
Problem Set 2

Course: Algorithms for optimization and statistical inference (2014)

1. Given two non-deterministic finite automata (NDFSM) deciding languages L1, L2 ⊂ Σ∗, build a

new NDFSM that decides L1 ∩ L2.

2. Devise a (polynomial) method to: given a NDFSM, find an input accepted by the machine (if it

exists) or to conclude that there is none (and thus the machine decides the language L = ∅)

3. Prove that the language L = {anbn : n ∈ N} is not regular (hint: assume that is decided by a

deterministic FSM and find a contradiction).

4. Prove that the language L′ = {w ∈ {a, b}∗ : # {i : wi = a} = # {i : wi = b}} is not regular.

(hint: write L of the previous exercise as L′ ∩ L′′ for some regular language L′′)

In the programming language of your choice, implement:

5. (diff) The Edit Distance algorithm, with recursion given by

L (s1, . . . , sk; t1, . . . , tn) = min


L (s1, . . . , sk−1; t1, . . . , tn−1) + (1− δsktn)

L (s1, . . . , sk−1; t1, . . . , tn) + 1

L (s1, . . . , sk; t1, . . . , tn−1) + 1


Your program should accept two strings as inputs and output the value of the distance L. Make

your program show the following additional output:

(a) the sequence of modifications needed to convert the first string to the second.

(b) The shortest alignment between the two inputs: the program should output two lines of

the same length; each will have one of the input strings with additional internal space

padding in such a way that the the hamming distance (number of different entries) of the

two padded strings is the smallest possible. As an example, L (ACG,CTG) = 2 and the

output should be

AC.G

.CTG

6. Program a generic NDFSM M : decide data structures to store a generic NDFSM in memory

(this is similar to storing a graph), and program an algorithm to “run” M on a given input w:

for each letter read, you program should update the set of possible internal states on which the

machine could be (this set can be stored in memory simply as a 0/1 flag for each internal state).

The automata will accept the input if one of the states after the full string was read is final.

1



7. (grep) Using the simple regular expression parser given in the materials and problem 4, build

a regular expression recognizer ; that is; your program should accept a regular expression R and

an input string w and build the corresponding NDFSM M , and then run M on w, answering

yes if and only w ∈ L (M).

8. Implement the method of Problem 2.

9. (sort) Implement quicksort, and run it on 1000 instances of N random numbers with N =

100, 200, 400, 800, 1600, 3200, 6400. For each instance, make the program compute the number

of comparisons cN ; plot the mean µN = 〈cN 〉 and the standard deviation σN =
√〈

c2N
〉
− 〈cN 〉2

of the number of comparisons vs. N . Then, make the plot in log-log scale. Remember that for

a given list [a1, . . . , an], quicksort implements the following recursion:

qsort ([a1, . . . , an]) = qsort ([ai : i > 1 ∧ ai ≤ a1]) · [a1] · qsort ([ai : ai > a1])

where · means concatenation of lists.

2


