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Perturbation of dynamical networks

The stability of a complex large-scale dynamical network under
localized perturbations is one of the paradigmatic problem of these
decades.

Key issues:

I Correlation: understand how local perturbation affect the
overall behavior.

I Resilience find bounds on the perturbation ’size’ which the
network can tolerate.

I Phase transitions



Perturbation of dynamical networks

State of the art:

I Most of the results available in the literature are on
connectivity issues.

I Analysis of how the perturbation is altering the degree
distribution of the network.

I Degrees are in general not sufficient to study dynamics.

I Example: non-reversible Markov chain models.



Perturbation of dynamical networks

What type of perturbations:

I Failures in nodes or links in sensor or computer networks.
Sensor with different technical properties.

I Heterogeneity in opinion dynamics models: minorities, leaders
exhibiting a different behavior

I A subset of control nodes in the network...

In this talk:

I Non-reversible perturbations of Markov chain models

I Applications to consensus dynamics



Outline

I Perturbation of consensus dynamics.

I The general setting: perturbation of Markov chain models.

I An example: heterogeneous gossip model.

I Results on how the perturbation is affecting the asymptotics.

I Conclusions and open issues.



Consensus dynamics

G = (V ,E ) connected graph

u

v

yv initial state (opinion) of node v

Dynamics: y(t + 1) = Py(t), y(0) = y
P ∈ RV×V stochastic matrix on G (Puv > 0 ⇔ (u, v) ∈ E )

Consensus: limt→+∞(Pty)u = π∗y for all u (∗ means transpose)

π ∈ RV
+, π∗P = π∗,

∑
u πu = 1 (invariant probability)



Consensus dynamics

G = (V ,E ) connected graph

u

v

Example: (SRW) Puv = 1
du

, du degree of node u

Explicit expression for π: πu = du
2|E |

π essentially depends on local properties of G .

This holds true for general reversible Markov chains.



Consensus dynamics

G = (V ,E ) connected graph

u

v

Dynamics: y(t + 1) = Py(t), y(0) = y
Consensus: limt→+∞(Pty)u = π∗y for all u

Two important parameters:

I the invariant probability π responsible for the asymptotics

I the mixing time τ responsible for the transient behavior
(speed of convergence)



Perturbation of consensus dynamics

G = (V ,E ) connected graph

u

v

w1

w2

w3

I P ∈ RV×V stochastic matrix on G

I Perturb P in a small set of nodes:

P̃uv = Puv if u 6∈W = {w1,w2,w3}.



Perturbation of consensus dynamics

G = (V ,E ) connected graph

u

v

w1

w2

w3

I P ∈ RV×V stochastic matrix on G

I Perturb P in a small set of nodes:

P̃uv = Puv if u 6∈W = {w1,w2,w3}.
I Cut edges



Perturbation of consensus dynamics

G = (V ,E ) connected graph

u

v

w1

w2

w3

I P ∈ RV×V stochastic matrix on G

I Perturb P in a small set of nodes:

P̃uv = Puv if u 6∈W = {w1,w2,w3}.
I Cut edges. Add new edges.



A heterogeneous gossip model
(Acemoglu et al. 2009)

G = (V ,E ), W ⊂ V a minority of influent (stubborn) agents

u

v

I At each time t choose an edge {u, v} at random.

I If u, v ∈ V \W ,
yu(t + 1) = yv (t + 1) = (xu(t) + xv (t))/2 (reg. interaction)



A heterogeneous gossip model
(Acemoglu et al. 2009)

G = (V ,E ), W ⊂ V a minority of influent (stubborn) agents

v

u

I At each time t choose an edge {u, v} at random.
I If u ∈W , v ∈ V \W ,

I yu(t + 1) = yu(t), yv (t + 1) = εyv (t) + (1− ε)yu(t)
with probability p (forceful interaction)

I yu(t + 1) = yv (t + 1) = (xu(t) + xv (t))/2
with probability 1− p (reg. interaction)



A heterogeneous gossip model
(Acemoglu et al. 2009)

G = (V ,E ), W ⊂ V a minority of influent (stubborn) agents

v

u

I At each time t choose an edge {u, v} at random.

I If u, v ∈W nothing happens.



A heterogeneous gossip model

I y(t + 1) = P(t)y(t)

I y(t) converges to a consensus almost surely if p ∈ [0, 1).
But what type of consensus?

I If no forceful interaction is present (p = 0),
y(t)u → N−1

∑
v y(0)v for every u.

I E(P(t)) = Pp

I Pp and P0 only differ in the rows having index in W ∪ ∂W .



Perturbation of Markov chain models

The abstract setting:

I G = (V ,E ) family of connected graphs. N = |V | → +∞.

I W ⊆ V perturbation set

I P, P̃ stochastic matrices on G . P̃uv = Puv if u 6∈W

I π∗P = π∗, π̃∗P̃ = π̃∗.

I Study ||π − π̃||TV := 1
2

∑
v |πv − π̃v | (as a function of N)

Notice that |π̃∗y − π∗y | ≤ ||π − π̃||TV||y ||∞

The ideal result: π(W )→ 0 ⇒ ||π̃ − π||TV → 0



A counterexample

1

2

34

5

n

n− 1

1

Pu,u+1 = Pu,u−1 = 1/2, π uniform



A counterexample

2

34

5

1

n

n− 1

1

Pu,u+1 = Pu,u−1 = 1/2, π uniform

P̃1,2 = 1, P̃1,n = 0, π̃1 = 1/n, π̃j = 2(n−j+1)
n2

for j ≥ 1

||π − π̃||TV � cost.



Perturbation of Markov chain models

I G = (V ,E ) family of connected graphs. N = |V | → +∞.

I W ⊆ V perturbation set

I P, P̃ stochastic matrices on G . P̃uv = Puv if u 6∈W

I π∗P = π∗, π̃∗P̃ = π̃∗.

If the chain mixes slowly, the process will pass many times through
the perturbed set W before getting to equilibrium. π̃ will be
largely influenced by the perturbed part.

Consequence: ||π − π̃||TV 6→ 0



Perturbation of Markov chain models

I G = (V ,E ) family of connected graphs. N = |V | → +∞.

I W ⊆ V perturbation set

I P, P̃ stochastic matrices on G . P̃uv = Puv if u 6∈W

I π∗P = π∗, π̃∗P̃ = π̃∗.

A more realistic result:

P mixes suff. fast, π(W )→ 0 ⇒ π̃ − π → 0

Recall: mixing time τ := min{t | ||µ∗Pt − π∗||TV ≤ 1/e ∀µ}

SRW on d-grid with N nodes, τ � N2/d lnN

SRW on Erdos-Renji, small world, configuration model τ � lnN



Perturbation of Markov chain models: the literature

I G = (V ,E ) family of connected graphs. N = |V | → +∞.

I W ⊆ V perturbation set

I P, P̃ stochastic matrices on G . P̃uv = Puv if u 6∈W

I π∗P = π∗, π̃∗P̃ = π̃∗.

||π̃ − π||TV ≤ Cτ ||P̃ − P||1 (Mitrophanov, 2003)

To measure perturbations of P, the 1-norm is not good to treat
localized perturbations: if P and P̃ differ just in one row u and
|Puv − P̃uv | = δ, then, ||P − P̃||1 ≥ δ and will not go to 0 for
N →∞. In our context, the bound will always blow up.



Perturbation of Markov chain models

I G = (V ,E ) family of connected graphs. N = |V | → +∞.

I W ⊆ V perturbation set

I P, P̃ stochastic matrices on G . P̃uv = Puv if u 6∈W

I π∗P = π∗, π̃∗P̃ = π̃∗.

A more realistic result:

P mixes suff. fast, π(W )→ 0 ⇒ π̃ − π → 0

There is another problem: if P mixes rapidly, nobody guarantees
that P̃ will also do...



Perturbation of Markov chain models: first result

I G = (V ,E ) family of connected graphs. N = |V | → +∞.

I W ⊆ V perturbation set

I P, P̃ stochastic matrices on G . P̃uv = Puv if u 6∈W

I π∗P = π∗, π̃∗P̃ = π̃∗.

Theorem
||π̃ − π||TV ≤ τ π̃(W ) log

e2

τ π̃(W )
. (1)

or, symmetrically,

||π̃ − π||TV ≤ τ̃π(W ) log
e2

τ̃π(W )
. (2)

Proof: Coupling technique.



Perturbation of Markov chain models: first result

Corollary

τπ(W )→ 0, τ̃ = O(τ) ⇒ ||π̃ − π||TV → 0

τπ(W )→ 0, π̃(W ) = O(π(W )) ⇒ ||π̃ − π||TV → 0

The perturbation, in order to achieve a modification of the
invariant probability, necessarily has to

I slow down the chain

I increase the probability on the perturbation subset W .

π and τ are intimately connected to each other!



Perturbation of Markov chain models: first result

Slowing down the chain and putting weight on W look quite
connected to each other and essentially amounts to decrease the
probability of exiting W :

w

P̃ww = 1− 1/N

π̃w = E(T̃+
w )−1 = 1

1−N−1+N−1E(T+
w )

= πw
(1−N−1)πw+N−1

πw ∼ k
N ⇒ π̃w ∼ k

k+1



A deeper analysis

Lemma

π̃(W ) ≤ 1

1 + φ̃∗W τ
∗
W

,

where

τ∗W := min{Ev [TW ] : v ∈ V \W } , φ̃∗W :=

∑
w∈W

∑
v∈V\W

π̃w P̃wv

π̃(W )

minimum entrance time to W bottleneck ratio of W

it depends on P it depends on P̃

Proof From Kac’s lemma

π̃(W )−1 = Eπ̃W [T+
W ] = 1+

∑
w

∑
v

π̃w
π̃(W )

P̃wvEv [TW ] ≥ 1+φ̃∗W τ
∗
W .



A deeper analysis

I bottleneck ratio ←→ exit probability from W :

Pw (TV \W ≤ d) ≥ α ∀w ∈W ⇒ φ̃∗W ≥ d/α

If Pw (TV \W ≤ d) ≥ α for fixed d , α > 0 and for every w ∈W ,
then

π̃(W ) ≤ 1
1+φ̃∗W τ

∗
W

� (τ∗W )−1, τ π̃(W ) = O
(
τ
τ∗W

)
Hence, τ

τ∗W
→ 0 ⇒ ||π̃ − π||TV → 0



A deeper analysis

I minimum entrance time ←→ π(W ):

τ∗W := min{Ev [TW ]} � π(W )−1 (Conjecture)

(Kac’s lemma: π(W)−1 = 1 +
∑

w

∑
v

πw
π(W )PwvEv [TW ]

⇒ Ev [TW ] � π(W)−1 for some v .....)

Pw (TV \W ≤ d) ≥ α for every w ∈W plus conjecture imply

τ

τ∗W
� τπ(W )→ 0 ⇒ ||π̃ − π||TV → 0



Examples

The conjecture

τ∗W := min{Ev [TW ]} � π(W )−1

holds if P is the simple random walk SRW on

I d-grids with d ≥ 3, |W | bounded.

I Erdos-Renji, configuration model (w.p. 1) if |W | = o(N1−ε)

(techniques: electrical network interpretation, effective resistance;
locally tree-like graphs)

Recall that

I d-grid, τ � Nd/2 lnN

I Erdos-Renji, configuration model (w.p. 1) τ = O(lnN)



Examples

Theorem

I G = (V ,E ) family of connected graphs. N = |V | → +∞.

I W ⊆ V perturbation set

I P SRW on G , P̃uv = Puv if u 6∈W

I π∗P = π∗, π̃∗P̃ = π̃∗.

I Pw (TV \W ≤ d) ≥ α for fixed d , α > 0 and for every w ∈W ,

If G and W are:

I d-grids with d ≥ 3, |W | bounded

I Erdos-Renji, configuration model (w.p. 1), |W | = o(N1−ε)

then,
||π̃ − π||TV → 0



Application to the heterogeneous gossip model
I G = (V ,E ), W ⊆ V forceful agents (with prob. p).

I y(t + 1) = P(t)y(t), E(P(t)) = Pp

I Pp and P0 only differ in the rows having index in W ∪ ∂W .

A specific example: d-regular (toroidal) grid.

P0 = (1− N−1)Id + N−1d−1AG is a lazy simple random walk,

π0 uniform probability, τ0 � N2/d+1 lnN, τ∗W �
|W |
N2

τ0
τ∗W
� |W |N2/d−1 lnN → 0 if d ≥ 3, |W | bounded.

||πp − π0||TV → 0

I the minority has a vanishing effect on the global population

I maxv (πp)v → 0 democracy is preserved (’wise society’ in
Jackson’s terminology)



Gossip with stubborn agents

Take p = 1 in the heterogeneous gossip model.

G = (V ,E ), W ⊂ V a minority of influent (stubborn) agents

I At each time t choose an edge {u, v} at random.

I If u, v ∈ V \W ,

yu(t + 1) = yv (t + 1) = (xu(t) + xv (t))/2

I If u ∈W , v ∈ V \W ,

yu(t + 1) = yu(t), yv (t + 1) = (yv (t) + yu(t))/2



Gossip with stubborn agents

(Acemoglu, Como, F., Ozdaglar)

I y(t)→ y(∞) in distribution. (yw (∞) = yw (0) ∀w ∈W )

I If ∃w ,w ′ ∈W : yw (0) 6= yw ′(0), then,

P(yv (∞) 6= yv ′(∞)) > 0 (asymptotic disagreement)

I However 1
n

∣∣∣{v :
∣∣∣E[yv (∞)]− ξ

∣∣∣ ≥ ε}∣∣∣ ≤ Cετπ(W )

If τπ(W )→ 0, then approximate consensus!

This can also be read as a sort of lack of controllability:
constraints on the shape of the final state configuration
achievable by the global system.



Conclusions and open issues

I Perturbations of Markov chain models and their effect on the
invariant probabilities.

I If the mixing time is sufficiently small w.r. to the size of the
perturbation, the effect on the invariant probability becomes
negligeable in the large scale limit.

I Applications to consensus dynamics

I Find more general estimation of the minimum entrance time
parameter τ∗W .

I Find estimation of type c1 ≤ π̃v/πv ≤ c2. They would permit
to obtain estimations of |τ̃ − τ |.

I Study phase transitions.

I Consider perturbations of non linear models (consensus versus
epidemic, threshold models).


