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Abstract— Identification of linear systems, a priori known
to be stable, from input output measurements corrupted by
bounded noise is considered in the paper. A formal definition
of the feasible parameter set is provided, taking explicitly
into account prior information on system stability. On the
basis of a detailed analysis of the geometrical structure of the
feasible set, convex relaxation techniques are presented to solve
nonconvex optimization problems arising in the computation of
parameters uncertainty intervals. Properties of the computed
relaxed bounds are discussed. A simulated example is presented
to show the effectiveness of the proposed technique.

Index Terms— Set-membership identification, LMI relax-
ation, stability constraints

I. INTRODUCTION

According to Ljung [1], any system identification pro-

cedure involves three basic ingredients: a set of input-

output measurements, a set of candidate models and the

identification method, which can roughly be described as

a rule to select a model among the candidate ones on the

basis of the measured data and a proper model quality

assessment criterion. The choice of the set of candidate

models, sometimes called model structure, is the most crit-

ical step since it strongly relies on the available a priori

information: practical experience, physical insights and en-

gineering intuitions play here a crucial role. Restricting our

attention to the case of Linear Time Invariant (LTI) systems,

Bounded Input Bounded Output (BIBO) stability is perhaps

the most common assumption when open-loop identification

procedures are of interest. Indeed, when this hypothesis is

not satisfied, open-loop experiments cannot be performed in

practice. Although many times the system to be identified

is surely known to be stable, most of the identification

techniques do not exploit such a prior information in the

definition of the assumed model structure, since formal

inclusion of mathematical constraints related to stability

makes the estimation problem difficult to be solved. As a

result, the identification procedure may give rise to inaccurate

models and even instability may arise, especially in the pres-

ence of shortage of data, modeling error and measurement

noise. Only few contributions are available in the literature

addressing the problem of how taking into account prior

information about system stability. In paper [2] Söderström

and Stoica consider the identification of input-output linear

dynamics systems described by difference equations; through

a simple counterexample, they show that application of the

Least Squares (LS) method may lead to unstable models
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when certain conditions in terms of signal-to-noise ratio are

satisfied. A sufficient condition to ensure stability of dynamic

models obtained by LS identification is provided in [3]

where the input signal is constrained to be an autoregressive

process of given degree. Tugnait and Tontiruttananon in [4]

provide a frequency domain solution to LS identification of

a stable system in presence of undermodeling. They present

an approach that applies when the input signal is a zero-

mean stationary process with sufficiently high persistency of

excitation order. A stable output error identification scheme

is presented in [5] for the case of all-pole systems and

periodic excitation signals, while a procedure to include prior

information on BIBO stability in the context of the kernel-

based nonparametric identification is discussed in [6]. As

far as subspace identification is concerned, some different

approaches have been introduced in the last decade to enforce

stability. The interested reader can refer to [7] and the

references therein for a thorough review on the subject. The

most recent and effective among such approaches is the

one presented by Bernstein and Lacy in [7] where prior

information on asymptotic stability is directly taken into

account computing the LS estimate through the solution of

a proper convex optimization problem.

A common assumption in system identification is that the

measurement error is statistically described. However, when

uncertainties are known to belong to a given set, a set-

membership characterization of measurement errors should

be preferred to the stochastic description. Some examples

include mechanical tolerances, analog-to-digital converter

quantization errors, systematic and class errors in measure-

ment equipments. In this context, all parameters consistent

with the measurements, the error bounds and the assumed

model structure, are feasible solutions of the identification

problem. The interested reader can find further details on this

approach in a number of survey papers (see, e.g., [8], [9]),

in the book edited by Milanese et al. [10], and the special

issues edited by Norton [11], [12].

In this work, we consider the identification of SISO

discrete-time linear systems that are a priori known to be

stable. The aim of the paper is to compute bounds on

the system parameters when both the input and output

data are corrupted by bounded noise. To the authors’ best

knowledge, no contribution can be found in the literature on

the identification problem addressed in this paper.

The note is organized as follows. Section II is devoted to

the formulation of the problem. First a formal definition of

the feasible parameter set is provided taking explicitly into

account prior information on system stability. Then, com-

putation of the parameter uncertainty intervals is formulated
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Fig. 1. Errors-in-variable setup for dynamic linear system.

in terms of nonlinear nonconvex optimization. A detailed

analysis of the geometrical structure of the defined feasible

parameter set is presented in Section III. On the basis of this

analysis, suitable convex relaxation techniques are discussed

to solve the nonconvex optimization problems presented

in Section II. In Section IV, accuracy and convergency

properties of the relaxed bounds computed in Section III

are discussed. A simulated example is reported in Section

V in order to highlight the improvement obtained in the

computation of the parameter bounds when prior information

on stability are explicitly taken into account.

II. PROBLEM FORMULATION

Consider the Single Input Single Output (SISO) Linear-

Time-Invariant (LTI) system depicted in Fig. 1. The linear

dynamic system is modeled by a discrete time system that

transforms the noise-free input sequence xt into the noise-

free output wt according to the difference equation

A(q−1)wt = B(q−1)xt, (1)

where A(·) and B(·) are polynomials in the backward shift

operator q−1 (q−1wt = wt−1):

A(q−1) = 1 + a1q
−1 + . . . + anaq−na (2)

B(q−1) = b0 + b1q
−1 + . . . + bnbq

−nb (3)

Let ut and yt be the noise-corrupted input and output

measured sequence respectively

ut = xt + ξt (4)

yt = wt + ηt. (5)

Measurement uncertainties ξt and ηt are assumed to range

within given bounds ∆ξt and ∆ηt respectively, that is:

| ξt | ≤ ∆ξt (6)

| ηt | ≤ ∆ηt (7)

The unknown parameter vector θ ∈ R
p to be estimated is

defined as

θT = [a1 . . . ana b0 b1 . . . bnb] (8)

where na + nb + 1 = p.

In the set-membership context, all parameter vectors be-

longing to the feasible parameter set (FPS), i.e. parameters

consistent with the measurements, the error bounds and

the assumed model structure, are feasible solutions of the

identification problem. Given N samples of the signals ut

and yt, the feasible parameter set Dθ of the linear system

described by equations (1) - (7) is defined as

Dθ ={θ ∈ R
p : A(q−1) (yt − ηt) = B(q−1) (ut − ξt) ,

| ξt |≤ ∆ξt, | ηt |≤ ∆ηt; t = 1, . . . , N}.
(9)

The exact feasible parameter region Dθ is a nonconvex

set described by nonlinear inequalities, whose shape may

become fairly complex for increasing values of N . As a

consequence, parameters bounds might not be easily com-

puted on the basis of Dθ [13]. In order to overcome such a

problem, the following outer approximation D′
θ of the exact

FPS Dθ, i.e. D′
θ ⊃ Dθ has been proposed in [14], [15]:

D′
θ ={θ ∈ R

p : (φt − ∆φt)θ ≤ yt + ∆ηt,

(φt + ∆φt)θ ≥ yt − ∆ηt; t = 1, . . . , N}
(10)

where φt is the regression vector:

φT

t = [−yt−1 . . . − yt−na ut ut−1 . . . ut−nb]

and

∆φT

t =[∆ηt−1sgn(a1) . . . ∆ηt−nasgn(ana) ∆ξtsgn(b0)

∆ξt−1sgn(b1) . . . ∆ξt−nbsgn(bnb)].

D′
θ is the union of at most 2p convex regions in R

p, i.e.

D′
θ =

2
p

⋃

i=1

D′
θi (11)

where each D′
θi is a polytope defined by 2N + p linear

constraints obtained through the intersection of D′
θ with the

i-th orthant of the parameter space R
p.

On the basis of the set D′
θ, lower and upper bounds θj and

θj can be computed, for each component θj of the parameter

vector θ, solving the following two optimization problems

θj = min
i=1,...,2p

θji (12)

θj = max
i=1,...,2p

θji (13)

where

θji = min
θ∈D′

θi

θj (14)

θji = max
θ∈D′

θi

θj (15)

Computation of bounds (12) and (13) requires the solution of

2p linear programming problems given by (14) and 2p linear

programming problems given by (15) for each component of

the parameter vector θ (see [15] for details). The computed

bounds implicitly define the parameter uncertainty intervals

PUIj = [θj , θj ]. (16)

In this paper we are interested in computing parameter

uncertainty intervals for linear systems that are a-priori

known to be stable. In order to explicitly take into account

this prior information, the set of all the parameters that

belong to D′
θ and guarantee BIBO stability of the identified

system will be considered, that is the set D∗
θ defined as

D∗
θ = D′

θ ∩ AST
θ (17)
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where

AST
θ = {θ ∈ R

p : A(z, θ) 6= 0 ∀z ∈ C, |z| ≥ 1} (18)

A(z, θ) = zna + a1z
na−1 + . . . + ana. (19)

Parameter uncertainty intervals for the stable linear systems

are defined as

PUI∗j =
[

θ∗j , θ∗j

]

(20)

where:

θ∗j = min
θ∈D∗

θ

θj (21)

θ∗j = max
θ∈D∗

θ

θj (22)

Computation of bounds θ∗j and θ∗j through the solution of

nonlinear nonconvex optimization problems (21) and (22)

will be discussed in Section III where a detailed analysis of

the geometric structure of D∗
θ is also provided.

III. COMPUTATION OF THE PARAMETER UNCERTAINTY

INTERVALS PUI∗j

In this section the mathematical structure of the nonconvex

set D∗
θ is analyzed, then it is shown how LMI relaxation

techniques can be used to compute parameter bounds θ∗j and

θ∗j .

A. Analysis of the mathematical structure of the set D∗
θ

A necessary and sufficient condition for the BIBO

stability of the discrete time linear system in Fig. 1 is that

the coefficients a1, . . . , ana of polynomial A(q−1) satisfy

the Jury’s test [16] whose statement is recalled below for

self-consistency of the paper.

Jury’s test [16]

The roots of the polynomial A(q−1) in (2) belong to the

unit circle if and only if all the following constraints are

satisfied:

A(1) > 0 (23)

(−1)naA(−1) > 0 (24)

|ana| < 1 (25)

|cna−1| < |c0| (26)

|dna−2| < |d0| (27)

...

|q2| < |q0| (28)

where c0, d0, . . ., q0, . . ., cna−1, dna−2, . . ., q2, q0 are

polynomial functions of the parameters a1, a2, . . ., ana,

obtained by forming the Jury’s array reported in Table I,

Table I. Jury’s array.
ana ana−1 ana−2 . . . a2 a1 1
1 a1 a2 . . . ana−2 ana−1 ana

cna−1 cna−2 cna−3 . . . c1 c0

c0 c1 c2 . . . cna−2 cna−1

dna−2 dna−3 dna−4 . . . d0

d0 d1 d2 . . . dna−2

...
...

...
...

q2 q1 q0

where

cna−jc
= det

([
ana ana−jc

1 ajc

])

,

for jc = 1, . . . , na and a0 = 1

(29)

dna−jd
= det

([
cna−1 cna−jd

c0 cjd−1

])

,

for jd = 2, . . . , na

(30)

det(·) is the determinant of a matrix and q2, q1 and q0 are

the last three elements of the Jury’s array. Therefore, on the

basis of the Jury’s criterion, the set AST
θ can be described as

the set of all the parameters values θ that satisfy the Jury’s

test. Topological features of the set AST
θ are summarized in

the following result.

Result 1: If na ≥ 2, AST
θ is the union of 2na−2 semial-

gebraic sets, that is

AST
θ =

2
na−2

⋃

k=1

AST
θk (31)

where AST
θk is a semialgebraic set defined by:

• 4 linear inequalities,

• 3 (na − 2) polynomial inequalities.

Proof — First, note that AST
θ , defined by inequalities

(23) – (28), can be written as:

AST
θ = A1 ∩ C ∩ D ∩ . . . ∩Q

︸ ︷︷ ︸

intersection of na−2 sets

(32)

where:

A1 ={θ ∈ R
p : A(1) > 0, (−1)naA(−1) > 0,

|ana| < 1}
(33)

C = {θ ∈ R
p : |cna−1| < |c0|} (34)

D = {θ ∈ R
p : |dna−2| < |d0|} (35)

...

Q = {θ ∈ R
p : |q2| < |q0|} (36)

Besides, C = C1 ∪ C2, D = D1 ∪ D2 and so on, up to
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Q = Q1 ∪Q2, where:

C1 = {θ ∈ R
p : c0 ≥ 0, −c0 ≤ cna−1 ≤ c0} (37)

C2 = {θ ∈ R
p : c0 < 0, c0 ≤ cna−1 ≤ −c0} (38)

D1 = {θ ∈ R
p : d0 ≥ 0, −d0 ≤ dna−2 ≤ d0} (39)

D2 = {θ ∈ R
p : d0 < 0, d0 ≤ dna−2 ≤ −d0} (40)

...

Q1 = {θ ∈ R
p : q0 ≥ 0, −q0 ≤ q2 ≤ q0} (41)

Q2 = {θ ∈ R
p : q0 < 0, q0 ≤ q2 ≤ −q0} (42)

Therefore, Eq. (32) can be rewritten as

AST
θ = A1 ∩ (C1 ∪ C2) ∩ (D1 ∪ D2) . . . ∩ (Q1 ∪Q2)

= (A1 ∩ C1 ∩ D1 . . . ∩Q1)
︸ ︷︷ ︸

AST
θ1

∪ (A1 ∩ C1 ∩ D1 . . . ∩Q2)
︸ ︷︷ ︸

AST
θ2

∪

. . . ∪ (A1 ∩ C2 ∩ D2 ∩ . . . ∩Q2)
︸ ︷︷ ︸

AST

θ2na−2

Each set AST
k , for k = 1, . . . , 2na−2, is then given by

the intersection of A1, Cc, Dd, . . ., Qq, for all possible

combination of the index c = 1, 2, d = 1, 2, . . ., q = 1, 2.

Since A1 in (33) is defined by 4 linear inequalities and

each one of the sets C1, C2, D1, D2, . . ., Q1, Q2 described

by equations (37) – (42) is defined by 3 polynomial

inequalities, AST
θk results to be a semialgebraic set.

Remark 1: For the case na ≤ 2, it is not necessary to

form the Jury’s array. As a matter of fact, when na = 1, the

root of the polynomial A(q−1) has modulus less than 1 if

and only if the linear inequalities (23) and (24) are satisfied.

Thus, when na = 1, AST
θ is a convex set defined by 2 linear

constraints. Analogously, when na = 2, the root of the

polynomial A(q−1) has modulus less than 1 if and only if

the linear inequalities (23) – (25) are satisfied. In this case,

AST
θ results to be a convex set defined by 4 linear constraints.

The next result provides a description of the geometrical

structure of D∗
θ . In order to comply with the conference

page limit constraint, the proof of all the following results

are omitted. The interested reader is referred to [17].

Result 2: D∗
θ is the union of 22na+nb−1 semialgebraic

sets D∗
θik, that is:

D∗
θ =

2
p

⋃

i=1

2
na−2

⋃

k=1

D∗
θik (43)

where

D∗
θik = D′

θi ∩ AST
k (44)

for all i = 1, . . . , 2p and k = 1, . . . , 2na−2. Besides, each

set D∗
θik is defined by:

• p + 2N linear inequalities that define D′
θi,

• 4 linear inequalities + 3 (na − 2) polynomial

inequalities that define AST
θk

B. Computation of PUI∗ by means of LMI relaxation tech-

niques

In this section a procedure to compute approximate

solutions of problems (21) and (22) is discussed.

Result 3: Bounds θ∗j and θ∗j can be computed solving the

following optimization problems:

θ∗j = min
i = 1, . . . , 2p

k = 1, . . . , 2na−2

θ∗jik (45)

θ∗j = max
i = 1, . . . , 2p

k = 1, . . . , 2na−2

θ∗jik (46)

where

θ∗jik = min
θ∈D∗

θik

θj (47)

θ∗jik = max
θ∈D∗

θik

θj (48)

Results 2 and 3 show that the evaluation of the

parameter uncertainty interval PUI∗j for all the

components of the parameter vector θ requires, in the

general case, the solutions of 2p22na+nb−1 semialgebraic

optimization problems with p optimization variables and

m = p + 2N + 4 + 3(na − 2) = 4na + nb + 2N − 2
constraints. However, in many practical situations, D′

θ lies

only in few orthants of the parameter space R
p which means

that a large number of subset D′
θi results to be empty. When

such a case occurs, the number of optimization problems

to be solved can be significantly reduced since the number

of subsets D∗
θik 6= ∅ is small. Thus, in order to reduce the

computational complexity of the proposed approach, we

suggest first to compute the PUIj for all j = 1, . . . , p.

Such a computation can be performed by means of linear

programming (LP) techniques. Analysis of the signs of

bounds θj and θj allow us to detect which orthants are not

intersected by the feasible set D′
θ. Then, (47) and (48) can

be solved by constraining the index i to belong to the set

ID′

θ
= {i = 1, . . . , 2p : D′

θi 6= ∅}.

Considerable efforts have been devoted in the last years

to approximate semialgebraic optimization problems by a

hierarchy of convex LMI relaxations (see the survey pa-

per [18] for a review of the literature on the subject). In

particular, the approach proposed in [19] is based on the

representation of nonnegative polynomials as Sum of Squares

(SOS), while in [20] the dual theory of moments is exploited.

More specifically, the relaxation technique described in [20]

solves semidefinite programming (SDP) problems, whose

optima converge to the global optima of the original problem

as the length of the number of successive LMI relaxations,

the so called relaxation order δ, increases. An efficient

MATLAB implementation of this relaxation technique has

been developed in the open source software Gloptipoly

[21] which exploits the SDP solver SeDuMi [22] to solve

optimization problems in polynomial time. In this paper, the

method presented in [20] is applied to relax (21) and (22)
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to convex optimization problems, leading to the computation

of the δ-relaxed parameter uncertainty intervals defined as:

PUI∗j (δ) = [θ∗j (δ), θ∗j (δ)], j = 1, . . . , n (49)

where θ∗j (δ) and θ∗j (δ) are optimal solutions of the SDP

problem obtained by applying the theory of moments for a

relaxation order δ to (21) and (22) respectively.

Remark 2: If na ≤ 2, D∗
θ is defined by a set of linear

inequalities (as pointed out in Remark 1). Therefore, global

optima of problems (21) and (22) can be computed, in this

case, by means of linear programming techniques.

Remark 3: Since constraints described in equations (23)

– (28) are strict inequalities, the feasible region D∗
θ is not

guaranteed to be a closed set. As a consequence, solutions

to problems (21)-(22) are not guaranteed to exist. A possible

way to overcome such a technical problem is to modified

constraints (23) – (28) as follows:

A(1) ≥ ǫ (50)

(−1)naA(−1) ≥ ǫ (51)

|ana| ≤ 1 − ǫ (52)

|cna−1| ≤ |c0| − ǫ (53)

|dna−2| ≤ |d0| − ǫ (54)

...

|q2| ≤ |q0| − ǫ (55)

where ǫ > 0 can be chosen arbitrarily small.

Remark 4: The prior information on system stability can

be also exploited in the LS estimation by constraining the

parameter θ to belong to AST
θ . Then, the LS estimation

problem with stability constraints can be formulated as

θ∗LS = arg min
θ∈AST

θ

N∑

t=na+1

(yt − θTφt)
2
. (56)

From Result 1, the nonconvex optimization problem (56)

can be written as the collection of 2na−2 semialgebraic

optimization problems

θ∗LS,i = arg min
θ∈AST

θi

N∑

t=na+1

(yt − θTφt)
2

with i = 1, . . . , 2na−2,

(57)

whose approximate optimal solutions can be found through

the convex LMI relaxation techniques previously described.

The optimal LS estimator θ∗LS guaranteed to belong to the

region AST
θ is then computed by solving the minimization

problem over a 2na−2-element set, that is

θ∗LS = arg min
θ∗LS,i

i = 1, . . . , 2na−2

N∑

t=na+1

(

yt − θ∗
T

LS,iφt

)2

. (58)

IV. PROPERTIES OF RELAXED PARAMETER UNCERTAINTY

INTERVALS PUI∗j (δ)

The following results present some properties of the

relaxed stable parameter uncertainty intervals PUI∗j (δ).

Result 4: Guaranteed relaxed uncertainty intervals.

For any relaxation order δ, the δ-relaxed parameter uncer-

tainty interval PUI∗j (δ) is guaranteed to contain the true

unknown parameter θj to be estimated, for all j = 1, . . . , p,

i.e.

θj ∈ PUI∗j (δ) for all j = 1, . . . , p. (59)

Result 5: Convergence to tight parameter uncertainty

interval PUI∗j .

The δ-relaxed parameter uncertainty interval PUI∗j (δ) con-

verges to the tight parameter uncertainty interval PUI∗j as

far as the relaxation order goes to infinity, i.e.:

lim
δ→∞

θ∗j (δ) = θ∗j , lim
δ→∞

θ∗j (δ) = θ∗j (60)

Result 6: Accuracy improvement of PUI∗j over PUIj .

The δ-relaxed stable parameter uncertainty intervals

PUI∗j (δ) of equation (49) are included in the PUIj of

equation (16) for any value of the relaxation order δ, that is:

PUI∗j (δ) ⊆ PUIj (61)

V. A SIMULATE EXAMPLE

In this section a simulated example is presented in order

to show the effectiveness of the presented approach. A

third order system is considered, characterized by (2) and

(3), with A
(
q−1

)
= (1 + 0.9q−1 − 0.85q−2 − 0.95q−3)

and B
(
q−1

)
= (2.27q−1 − 1.25q−2 − 0.92q−3). Thus,

the true parameter vector is θT = [a1 a2 a3 b1 b2 b3] =
[0.9 − 0.85 − 0.95 2.27 − 1.25 − 0.92]. The system has

been excited by a random input sequence uniformly dis-

tributed in [−1, +1]. Both input and output data se-

quences have been corrupted by random additive uncertain-

ties ξt and ηt, uniformly distributed in [−∆ξt, +∆ξt] and

[−∆ηt, +∆ηt], respectively. The chosen error bounds ∆ξt

and ∆ηt are such that the Signal to Noise Ratios on the input

SNRx and on the output SNRw, defined as

SNRx = 10 log









N∑

t=1

x2
t

N∑

t=1

ξ2
t









, SNRw = 10 log









N∑

t=1

w2
t

N∑

t=1

η2
t









are equal to 33 db and 48 db, respectively. The length of

the data sequence is N = 300. First, bounds θj and θj

defining PUIj are evaluated without imposing the stability

constraints. The obtained results are reported in Table II

together with the central estimated θc
j and the parameter

uncertainty ∆θj , defined as

θc
j =

θj + θj

2
, ∆θj =

θj − θj

2
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Then, stability constraints (50) – (55) have been imposed to

compute bounds θ∗j and θ∗j through the solution of problems

(21)-(22) with an LMI relaxation order δ = 2. Table III

shows the obtained values of θ∗j and θ∗j , the central estimate

θc∗
j and the parameter uncertainty ∆θ∗j , defined as

θc∗
j =

θ∗j + θ∗j

2
, ∆θ∗j =

θ∗j − θ∗j

2

Comparison between results reported in Table II and Table

III shows that, imposition of stability constraints leads to a

significant reduction of parameters uncertainty for both the

coefficients of the denominator A(q−1), and the coefficients

of numerator B(q−1), although stability constraints

involves polynomial A(q−1) only. The improvement on

the estimation accuracy is particulary noticeable for the

denominator parameters a1, a2 and a3 as shown by the

value of ∆θ∗j which, for each j = 1, 2, 3, is at least 50%
less than ∆θj .

Table II: Parameter central estimates (θc
j ), parameter

bounds (θj , θj) and parameter uncertainty bounds ∆θj

(without stability constraints).

Parameter True θj θ
c
j θj ∆θj

Value
a1 0.9000 0.3904 0.7987 1.2070 0.4083
a2 -0.8500 -1.7604 -1.0349 -0.3093 0.7255
a3 -0.9500 -1.4561 -1.0514 -0.6467 0.4047
b1 2.2700 1.5388 2.3212 3.1036 0.7824
b2 -1.2500 -2.3156 -1.3592 -.4027 0.9565
b3 -0.9200 -1.7957 -0.9802 -0.1647 0.8155

Table III: Parameter central estimates (θc∗
j ), parameter

bounds (θ∗j , θ∗j ) and stable parameter uncertainty bounds

∆θ∗j (with stability constraints).

Parameter True θ
∗

j θ
c∗
j θ∗

j ∆θ
∗

j

Value
a1 0.9000 0.8251 1.0104 1.1956 0.1853
a2 -0.8500 -0.9127 -0.6110 -0.3093 0.3017
a3 -0.9500 -1.000 -0.8234 -0.6467 0.1766
b1 2.2700 1.5388 2.3193 3.0998 0.7805
b2 -1.2500 -2.1455 -1.2741 -0.4027 0.8714
b3 -0.9200 -1.7584 -0.9616 -0.1647 0.7969

VI. CONCLUDING REMARKS AND FUTURE WORKS

Set-membership identification of linear systems a priori

known to be stable is addressed in the paper. First, it is

shown that explicit enforcement of stability constraints in the

evaluation of parameter bounds leads to complex nonconvex

optimization problems. Then, suitable relaxation techniques

are presented to compute global optima of those problems.

The computed relaxed bounds are shown to converge mono-

tonically to the global solution of the original nonconvex

problems as far as the relaxation order goes to infinity. Fur-

thermore, accuracy improvement over the parameter bounds

computed without stability constraints, irrespective of the

value of the relaxation order, is theoretically proved. Effec-

tiveness of the proposed technique is shown by means of a

simulated example.

The convex relaxation approach discussed in the paper

is based on a detailed analysis of the geometrical structure

of the mathematical constraints arising from the necessary

and sufficient stability conditions provided by the Jury’s

test. Therefore, the idea presented in the paper can readily

be applied also outside the Set-membership framework.

For instance, the computation of Least squares estimate,

constrained to the set of parameters satisfying the Jury’s

test conditions, requires the solution of a finite number of

semialgebraic problems.

REFERENCES

[1] L. Ljung, System Identification, Theory for the User. Upper Saddle
River: Prentince Hall, 1999.
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