Individuality vs. Collectivity in Crowd Dynamics
A Problem of Scaling

Andrea Tosin

Istituto per le Applicazioni del Calcolo “M. Picone”
Consiglio Nazionale delle Ricerche
Rome, Italy

a.tosin@iac.cnr.it
http://www.iac.cnr.it/~tosin

SisCo-SIMAI Meeting
University of Bologna
October 24-25, 2013
Individuality vs. Collectivity

Andrea Tosin, IAC-CNR (Rome, Italy)
Microscopic (Particle-Based) Models

“Social force” model (Helbing et al., 1995)

\[
\begin{align*}
\dot{x}_i &= v_i \\
\dot{v}_i &= \frac{v_{0,i} - v_i}{\tau} - \sum_{j=1}^{N} \nabla U_{ij}(x_j - x_i) + \ldots
\end{align*}
\]

“Contact handling” model (Maury and Venel, 2007)

\[
\dot{x}_i = \mathcal{P}_C(X)(V_{\text{des}}(x_i))
\]

- \(V_{\text{des}} : \mathbb{R}^d \rightarrow \mathbb{R}^d\) pedestrian desired velocity
- \(\mathcal{P}_C(X)\) projection operator on the space of admissible velocities
"Social force" model (Helbing et al., 1995)

\[
\begin{align*}
\dot{x}_i &= v_i \\
\dot{v}_i &= \frac{v_{0,i} - v_i}{\tau} - \sum_{j=1}^{N} \nabla U_{ij}(x_j - x_i) + \ldots
\end{align*}
\]

"Contact handling" model (Maury and Venel, 2007)

\[
\dot{x}_i = \mathcal{P}_C(x)(V_{\text{des}}(x_i))
\]

- \( V_{\text{des}} : \mathbb{R}^d \rightarrow \mathbb{R}^d \) pedestrian desired velocity
- \( \mathcal{P}_C(x) \) projection operator on the space of admissible velocities
“Social force” model (Helbing et al., 1995)

\[
\begin{align*}
\dot{x}_i &= v_i \\
\dot{v}_i &= \frac{v_{0,i} - v_i}{\tau} - \sum_{j=1}^{N} \nabla U_{ij}(x_j - x_i) + \ldots
\end{align*}
\]

“Contact handling” model (Maury and Venel, 2007)

\[
\dot{x}_i = \mathcal{P}_C(X)(V_{\text{des}}(x_i))
\]

- $V_{\text{des}} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ pedestrian desired velocity
- $\mathcal{P}_C(X)$ projection operator on the space of admissible velocities
Macroscopic (Density-Based) Models


\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho V(\rho) \nu) = 0
\]

- \( V(\rho) \) speed-density relationship
- \( \nu \) preferred direction of movement


\[
\begin{aligned}
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) &= 0 \\
\frac{\partial}{\partial t} (\rho v) + \nabla \cdot (\rho v \otimes v) &= \frac{\rho V(\rho) \nu - \rho v}{\tau} - \nabla P(\rho)
\end{aligned}
\]
Macroscopic (Density-Based) Models


\[ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho V(\rho)\nu) = 0 \]

- \( V(\rho) \) speed-density relationship
- \( \nu \) preferred direction of movement


\[ \begin{align*}
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) &= 0 \\
\frac{\partial}{\partial t}(\rho v) + \nabla \cdot (\rho v \otimes v) &= \frac{\rho V(\rho)\nu - \rho v}{\tau} - \nabla P(\rho)
\end{align*} \]
Macroscopic (Density-Based) Models


\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho V(\rho)\nu) = 0
\]

- \(V(\rho)\) speed-density relationship
- \(\nu\) preferred direction of movement


\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) &= 0 \\
\frac{\partial}{\partial t} (\rho v) + \nabla \cdot (\rho v \otimes v) &= \frac{\rho V(\rho)\nu - \rho v}{\tau} - \nabla P(\rho)
\end{align*}
\]
Get inspiration from a simple first order particle model:

\[ \dot{x}_i = V_{\text{des}}(x_i) + \sum_{x_j \in S_{R,\alpha}(x_i)} K(x_j - x_i) \]

Label pedestrians by means of their initial position:

\[ X_t : \mathbb{R}^d \rightarrow \mathbb{R}^d \quad (\text{flow map}) \]

\[ x = X_t(\xi) : \text{position at time } t > 0 \text{ of the walker who initially was in } \xi \in \mathbb{R}^d \]

Fix a walker \( \xi \) and rewrite the particle model using the flow map:

\[ \dot{X}_t(\xi) = V_{\text{des}}(X_t(\xi)) + \int_{X_t^{-1}(S_{R,\alpha}(X_t(\xi)))} K(X_t(\eta) - X_t(\xi)) \, d\mu_0(\eta) \]
Get inspiration from a simple first order particle model:

\[
\dot{x}_i = V_{\text{des}}(x_i) + \sum_{x_j \in S_{R,\alpha}(x_i)} K(x_j - x_i)
\]

Label pedestrians by means of their initial position:

\[
X_t : \mathbb{R}^d \rightarrow \mathbb{R}^d \quad \text{(flow map)}
\]

\[
x = X_t(\xi) : \text{position at time } t > 0 \text{ of the walker who initially was in } \xi \in \mathbb{R}^d
\]

Fix a walker \(\xi\) and rewrite the particle model using the flow map:

\[
\dot{X}_t(\xi) = V_{\text{des}}(X_t(\xi)) + \int_{X_t^{-1}(S_{R,\alpha}(X_t(\xi)))} K(X_t(\eta) - X_t(\xi)) d\mu_0(\eta)
\]
Multiscale Descriptive Approach by Flow Maps and Measures

- Get inspiration from a simple first order particle model:

\[ \dot{x}_i = V_{\text{des}}(x_i) + \sum_{x_j \in S_{R,\alpha}(x_i)} K(x_j - x_i) \]

- Label pedestrians by means of their initial position:

\[ X_t : \mathbb{R}^d \rightarrow \mathbb{R}^d \quad \text{(flow map)} \]

\[ x = X_t(\xi) : \text{position at time } t > 0 \text{ of the walker who initially was in } \xi \in \mathbb{R}^d \]

- Fix a walker \( \xi \) and rewrite the particle model using the flow map:

\[ \dot{X}_t(\xi) = V_{\text{des}}(X_t(\xi)) + \int_{X_t^{-1}(S_{R,\alpha}(X_t(\xi)))} K(X_t(\eta) - X_t(\xi))\,d\mu_0(\eta) \]
Get inspiration from a simple first order particle model:

\[ \dot{x}_i = V_{\text{des}}(x_i) + \sum_{x_j \in S_{R,\alpha}(x_i)} K(x_j - x_i) \]

Transport \( \mu_0 \) by means of \( X_t \), i.e., \( \mu_t := X_t \# \mu_0 \), to discover:

\[
\begin{cases}
\frac{\partial \mu}{\partial t} + \nabla \cdot (\mu v[\mu]) = 0 \\
v[\mu_t](x) = V_{\text{des}}(x) + \int_{S_{R,\alpha}(x)} K(y - x) \, d\mu_t(y)
\end{cases}
\]

\( x \in \mathbb{R}^d, \ t > 0 \)

Description compatible with both a discrete and a continuous view of the crowd:

\[
\text{discrete: } \mu_0 = \sum_{i=1}^{N} \delta_{\xi_i}, \quad \text{continuous: } \mu_0 = \rho_0 \mathcal{L}^d
\]
Get inspiration from a simple first order particle model:

\[
\dot{x}_i = V_{des}(x_i) + \sum_{x_j \in S_{R,\alpha}(x_i)} K(x_j - x_i)
\]

- Transport \( \mu_0 \) by means of \( X_t \), i.e., \( \mu_t := X_t \# \mu_0 \), to discover:

\[
\begin{aligned}
\frac{\partial \mu}{\partial t} + \nabla \cdot (\mu v[\mu]) &= 0 \\
v[\mu_t](x) &= V_{des}(x) + \int_{S_{R,\alpha}(x)} K(y - x) \, d\mu_t(y)
\end{aligned}
\]

- Description compatible with both a discrete and a continuous view of the crowd:

\[
\text{discrete: } \mu_0 = \sum_{i=1}^{N} \delta_{\xi_i}, \quad \text{continuous: } \mu_0 = \rho_0 \mathcal{L}^d
\]
Comparison between discrete and continuous models in terms of statistical distributions of pedestrians:

\[ \mu^\text{discr}_0 = \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_i}, \quad \mu^\text{cont}_0 = \frac{1}{L^d(\Omega)} \mathcal{L}^d \]

\[ W_1(\mu^\text{discr}_0, \mu^\text{cont}_0) \lesssim \frac{\sqrt{d}}{2} h + \frac{\text{diam}(\Omega)}{L^d(\Omega)} \mathcal{L}^d (\Omega \setminus K_N) \]

\[ \xrightarrow{N \to \infty} 0 \]

Continuous dependence estimate (for smooth \( V_{\text{des}} \) and \( K \)):

\[ W_1(\mu^\text{discr}_t, \mu^\text{cont}_t) \leq C W_1(\mu^\text{discr}_0, \mu^\text{cont}_0) \quad \forall t \in (0, T] \]

hence \( \mu^\text{discr}_t \equiv \mu^\text{cont}_t \) for all \( t \) in the limit \( N \to \infty \).
Comparison between discrete and continuous models in terms of statistical distributions of pedestrians:

\[
\mu^\text{discr}_0 = \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_i}, \quad \mu^\text{cont}_0 = \frac{1}{\mathcal{L}^d(\Omega)} \mathcal{L}^d
\]

\[
W_1(\mu^\text{discr}_0, \mu^\text{cont}_0) \leq \frac{\sqrt{d}}{2} h + \frac{\text{diam}(\Omega)}{\mathcal{L}^d(\Omega)} \mathcal{L}^d(\Omega \setminus K_N)
\]

\[
N \to \infty \quad 0
\]

Continuous dependence estimate (for smooth \(V_{des}\) and \(K\)):

\[
W_1(\mu^\text{discr}_t, \mu^\text{cont}_t) \leq C W_1(\mu^\text{discr}_0, \mu^\text{cont}_0) \quad \forall \, t \in (0, T]
\]

hence \(\mu^\text{discr}_t \equiv \mu^\text{cont}_t\) for all \(t\) in the limit \(N \to \infty\).
Comparison between discrete and continuous models in terms of statistical distributions of pedestrians:

\[
\mu_{0}^{\text{discr}} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_i}, \quad \mu_{0}^{\text{cont}} = \frac{1}{L^{d}(\Omega)} L^{d}
\]

\[
W_{1}(\mu_{0}^{\text{discr}}, \mu_{0}^{\text{cont}}) \leq \sqrt{d} h + \frac{\text{diam}(\Omega)}{L^{d}(\Omega)} L^{d}(\Omega \setminus K_{N})
\]

\[
N \to \infty \quad \Rightarrow \quad 0
\]

Continuous dependence estimate (for smooth \(V_{\text{des}}\) and \(K\)):

\[
W_{1}(\mu_{t}^{\text{discr}}, \mu_{t}^{\text{cont}}) \leq C W_{1}(\mu_{0}^{\text{discr}}, \mu_{0}^{\text{cont}}) \quad \forall t \in (0, T]
\]

hence \(\mu_{t}^{\text{discr}} \equiv \mu_{t}^{\text{cont}}\) for all \(t\) in the limit \(N \to \infty\).
Does the limit $N \to \infty$ really make sense for crowds?

- Often it does not: pedestrians in a crowd are not as many as $10^{23}$ gas molecules.
- For finite $N$ physical mass distributions matter.
References

- N. Bellomo, B. Piccoli, and A. Tosin.
  Modeling crowd dynamics from a complex system viewpoint.

  Non-local first-order modelling of crowd dynamics: A multidimensional framework with applications.

- A. Corbetta and A. Tosin.
  Bridging discrete and continuous differential models of crowd dynamics: A fundamental-diagram-aided comparative study.

  From individual behaviors to an evaluation of the collective evolution of crowds along footbridges.

- E. Cristiani, B. Piccoli, and A. Tosin.
  Multiscale Modeling of Pedestrian Dynamics.
  In preparation.

- E. Cristiani, B. Piccoli, and A. Tosin.
  Multiscale modeling of granular flows with application to crowd dynamics.

- B. Piccoli and A. Tosin.
  Pedestrian flows in bounded domains with obstacles.

- B. Piccoli and A. Tosin.
  Time-evolving measures and macroscopic modeling of pedestrian flow.

- A. Tosin and P. Frasca.
  Existence and approximation of probability measure solutions to models of collective behaviors.