
Problem Set 1

Course: Algorithms for optimization and statistical inference (2014)

1. Show that every tree is a bipartite graph.

2. A leaf of a graph is a vertex v with degree one, dv = 1. Prove that every tree with two or more

nodes has at least two leaves. Characterize all trees with just two leaves.

3. Prove that for every tree T = (V,E), |E| = |V | − 1 (Hint: what happens when you remove a

leaf from a tree?)

4. Remember that if G = (VG, EG) is connected, then there exists a tree T = (VT , ET ) such that

VT = VG and ET ⊆ EG (i.e. every connected graph admits a spanning tree). Show that if

G = (VG, EG) is acyclic, then there exists a tree T = (VT , ET ) such that VT = VG and EG ⊆ ET .

5. Using 3 and 4, show that the following are equivalent for T = (V,E):

(a) T is a tree.

(b) T is connected, and |E| ≤ |V | − 1.

(c) T is acyclic, and |E| ≥ |V | − 1.

6. Let G = (VG, EG) be an undirected graph with edge weights w : EG → (0,∞). Consider

H = (VH , EH) a connected graph of minimum weight such that EF ⊆ EG and VF = VG, that

is, F is a minimum weight spanning subgraph. Prove that F is a minimum spanning tree of G.

7. How many bipartitions are there in a bipartite graph?

8. Given a weighted graph G = (V,E), w : E → R+ define F =

{(i, j) ∈ E : wij < wik∀k : (ik) ∈ E}. Let T = (V,E′) be a minimum spanning tree of

G,w.

(a) Show that F ⊂ E′.

(b) Suppose that w is injective (i.e. all weights are different). Show that |F | > |E′| /2

9. Given a matrix A how can you compute Ak using only O (log k) matrix products? Show that

the same procedure applies to the min-sum matrix product.

10. Prove that the number of spanning trees in the complete graph Kn is nn−2.
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11. Remember that given a weight matrix W : {1, . . . , N}2 → R, Kirchoff’s matrix-tree theorem

allows us to compute the “partition function” Zβ =
∑

T spanning tree e
−βW (T ) where W (T ) =∑

(ij)∈E(T )W (ij). This defines a Boltzmann probability distribution over spanning trees as

follows:

Pβ (T ) = Z−1β e−βW (T )

You can easily verify that this is a probability distribution. How can you compute a marginal

edge presence probability

Pβ (ij) = Z−1β

∑
T spanning tree:(ij)∈E(T )

e−βW (T )

12. How can you compute the average of W in Pβ , i.e.:

〈W 〉 =
∑

T spanning tree
Pβ (T )W (T )

13. Use the previous exercise to compute the entropy S (Pβ) = −
∑

T spanning tree Pβ (T ) logPβ (T )

of Pβ . The entropy is a measure of how broad the distribution is. Show that for β = 0, the

entropy reaches its maximum value, S = (n− 2) log (n).

14. Let A ∈ Rn×n be a matrix.

(a) Devise an algorithm to find a permutation of rows, if it exists, leaving no zeros on the

diagonal. That is, find π : {1, . . . , n} → {1, . . . , n} such that Aπ(i),i 6= 0 for i = 1, . . . n.

(b) Show that π exists for any invertible matrix A

15. Considermaximum flow problem with multiple sources and sinks defined as follows: Given subsets

S, T ⊂ V , and capacity function c : V × V → R≥0, we define a (c, S, T )-flow as f : V × V → R

satisfying:

(a) f (u, v) ≤ c (u, v) u, v ∈ V

(b) f (u, v) = −f (v, u) u, v ∈ V

(c) f (u, V ) = 0 ∀u ∈ V \ (S ∪ T )

For such f we define |f | = f (S, V ) = f(V, T ). Find a reduction of the problem of finding the

maximum |f | to a simple max flow problem.

16. Consider the problem defined as follows: Given a link capacity function c : V × V → R≥0, for

source s and sink t and a node capacity function d : V → R≥0, find the maximum (c, s, t)-flow

f : V × V → R satisfying also 1
2

∑
w∈V |f (v, w)| ≤ d (v) for v ∈ V \ {s, t}. Find a reduction of

this problem to a simple max-flow problem.
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17. Given an undirected graph G, a set of contacts C ⊆ V and a set of exits T ⊂ V , find a set of

non-overlapping paths (not even vertices are allowed to overlap) from each vertex in C to each

vertex in T . That is, for each c ∈ C, we need a path p(c) =
(
c = p

(c)
1 , p

(c)
2 , . . . , p

(c)
kc

)
such that

p
(c)
i 6= p

(d)
j if c 6= d. Note: this problem is useful to deploy conductive tracks on a microchip. In

this case the graph is a 2− d lattice.

18. Let A ∈ Rn×n be a matrix such that
∑n

j=1Aij ∈ N for i = 1, . . . n and
∑n

i=1Aij ∈ N for

j = 1, . . . n. Find B ∈ Nn×n such that

(a) |Aij −Bij | ≤ 1 for i, j ∈ {1, . . . , n}

(b)
∑n

j=1Aij =
∑n

j=1Bij for i = 1, . . . n.

(c)
∑n

i=1Aij =
∑n

i=1Bij for j = 1, . . . n.

Hint: Reduce to a flow problem, and think about the augmenting path algorithm.

19. Describe informally the languages accepted by the following deterministic finite automata:

20. Construct deterministic finite automata accepting the following languages:

(a) {w ∈ {a, b}∗ : each a in w is immediately preceded by a b}

(b) {w ∈ {a, b}∗ : w has abab as a substring}
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(c) {w ∈ {a, b}∗ : w has neither aa nor bb as a substring}

(d) {w ∈ {a, b}∗ : w has an odd number of a’s and an even number of b’s}

(e) {w ∈ {a, b}∗ : w has both ab and baas a substring}

(f) {w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ : w correspond to a positive even integer}

(g) {w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ : w correspond to a positive integer divisible by 5}

(h) {w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ : w correspond to a positive integer divisible by 3}

21. Given two deterministic finite automata deciding languages L1, L2 ⊂ Σ∗, build a new finite

deterministic automata that decides L1 ∩ L2.

22. Devise a (polynomial) method to: given a deterministic finite automata, find an input that

would be accepted (if it exists) or to conclude that there is none (and thus that the automata

decides the language L = ∅).

23. Given two deterministic finite automatas, devise a polynomial procedure to decide if they decide

the same language.
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