Problem Set 1

Course: Algorithms for optimization and statistical inference (2014)

1. Show that every tree is a bipartite graph.
2. A leaf of a graph is a vertex v with degree one, $d_{v}=1$. Prove that every tree with two or more nodes has at least two leaves. Characterize all trees with just two leaves.
3. Prove that for every tree $T=(V, E),|E|=|V|-1$ (Hint: what happens when you remove a leaf from a tree?)
4. Remember that if $G=\left(V_{G}, E_{G}\right)$ is connected, then there exists a tree $T=\left(V_{T}, E_{T}\right)$ such that $V_{T}=V_{G}$ and $E_{T} \subseteq E_{G}$ (i.e. every connected graph admits a spanning tree). Show that if $G=\left(V_{G}, E_{G}\right)$ is acyclic, then there exists a tree $T=\left(V_{T}, E_{T}\right)$ such that $V_{T}=V_{G}$ and $E_{G} \subseteq E_{T}$.
5. Using 3 and 4 , show that the following are equivalent for $T=(V, E)$:
(a) T is a tree.
(b) T is connected, and $|E| \leq|V|-1$.
(c) T is acyclic, and $|E| \geq|V|-1$.
6. Let $G=\left(V_{G}, E_{G}\right)$ be an undirected graph with edge weights $w: E_{G} \rightarrow(0, \infty)$. Consider $H=\left(V_{H}, E_{H}\right)$ a connected graph of minimum weight such that $E_{F} \subseteq E_{G}$ and $V_{F}=V_{G}$, that is, F is a minimum weight spanning subgraph. Prove that F is a minimum spanning tree of G.
7. How many bipartitions are there in a bipartite graph?
8. Given a weighted graph $G=(V, E), w: E \quad \rightarrow \quad \mathbb{R}_{+}$define $F=$ $\left\{(i, j) \in E: w_{i j}<w_{i k} \forall k:(i k) \in E\right\}$. Let $T=\left(V, E^{\prime}\right)$ be a minimum spanning tree of G, w.
(a) Show that $F \subset E^{\prime}$.
(b) Suppose that w is injective (i.e. all weights are different). Show that $|F|>\left|E^{\prime}\right| / 2$
9. Given a matrix A how can you compute A^{k} using only $O(\log k)$ matrix products? Show that the same procedure applies to the min-sum matrix product.
10. Prove that the number of spanning trees in the complete graph K_{n} is n^{n-2}.
11. Remember that given a weight matrix $W:\{1, \ldots, N\}^{2} \rightarrow \mathbb{R}$, Kirchoff's matrix-tree theorem allows us to compute the "partition function" $Z_{\beta}=\sum_{T \text { spanning tree }} e^{-\beta W(T)}$ where $W(T)=$ $\sum_{(i j) \in E(T)} W(i j)$. This defines a Boltzmann probability distribution over spanning trees as follows:

$$
P_{\beta}(T)=Z_{\beta}^{-1} e^{-\beta W(T)}
$$

You can easily verify that this is a probability distribution. How can you compute a marginal edge presence probability

$$
P_{\beta}(i j)=Z_{\beta}^{-1} \sum_{T \text { spanning tree:(ij) } \in E(T)} e^{-\beta W(T)}
$$

12. How can you compute the average of W in P_{β}, i.e.:

$$
\langle W\rangle=\sum_{T \text { spanning tree }} P_{\beta}(T) W(T)
$$

13. Use the previous exercise to compute the entropy $S\left(P_{\beta}\right)=-\sum_{T \text { spanning tree }} P_{\beta}(T) \log P_{\beta}(T)$ of P_{β}. The entropy is a measure of how broad the distribution is. Show that for $\beta=0$, the entropy reaches its maximum value, $S=(n-2) \log (n)$.
14. Let $A \in \mathbb{R}^{n \times n}$ be a matrix.
(a) Devise an algorithm to find a permutation of rows, if it exists, leaving no zeros on the diagonal. That is, find $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ such that $A_{\pi(i), i} \neq 0$ for $i=1, \ldots n$.
(b) Show that π exists for any invertible matrix A
15. Consider maximum flow problem with multiple sources and sinks defined as follows: Given subsets $S, T \subset V$, and capacity function $c: V \times V \rightarrow \mathbb{R}_{\geq 0}$, we define a (c, S, T)-flow as $f: V \times V \rightarrow \mathbb{R}$ satisfying:
(a) $f(u, v) \leq c(u, v) u, v \in V$
(b) $f(u, v)=-f(v, u) u, v \in V$
(c) $f(u, V)=0 \forall u \in V \backslash(S \cup T)$

For such f we define $|f|=f(S, V)=f(V, T)$. Find a reduction of the problem of finding the maximum $|f|$ to a simple max flow problem.
16. Consider the problem defined as follows: Given a link capacity function $c: V \times V \rightarrow \mathbb{R}_{\geq 0}$, for source s and sink t and a node capacity function $d: V \rightarrow \mathbb{R}_{\geq 0}$, find the maximum (c, s, t)-flow $f: V \times V \rightarrow \mathbb{R}$ satisfying also $\frac{1}{2} \sum_{w \in V}|f(v, w)| \leq d(v)$ for $v \in V \backslash\{s, t\}$. Find a reduction of this problem to a simple max-flow problem.
17. Given an undirected graph G, a set of contacts $C \subseteq V$ and a set of exits $T \subset V$, find a set of non-overlapping paths (not even vertices are allowed to overlap) from each vertex in C to each vertex in T. That is, for each $c \in C$, we need a path $p^{(c)}=\left(c=p_{1}^{(c)}, p_{2}^{(c)}, \ldots, p_{k_{c}}^{(c)}\right)$ such that $p_{i}^{(c)} \neq p_{j}^{(d)}$ if $c \neq d$. Note: this problem is useful to deploy conductive tracks on a microchip. In this case the graph is a $2-d$ lattice.
18. Let $A \in \mathbb{R}^{n \times n}$ be a matrix such that $\sum_{j=1}^{n} A_{i j} \in \mathbb{N}$ for $i=1, \ldots n$ and $\sum_{i=1}^{n} A_{i j} \in \mathbb{N}$ for $j=1, \ldots n$. Find $B \in \mathbb{N}^{n \times n}$ such that
(a) $\left|A_{i j}-B_{i j}\right| \leq 1$ for $i, j \in\{1, \ldots, n\}$
(b) $\sum_{j=1}^{n} A_{i j}=\sum_{j=1}^{n} B_{i j}$ for $i=1, \ldots n$.
(c) $\sum_{i=1}^{n} A_{i j}=\sum_{i=1}^{n} B_{i j}$ for $j=1, \ldots n$.

Hint: Reduce to a flow problem, and think about the augmenting path algorithm.
19. Describe informally the languages accepted by the following deterministic finite automata:

20. Construct deterministic finite automata accepting the following languages:
(a) $\left\{w \in\{a, b\}^{*}:\right.$ each a in w is immediately preceded by a $\left.b\right\}$
(b) $\left\{w \in\{a, b\}^{*}: w\right.$ has $a b a b$ as a substring $\}$
(c) $\left\{w \in\{a, b\}^{*}: w\right.$ has neither $a a$ nor $b b$ as a substring $\}$
(d) $\left\{w \in\{a, b\}^{*}: w\right.$ has an odd number of a 's and an even number of b 's $\}$
(e) $\left\{w \in\{a, b\}^{*}: w\right.$ has both $a b$ and baas a substring $\}$
(f) $\left\{w \in\{0,1,2,3,4,5,6,7,8,9\}^{*}: w\right.$ correspond to a positive even integer $\}$
(g) $\left\{w \in\{0,1,2,3,4,5,6,7,8,9\}^{*}: w\right.$ correspond to a positive integer divisible by 5$\}$
(h) $\left\{w \in\{0,1,2,3,4,5,6,7,8,9\}^{*}: w\right.$ correspond to a positive integer divisible by 3$\}$
21. Given two deterministic finite automata deciding languages $L_{1}, L_{2} \subset \Sigma^{*}$, build a new finite deterministic automata that decides $L_{1} \cap L_{2}$.
22. Devise a (polynomial) method to: given a deterministic finite automata, find an input that would be accepted (if it exists) or to conclude that there is none (and thus that the automata decides the language $L=\emptyset$).
23. Given two deterministic finite automatas, devise a polynomial procedure to decide if they decide the same language.

