Problem Set 1

Course: Algorithms for optimization and statistical inference (2014)

- 1. Show that every tree is a bipartite graph.
- 2. A *leaf* of a graph is a vertex v with degree one, $d_v = 1$. Prove that every tree with two or more nodes has at least two leaves. Characterize all trees with just two leaves.
- 3. Prove that for every tree T = (V, E), |E| = |V| 1 (Hint: what happens when you remove a leaf from a tree?)
- 4. Remember that if $G = (V_G, E_G)$ is connected, then there exists a tree $T = (V_T, E_T)$ such that $V_T = V_G$ and $E_T \subseteq E_G$ (i.e. every connected graph admits a spanning tree). Show that if $G = (V_G, E_G)$ is acyclic, then there exists a tree $T = (V_T, E_T)$ such that $V_T = V_G$ and $E_G \subseteq E_T$.
- 5. Using 3 and 4, show that the following are equivalent for T = (V, E):
 - (a) T is a tree.
 - (b) T is connected, and $|E| \leq |V| 1$.
 - (c) T is acyclic, and $|E| \ge |V| 1$.
- 6. Let $G = (V_G, E_G)$ be an undirected graph with edge weights $w : E_G \to (0, \infty)$. Consider $H = (V_H, E_H)$ a connected graph of minimum weight such that $E_F \subseteq E_G$ and $V_F = V_G$, that is, F is a minimum weight spanning subgraph. Prove that F is a minimum spanning tree of G.
- 7. How many bipartitions are there in a bipartite graph?
- 8. Given a weighted graph $G = (V, E), w : E \to \mathbb{R}_+$ define $F = \{(i, j) \in E : w_{ij} < w_{ik} \forall k : (ik) \in E\}$. Let T = (V, E') be a minimum spanning tree of G, w.
 - (a) Show that $F \subset E'$.
 - (b) Suppose that w is injective (i.e. all weights are different). Show that |F| > |E'|/2
- 9. Given a matrix A how can you compute A^k using only $O(\log k)$ matrix products? Show that the same procedure applies to the *min-sum* matrix product.
- 10. Prove that the number of spanning trees in the complete graph K_n is n^{n-2} .

11. Remember that given a weight matrix $W : \{1, ..., N\}^2 \to \mathbb{R}$, Kirchoff's matrix-tree theorem allows us to compute the "partition function" $Z_\beta = \sum_{T \text{ spanning tree}} e^{-\beta W(T)}$ where $W(T) = \sum_{(ij)\in E(T)} W(ij)$. This defines a Boltzmann probability distribution over spanning trees as follows:

$$P_{\beta}\left(T\right) = Z_{\beta}^{-1} e^{-\beta W(T)}$$

You can easily verify that this is a probability distribution. How can you compute a *marginal* edge presence probability

$$P_{\beta}(ij) = Z_{\beta}^{-1} \sum_{\substack{T \text{ spanning tree:}(ij) \in E(T)}} e^{-\beta W(T)}$$

12. How can you compute the average of W in P_{β} , i.e.:

$$\langle W \rangle = \sum_{T \text{ spanning tree}} P_{\beta}(T) W(T)$$

- 13. Use the previous exercise to compute the entropy $S(P_{\beta}) = -\sum_{T \text{ spanning tree}} P_{\beta}(T) \log P_{\beta}(T)$ of P_{β} . The entropy is a measure of how broad the distribution is. Show that for $\beta = 0$, the entropy reaches its maximum value, $S = (n-2) \log (n)$.
- 14. Let $A \in \mathbb{R}^{n \times n}$ be a matrix.
 - (a) Devise an algorithm to find a permutation of rows, if it exists, leaving no zeros on the diagonal. That is, find $\pi : \{1, \ldots, n\} \to \{1, \ldots, n\}$ such that $A_{\pi(i),i} \neq 0$ for $i = 1, \ldots, n$.
 - (b) Show that π exists for any invertible matrix A
- 15. Consider maximum flow problem with multiple sources and sinks defined as follows: Given subsets $S, T \subset V$, and capacity function $c: V \times V \to \mathbb{R}_{\geq 0}$, we define a (c, S, T)-flow as $f: V \times V \to \mathbb{R}$ satisfying:
 - (a) $f(u, v) \le c(u, v) \ u, v \in V$
 - (b) $f(u,v) = -f(v,u) \ u, v \in V$
 - (c) $f(u, V) = 0 \ \forall u \in V \setminus (S \cup T)$

For such f we define |f| = f(S, V) = f(V, T). Find a reduction of the problem of finding the maximum |f| to a simple max flow problem.

16. Consider the problem defined as follows: Given a link capacity function c : V × V → ℝ_{≥0}, for source s and sink t and a node capacity function d : V → ℝ_{≥0}, find the maximum (c, s, t)-flow f : V × V → ℝ satisfying also ½∑_{w∈V} |f(v, w)| ≤ d(v) for v ∈ V \ {s, t}. Find a reduction of this problem to a simple max-flow problem.

- 17. Given an undirected graph G, a set of contacts $C \subseteq V$ and a set of exits $T \subset V$, find a set of non-overlapping paths (not even vertices are allowed to overlap) from each vertex in C to each vertex in T. That is, for each $c \in C$, we need a path $p^{(c)} = \left(c = p_1^{(c)}, p_2^{(c)}, \ldots, p_{k_c}^{(c)}\right)$ such that $p_i^{(c)} \neq p_j^{(d)}$ if $c \neq d$. Note: this problem is useful to deploy conductive tracks on a microchip. In this case the graph is a 2 d lattice.
- 18. Let $A \in \mathbb{R}^{n \times n}$ be a matrix such that $\sum_{j=1}^{n} A_{ij} \in \mathbb{N}$ for $i = 1, \dots, n$ and $\sum_{i=1}^{n} A_{ij} \in \mathbb{N}$ for $j = 1, \dots, n$. Find $B \in \mathbb{N}^{n \times n}$ such that
 - (a) $|A_{ij} B_{ij}| \le 1$ for $i, j \in \{1, \dots, n\}$
 - (b) $\sum_{j=1}^{n} A_{ij} = \sum_{j=1}^{n} B_{ij}$ for $i = 1, \dots n$.
 - (c) $\sum_{i=1}^{n} A_{ij} = \sum_{i=1}^{n} B_{ij}$ for $j = 1, \dots n$.

Hint: Reduce to a flow problem, and think about the augmenting path algorithm.

19. Describe informally the languages accepted by the following deterministic finite automata:

- 20. Construct deterministic finite automata accepting the following languages:
 - (a) $\{w \in \{a, b\}^*$: each a in w is immediately preceded by a $b\}$
 - (b) $\{w \in \{a, b\}^* : w \text{ has } abab \text{ as a substring}\}$

- (c) $\{w \in \{a, b\}^* : w \text{ has neither } aa \text{ nor } bb \text{ as a substring}\}$
- (d) $\{w \in \{a, b\}^* : w \text{ has an odd number of } a$'s and an even number of b's}
- (e) $\{w \in \{a, b\}^* : w \text{ has both } ab \text{ and } baas a substring}\}$
- (f) $\{w \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^* : w \text{ correspond to a positive even integer}\}$
- (g) $\{w \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^* : w \text{ correspond to a positive integer divisible by 5}\}$
- (h) $\{w \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^* : w \text{ correspond to a positive integer divisible by 3}\}$
- 21. Given two deterministic finite automata deciding languages $L_1, L_2 \subset \Sigma^*$, build a new finite deterministic automata that decides $L_1 \cap L_2$.
- 22. Devise a (polynomial) method to: given a deterministic finite automata, find an input that would be accepted (if it exists) or to conclude that there is none (and thus that the automata decides the language $L = \emptyset$).
- Given two deterministic finite automatas, devise a polynomial procedure to decide if they decide the same language.