alpha > 0$ and for every $w \in W$,

If G and W are:

• *d*-grids with $d \ge 3$, |W| bounded

► Erdos-Renji, configuration model (w.p. 1), $|W| = o(N^{1-\epsilon})$ then,

$$||\tilde{\pi} - \pi||_{TV} \rightarrow 0$$

Application to the heterogeneous gossip model

• G = (V, E), $W \subseteq V$ forceful agents (with prob. p).

►
$$y(t+1) = P(t)y(t)$$
, $\mathbb{E}(P(t)) = P_p$

▶ P_p and P_0 only differ in the rows having index in $W \cup \partial W$.

A specific example: *d*-regular (toroidal) grid.

 $P_0 = (1 - N^{-1}) \mathrm{Id} + N^{-1} d^{-1} A_G$ is a lazy simple random walk,

 π_0 uniform probability, $\tau_0 \asymp N^{2/d+1} \ln N$, $\tau_W^* \asymp \frac{|W|}{N^2}$

 $\frac{\tau_0}{\tau_W^*} \asymp |W| N^{2/d-1} \ln N \to 0$ if $d \ge 3$, |W| bounded.

 $||\pi_p - \pi_0||_{\mathrm{TV}} \rightarrow 0$

- the minority has a vanishing effect on the global population
- max_ν(π_p)_ν → 0 democracy is preserved ('wise society' in Jackson's terminology)

Gossip with stubborn agents

Take p = 1 in the heterogeneous gossip model.

 $G = (V, E), W \subset V$ a minority of influent (stubborn) agents

• At each time t choose an edge $\{u, v\}$ at random.

• If
$$u, v \in V \setminus W$$
,

$$y_u(t+1) = y_v(t+1) = (x_u(t) + x_v(t))/2$$

• If $u \in W$, $v \in V \setminus W$,

$$y_u(t+1) = y_u(t), \ y_v(t+1) = (y_v(t) + y_u(t))/2$$

Gossip with stubborn agents

(Acemoglu, Como, F., Ozdaglar)

▶ $y(t) \rightarrow y(\infty)$ in distribution. $(y_w(\infty) = y_w(0) \ \forall w \in W)$

► If
$$\exists w, w' \in W$$
: $y_w(0) \neq y_{w'}(0)$, then,
 $\mathbb{P}(y_v(\infty) \neq y_{v'}(\infty)) > 0$ (asymptotic disagreement)

► However
$$\frac{1}{n} \left| \left\{ v : \left| \mathbb{E}[y_v(\infty)] - \xi \right| \ge \varepsilon \right\} \right| \le C_{\varepsilon} \tau \pi(W)$$

If $\tau \pi(W) \to 0$, then approximate consensus!

This can also be read as a sort of lack of controllability: constraints on the shape of the final state configuration achievable by the global system.

Conclusions and open issues

- Perturbations of Markov chain models and their effect on the invariant probabilities.
- If the mixing time is sufficiently small w.r. to the size of the perturbation, the effect on the invariant probability becomes negligeable in the large scale limit.
- Applications to consensus dynamics
- Find more general estimation of the minimum entrance time parameter τ^{*}_W.
- Find estimation of type c₁ ≤ π̃_ν/π_ν ≤ c₂. They would permit to obtain estimations of |τ̃ − τ|.
- Study phase transitions.
- Consider perturbations of non linear models (consensus versus epidemic, threshold models).