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Abstract

In this paper, an integrated robust identification and control
design procedure is proposed. It is supposed that the plant
to be controlled is linear, time invariant, stable, possibly infi-
nite dimensional and that input-output noisy measurements
are available,. together with some general information on
the plant and on the noise characteristics. The emphasis is
placed on the design of controllers guaranteeing robust sta-
bility and robust performances, and on the trade off between
controller complexity and achievable robust performances.
First, an uncertainty model is identified, consisting of a para-
metric model and a tight frequency bound on the magnitude
of the modeling error, accounting for the dynamics not mod-
eled by the parametric model. Second, an Internal Model
Control, guaranteeing robust closed loop stability and best
approximating the “perfect control” ideal target, is designed
using H, optimization techniques. This control structure is
chosen because, if needed, it can be designed to be robust
also in presence of input saturation. Then, the robust perfor-
mances of the designed controller are computed, allowing to
determine the level of model complexity needed to guarantee
desired closed loop performances. A numerical example il-
lustrates the effectiveness of the proposed design procedure.

1 Introduction

The typical problem a control designer has to face in most
practical situations can be described as follows: given a phys-
ical plant, a control law has to be designed, able to drive the
plant to reach, if possible, given performance specifications.
The classical approach consists in building a mathematical
model of the plant, on the basis of available information
on it (physical laws, time invariance, linearity, etc.) and of
input-output measurements, and then designing a control that
meets the desired performance specifications for the identi-
fied model. However, this way it is not taken into account
that any identified model is only an approximation of the
actual plant. Indeed, the performances that can be actually
achieved on the plant may be very Eoor, according to the
size of the modeling error, and even the closed loop stability
may be missed. These problems motivated the large interest
devoted to robustness issues in the last decades. Robust con-
trol methodologies aim to design controllers guaranteein
to meet the specifications not for a single nominal model,
but for all models obtained by given perturbations of the
nominal model. However, the size of such perturbations has
to account for the modeling error, which is not known and
has to be estimated using available information and actual
measurements on the plant. Moreover, the nominal model
and the perturbation, indicated here as uncertainty model,
have to be identified in a form suitable for the robust design,
thus requiring strict interaction between identification and
control design goal.
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In this paper, an integrated identification and control design
grocedure is proposed. It is supposed that the plant P° to
e controlled is linear, time invariant, stable, possibly infi-
nite dimensional. Input-output noisy measurements in the
time or frequency domain are available, together with some
general information on the impulse response decay rate of
the plant and on the characteristics of the noise, assumed
to be pointwise () bounded and T;l)lossibly with known
deterministic-correlation properties. The emphasis is placed
on the design of controllers guaranteeing robust stability and
robust gerformances when used on the actual plant, and on
the trade off between controller complexity and achievable
robust performances.
The proposed design procedure is based on the following
main steps.
First, an uncertainty model is identified, consisting of a
model M and a frequency bound on the magnitude of the
modeling error A = P° — M. The model is selected within
a given class of parametric models M (p), estimating the pa-
rameter vector p minimizing the H, norm of the modeling
error. The nonparametric part of the uncertainty model ac-
counts for the unmodeled dynamics, by evaluating a tight
frequency bound W (w) on their frequency response, as-
suring that, under the considered assumptions, the plant P°
is within the uncertainty model. In recent years, the uncer-
tainty model identification problem has been widely studied,
see e.g. the surveys [1]-[3] for an extensive list of references.
However, most of the papers in literature use a nonparametric
approach, leading to identified models of high order, greater
or equal to the number of data. As a consequence, if the
control is designed using H, robust methods, the controller
complexity is quite “high”. More importantly, only rough
bounds are usually derived on the magnitude of the identifi-
cation error, whose conservativeness degree is unknown or
quite high. Consequently, the guaranteed performances may
result very poor and conservative. In order to overcome in
a systematic way these drawbacks, here a mixed parametric
and nonparametric approach is used, aimed to derive un-
certainty models with low-order nominal models and tight
bounds on the modeling errors, along the lines of [4]-[10].
Second, an Internal Model Control (IMC), guaranteeing ro-
bust closed loop stability and approximating frequency do-
main “perfect control” ideal target, is designed using Hoo
optimization techniques. Then, the robust performances
of the designed controller, i.e. the performances that can
be guaranteed for all systems belonging to the uncertainty
model, are derived. The comparative evaluation of the ro-
bust performances of controllers designed on the basis of
uncertainty models with parametric part of different com-
plexity (order) allows also to determine the level of model
complexity needed to guarantee the desired closed loop per-
formances. This represents a systematic way of keeping
low the controller complexity, since it depends on the model
complexity. The derived controlier can be further reduced by
means of standard approximation techniques until the corre-
sponding robust performances are considered acceptable.



2 Notation

A glossary of main symbols and notations used or introduced
throughout the paper is here reported.

77, Set of integers € such thatm < ¢ < n;
R™*™  Set of real-valued m x n matrices;
(HT Transpose of a matrix;

yN, e Column vectors whose dimensions depend
on the number N of experimental data;

pe Unknown plant to be controlled;

{hP°}  One-sided sequence {h", hP°, -} made
by the impulse response of I}";

P°(z)  z-transform of AP 'defined as Y 7o hE27%;

| P%(2)ll o Hoo norm of P° defined as sup |P%(e’*)

0<w27
P Parameter vector € R? of the model M,,(p).

’

3 From data to robust design

Consider a causal, linear, time-invariant, BIBO-stable,
SISO-process P?, unknown except for some noisy measure-
ments, either in the time domain or in the frequency domain,
and for some general prior information on plant memory and
measurement noise.
The model based procedure for designing a robust control
consists of the following three main steps:
1. Uncertainty model set identification.
Evaluate, from the available prior information and
measured data on the plant P°:
- a low-order parametric model M., (p) with transfer
function of given order n depending on a parameter
vector p € RY;
- a tight frequency domain bound W (w) on the
transfer function magnitude of the modelling error
A = P° — M, (p) guaranteeing that:
P® € M(My(5), Wa) =
= (Mo () +A : [A(w)| SWa(w), Y}
In the sequel, the subscript n in M, is omitted when
unnecessary.
2. Robust IMC design.
Consider an Internal Model Control (IMC) structure
and compute the parameter function @), taking into ac-
count the “perfect control” ideal target 1 ~ QM =0
and the robust stability constraint ”I?A“OO < 1. Refor-

mulating the problem in terms of H, optimization, a
solution is obtained solving the following problem:

i 11— OM(s
Join |11~ QM(P)lle &
st [|QAW) o <1

3. Guaranteed closed loop performances computation.
Calculate the guaranteed closed loop performances,

that is to say compute the frequency bounds for the
considered performances:

gj_(vaA)M) S |H1(JW,QA,P)‘ SE(wyézM)v (3)
VP € M(M(5),Wa)

¢9)

where ~
H,,(U.),Q,M) = sup 'Hl(JvaaP)[
; PeMMBWa)
y_i(wv QaM) = inf lHl(]w9 &, P)|

PeM(M(p),Wa)
being H; (-) the closed loop transfer functions of in-
terest, like sensitivity, complementary sensitivity, etc.

]
In the next sections, the way the previous steps can be worked
out is illustrated in some details.
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Note that it could be possible to design robust control to
directly minimize worst-case optimization criteria (using
e.g. p-synthesis techniques instead of the H,, ones), but
such an approach usually leads to quite high order controllers

“and to overly conservative performances of the actual plant.

In the proposed procedure, the control design is performed
in order to guarantee robust stability, but the optimization
criterion is minimized for the nominal model.

4 Uncertainty model set identification

In this section, it is shown how to perform the uncertainty
model set identification using sampled data measurements of
the plant. A discrete-time model is looked for to approximate
the discrete-time system P°, consisting of the plant and the
input and output sampling devices.
Let P be the Banach space of causal, single-input single-
output, linear time-invariant, discrete-time, BIBO-stable dy-
namical processes. Suppose that a plant P° & P, possibly
infinite-dimensional, has to be identified on the basis of noisy
measurements and prior information on the system and the
noise.
The measurements can be in the time, frequency or mixed
time and frequency domain. Such an experimental informa-
tion consists of a finite number N of samples and can be
expressed in the form:
yN = Fy hP" + eN

where yV = [yo ... ynv_1]T € RY is a known vector de-
Eending on the actual measurements, Fy € RNX0 j5 a

nown matrix indicating how the measurements depend on
Po hP’ = [RE° RP® .. ]T € R™ isan unknown vector con-
taining the impulse response {hP°} of P°, and eV e RV
is an unknown vector representing the measurement noise.
Explicit expressions of matrix Fy for time and/or frequency
domain experiments can be found in [11, 12].
The prior information on plant P° is a bound on its impulse
response decay rate:

PPe K={PeP:|h{|<Lp", VeZP}
where L >0 and 0 < p < 1 are known constants.
The prior information on noise e is given as:
~ ~ ~ T —1 4=

eNeB, ={eN=[¢y... en_1]'e RN W14V <1}
where A € RN is a known matrix with [ > N,
W, = diag(we1,...,we;) € R*! is a known weight-
ing matrix with wex > 0 Vk, and |W;4eVN | =
max w; [(A€V),|. This assumption can accommodate
not Bnly for information on maximal noise magnitude, i.e.

W leN |, = max wi|ék| <1, as typically done in
IWeeM oo = max wei léx] < ypically
most of the literature, but can also account for possible infor-
mation on deterministic cross-covariance or autocorrelation
properties of the noise, see e.g. [13, 14, 15].
In the overall identification procedure, a key role is played
by the Feasible Systems Set, often called “unfalsified sys-
tems set”, i.e. the set of all processes consistent with prior
information and measured data.

Definition 1. Feasible Systems Set
FSS={Pe K : |[W A (yN-FnhP)| < 1}

If prior assumptions on plant P° € K and on noise eV € B,
are “true”, this setincludes P°, an important property in view
of subsequent use for robust control design. As required
in any identification theory, the problem of checking the
validity of priors arises. Indeed, the only thing that can
be actually done is to check if measured data falsify the

riors. This is equivalentto check if F'SS is empty, being the
%SS the set of unfalsified systems. Necessary and sufficient



conditions for such a check are given in [16]. The F'SS can
be considered an uncertainty model set for P? and, in the line
with the robustness paradigm, control should be designed to
be robust versus such an uncertainty model set. However,
the F'SS is not represented in a suitable form to be used by
robust control design techniques, and model sets with such
a property have to be looked for. Moreover, to be consistent
with robust control design philosophy, uncertainty model sets
including the set of unfalsified systems have to be looked for.
This is formalized by the following definition.

Definition 2. Model set for P°
A set of models M C P is called a model set for P° if:

M D FSS ' -
In this paper, additive frequency shaped model sets are con-
sidered, of the form:
M(M(p),Wa)={M(p)+A:]A(w)| S Wa(w)Ywe[0,27]} (4)
where, for given M (p) € P, Wa (w) has to be chosen such
that M (M (), Wa) is amodel set for P°, i.e. the following
condition has to be guaranteed Vw € [0, 27):

Wa (w) 2 sup |P(w)— M(w,p)| = WA(w, M(p))
PeFsSs

For given frequency w € {0, 27], the exact computation of
WX (w, M(p)) is not easy, but convergent upper and lower
bounds are provided by the method presented in [16] and
briefly summarized in the following.

For given plant P € P with impulse response {2* }, let P¥
be the F'I R, system having the same first v impulse response
samples of P, i.e. {hP"} = {h§ h,...,hE_1,0,0,...}.
For given v € Z$° and m € Z$°, compute the points Ix(w) €
R2and t5,(w) € N2, k € ZT", by solving the following linear
programming problems:

tr(w) =Q(w)-argmin [~ (w)-sin(sk)+ 2 (w)-cos(sw)]- KF”

PveF58 v
ty(w) =Q(w)-argmin [—-Q; (w)-sin(sk) +Q2(w)-cos(sk)]-h
PreFSs”

where:
s, =2nk/m
[ (W) 1 _ [ Re(¥(w)) X o0
2w = [ 0] | = [ smrioy |€® ®

¥(w) = [ 1 e oI .. ]EClXF’o
TS5 = {P’e K: |(We + W)™ A-(y¥— Fnh"" )| o< 1}
ESS" = {PYe K: W A (¥ - Fnh™" )| 1}
W =¢, diag(llatlly ,- .., arll,) €R™ ae:£-th row of A

e =Lp" /(1 - p)

and compute also the intersection points T5(w) € R? of
lines I and lod(k,my+1, & € Z7", being i the line in 2
with slope sy, passing through(w). Convex hulls VIZ, (w)
and VO%, (w) of points tx(w) and Tg(w), k € ZT*, provide
convergent inner and outer approximations respectively of
the value set V' (w), i.e. the set of transfer function values at
frequency w of all feasible systems in F'SS, [16).

For given model M(p) € P, w € [0,27], v € Z§° and
m € Z3°, W (w, M (p)) is then bounded as:

Wy () < WA (w, M(p)) W, ()

where:
Wi(w) = | max [[M(w,p) - te(w)]|
Wi(w) =  max |[M(w,p) - 5@y +e.

with the convergence property:
lim W, ()= lim W% (w) = Wi(w, M(p))
v, m-—00

vym—>c0
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(w, M(p)) can be actually evaluated only on
T

Obviously, W}
a finite set of% equencies. If P € K, the variation rate of

|AL)] is bounded by max AW <77, see e.g. [17).

This information can be used to choose how coarse the grid-
ding has to be for the intersample variation to be negligible.
The error between P° and a given nominal model M (p) is
measured by a weighted H, norm:

1P ~M@IL = swp [W5'(w)- [P° (w) ~ M(w,p)]
0<w<2m

where W (w) is a known positive weighting function, suit-
ably selected according to the intendedg use of the identified
model. For example, 1if identification is aimed to derive an
uncertainty model set for H,, robust control design, We (w)
can be computed so that the identified model optimally ap-
proximates the closed loop performance underlying the con-
trol design, see e.g. {18]. Since P° is only known to belong
to F'SS, the following identification error may be defined.

Definition 3. Model set identification error
EM(M($), W)= sup [|[P-M(@p)|L°
PeFS8s

This error gives a measure of the model uncertainty, being the
radius of the minimal ball in the || - | norm with center
M(p) and containing the set of unfalsified systems F'SS.
Exact computation of E(M(M(p), W})) is hard, but the
following convergent upper and lower bounds are provided
by the procedure described above:

%:;ww(ﬁ),wg))SE(M(M@),WA*))sE;(M(M(ﬁ),ws))
where:
EY (M(M($),WZ)) = sup WY (w)Wg'(w)
0<w<L2n

En(M(M(),WX)) = sup W (W) W5l(w)
0<w<L2n

The model set uncertainty can be minimized by appropriately
choosing the nominal model M(p). The best model set
corresponds to M (p*), where

p* = argmin E(M(M(p), W3)) @)

can be found by means of iterative nonlinear optimization
algorithms. The model M (p*), where p* is solution of (7),
is the so called “conditional center” of £'SS, [19]. Finding
conditional centers is hard, see e.g. [19, 20] for some results
in the case that the class of models M (p) is linear in the
parameters, e.g. FIR, Laguerre, Kautz or orthonormal ba-
sis functions. These models are essentially with fixed poles
and the problem arises of choosing “good” basis, i.e. “good”
model poles, since this choice affects, for given model order,
the identification accuracy. On the other hand, models non-
linear in the parameters, able to arrange also their poles, may
improve the identification accuracy, but make problem (7)
non-convex, and trapping in local minima may take place. In
such a case, the choice of a good starting point to be used by
iterative nonlinear optimization algorithms for solving (7) is
yer[)i ér]nportant. The following procedure has been proposed
in :
- compute the “nearly optimal” F'I R, model M[° € F'SS,
whose impulse response is obtained as solution of the fol-
lowing linear programming problem:
A{;‘”z . * _ o* . pP 1We
h arg min |s* = Q* -7 || oo ®
where: - max $17]
Jevorw)
max S
Jevoyw)
min s1

o=
[
s=[81]evor(w)
= [g;

s*(w1) .

s*= eRY, s*w)= et
§%(wq)

min So

Jevouw) |

8



2 (wi) o
Q= :  |ewiow, Q*(w):[ QV&% ]e%‘“"
Q*(wy)
with ¢ € Z§° and ¥ (w) given by the first v columns of the
matrix § (w) defined in (5);
- compute reduced order models M. (p) of M}° by means
of Hankel norm approximation.
The interest of this procedure is due to the fact that M, is a
“nearly central” projection model in the Hankel norm, [16].
Indeed, central projection models are known to provide good
approximations of conditionally central models, see e.g. [20].
Thus, recalling the well-known relationship between Hankel
and H,, norms, M, results to be a good approximation of
the conditional center.
The above method allows to derive “hard” uncertainty mod-
els, making use of the knowledge of deterministic constraints
on measurement noise. If probabilistic information on the
noise is available, “soft” uncertainty models, guaranteeing
the inclusion property (1) with assigned probability, can be
estimated using the method of [21].

5 Robust IMC design and
guaranteed closed loop performances

The robust Internal Model Control (IMC) design is carried
out in the continuous-time setting, using the continuous-time
uncertainty model derived by applying the bilinear transfor-
mation to the discrete-time uncertainty model identified with
the method presented in the previous section.

IMC methods have been investigated in past years for de-
signing robust control in the face of unmodeled dynamics,
[22, 23, 24]. It is well know [22] that the stable transfer
function @ in the IMC structure depicted in figure 1 para-
meterizes, in the case of a stable plant, all the stabilizing
controllers C (figure2): C =Q - (1 — QM)™". The design
of the parameter @ is then equivalent to the design of the con-
troller C, but some remarkable advantages, such as stability
preservation, are obtained by using the IMC implementation
of figure 1 in presence of saturating actuators, see [22, 25].

d(z)
"t + u(t) + M)
o(s) M(s)

Figure 1: IMC structure

M(s) 2
) + u(t)

dr)
,_[+ )
C(s) M(s) —>

- +

Figure 2: Classical feedback structure

Now consider the IMC structure of figure 3, where model
uncertainty A is explicitly taken into account, and define
as usual the sensitivity and the complementary sensitivity
functions as: S (s) =Y (s) /D (s),T(s) =Y (s) /R(s).
It is straightforward to compute that, if

1-QM =0 ®
and the closed loop is robustly stable in the face of model
uncertainty A (s), then S(s) = 0 and T (s) = 1 (“perfect

2689

)+ M) (1)
o)

Figure 3: IMC structure with unmodeled dynamics

control”) for all stable A (s(}. However, it is also usually
required that @ is proper and stable and these requirements
cannot be met by the choice @ == M ~1if M is strictly proper
or nonminimum-phase.

In standard IMC approach (see [22, 23, 24]), the parameter

Q is obtained as @ = QF and a two stage design proce-
dure is adopted. First, a nominal design (i.e. A(s) = 0)
is performed computing @) by minimizing ||(1 — MQ)v]|»
for some canonical signal v = r — d (typically step signal).
Then, the filter F' is chosen as a rational function such that Q
is pro}ger and nominal closed loop is internally stable. The
filter F'is designed depending on a parameter A, whose value
is related to the nominal closed loop bandwidth. Then, on
the basis of model uncertainty, the parameter X is chosen to
give the maximal bandwidth compatible with stability and
performance of the actual (A(s) # 0) closed loop, looking at
the quality of the actual response to the considered canonical
reference signals.

In the approach progosed in this %per, the IMC design prob-
lem is reformulated in terms of H-optimization. Consid-
ering the “perfect control” ideal target (9), a cost function is
defined in terms of the Ho, norm of (1 — QM,(p)). More-
over the robust stability constraint imposed by the Small
Gain Theorem requires | QA [l < 1, being —@Q the transfer
function from ya to ua (see figure 3), for which a suffi-
cient condition is 1] QW3 (w) |oo < 1. Then Q is obtained as
solution of the following constrained optimization problem:

Qn = argglei%wlf[l - QMn(ﬁ)]WHOO

st |[QWi(w) o<1
where W is a performance weighting function defined on
the basis of spectral features of signals r(¢) and d(¢).
The solution of this problem can be computed using standard
H-optimization algorithms (see for example [26]), but it is
required to have model sets of the form:
M(M(p),W;) = {M(p)+A:|AW)| <Wr(w), Vwe[0,27]}
where W, §w) is the magnitude of a stable rational function,
possibly of low order, since this order affects the complexity
of the designed controller. Thus, W,.(w) has to be computed,
tightly overbounding WX (w) for a suitable set of frequency
values. A systematic approach for such overbounding can
be found in [27].
The H-optimization algorithm also requires the approxi-
mation of the performance weighting function W (not nec-
essarily rational) with a rational function W (w).

Remark: The robust IMC design approach proposed above
can be applied also in presence of saturating actuators.
In order to guarantee the robust stability, the constraint
[Q@QW:(w) [log <1 is replaced by [[@lloo [Wr(w) [loo < 1,
as shown in [25]. ]

Once completed the design procedure, the uncertainty model
can be used to calculate the guaranteed closed loop perfor-

mances. Let H; (-) be the closed loop transfer functions of
interest, like sensitivity, complementary sensitivity, etc. The



frequency bounds on the guaranteed performance are then

computed according to (3) for given w € R, Q € Heo
and M (M(p), Wa) C P.- Note that for some functions
(e.g. sensitivity) such bounds can be computed exactly, while
for other functions (e.g. complementary sensitivity) only
apprf)zxsiinatcd (though tight) values can be obtained, see
e.g. .

The frequency behavior of the gap width H;(w,Q, M) —
H;(w,Q, M) gives interesting information on how sensi-
tive the performance is when all plants belonging to the
uncertainty model are considered.

It has to be noted that this a posteriori robustness analysis
is independent of the employed controller-design procedure
and can be applied to any given stabilizing controller.

6 Example

Robust control from data of the following nonminimum-
phase continuous-time system is considered:

~0.0609s* —0.48715° —0.48715% 4 1.94825+2.9224
$440.43115%+2.676452 +0.4384540.1412

The available experimental information is made upby N =
1100 samples of the system output to a PRBS input of unitary
amplitude, using T, = 1s as sampling time. These samples
are corrupted by a pointwise bounded noise eV with |e;| <
4,1 =0,1,...,1099. This data set is used to identify a
discrete-time uncertainty model guaranteeing to contain the
discrete-time system P?, consisting of the plant and the input
and output sampling devices.

The prior information assumed on P°is L = 6 and p = 0.93,
which has been validated using Theorem 2 in [16]. This is
a quite “safe” prior assumption, since stronger assumptions
are still not invalidated by data, e.g. L = 6 and p = 0.91, or
L =5and p=0.93.

Different nominal models have been identified, with their
corresponding model sets:

- a 150-th order FIR model M7y, provided by the “nearly
optimal” algorithm (8), with v = 150, m = 16, ¢ = 500 and
We (w) =1Vw € [0, 27);

- approximations of M7 of order 2 + 6, denoted by M, +
Mg, provided by the procedure described in section 4.

The supg<,, <o, cOmputations required in (6) have been car-
ried on by gridding w on a sufficiently coarse set of frequen-
cies. Indeed, the value sets V(w) have been computed on a
set T, of 500 equispaced frequencies in the range [0,r].
The obtained values of the lower and upper bounds on the
identification error E(M) for the identified model sets M7g,
and M,, (with nominal model M,,), forn = 2,---,6. are
reported in the following table:

M Migo || M2 | M3 | My | Ms | Ms

EX°(M)|| 357 || 649 | 531 | 3.48 | 3.48 | 3.48

Bl M) 361 || 652|534 | 3.49 | 3.49 | 3.49

The magnitude frequency response of the identified model
sets Mo and M, are reported in figure 4 and compared
with the actual system P°. From these results it is seen that
model sets of order higher than 4 do not allow to improve the
identification error. Then the control design is performed on
model sets Mg =+ My,

The nominal reduced order models My + M,, mapped in
s-domain using inverse bilinear transformation with a sam-
pling time T; = 1s, and the corresponding information about

identification error are used for computing Qs + Q4 as de-
scribed in section 5.
Attenuation of 50 dB of disturbance d(t) in the frequency

band [0, 10~*] rad/s and maximum sensitivity peak of 2 dB

P(s)=
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o 05 1 15 2 25 3
Frequency in rad/s

Model set M , (grey area), nominal model M, A (thick solid line) and system P (thin dashed line)

B0 TR R PP PP e PRoT

0 N N . M L
o 0.5 1 15 2 25 3
Frequency in rad/s

Figure 4: Magnitude frequency responses of Mo and My

are the considered performance specifications. This means
that the closed loop transfer function of interest H (-) is the
sensitivity, and the following performance weighting func-
tion is assumed:

w o { 3125 forwe [0,107¢] rad/s
- 0.5 forw € [1074,00] rad/s

In order to use the H,-optimization algorithm available
under MATLAB, the two rational functions W,. (s) and W (s)
mentioned in section 5 must be used respectively in place of

W3 and W. Considering that W} is approximately constant,

a suitable choice for W, is W,.(s) = E5 (M) forn = 2,3,

4. A reasonable low-order rational approximation of W is:

0.50119 (s + 0.3786
W, (s) = ( )

s + 0.0006

The obtained guaranteed sensitivity upper and lower bounds
for model sets Mo and My are shown in figure 5. The
anagsis of these results may give interesting information to
the designer. For example, it can be noted that the sensitivity
H(jw,Q4,M.), guaranteed by the controller Q)4 designed
on the basis of Mg, robustly satisfies the performance re-
quirement of 50 dB disturbance attenuation over the band
[0,3-1074) rad/s.




Sensitivity for modet set M, , (grey area) and nominal model M2 (dashed line) controlled by Q,
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