Problem Set 1

Course: Algorithms for optimization and statistical inference (2014)
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Show that every tree is a bipartite graph.

A leaf of a graph is a vertex v with degree one, d, = 1. Prove that every tree with two or more

nodes has at least two leaves. Characterize all trees with just two leaves.

Prove that for every tree T' = (V, E), |E| = |V| — 1 (Hint: what happens when you remove a

leaf from a tree?)

Remember that if G = (Vg, Eg) is connected, then there exists a tree T' = (Vp, E7) such that
Vr = Vg and Er C Eg (i.e. every connected graph admits a spanning tree). Show that if
G = (Vg, Eg) is acyclic, then there exists a tree T' = (Vp, E7) such that Vi = Vg and Eg C Erp.

Using 3 and 4, show that the following are equivalent for T' = (V, E):

(a) T is a tree.
(b) T is connected, and |E| < |V]— 1.
(¢) T is acyclic, and |E| > |V]| — 1.
Let G = (Vg, Eg) be an undirected graph with edge weights w : Eg — (0,00). Consider

H = (Vy, Ey) a connected graph of minimum weight such that Erp C Eg and Vp = Vi, that

is, F'is a minimum weight spanning subgraph. Prove that F' is a minimum spanning tree of G.
How many bipartitions are there in a bipartite graph?

Given a weighted graph G = (VJE), w : E — Ry define F =
{(i,j) € E:wij <wyVk: (tk) € E}. Let T = (V,E’) be a minimum spanning tree of
G,w.

(a) Show that F C F'.

(b) Suppose that w is injective (i.e. all weights are different). Show that |F| > |E’| /2
Given a matrix A how can you compute A* using only O (log k) matrix products? Show that
the same procedure applies to the min-sum matrix product.

Prove that the number of spanning trees in the complete graph K, is n™ 2.



11.

12.

13.

14.

15.

16.

Remember that given a weight matrix W : {1,..., N }2 — R, Kirchoff’s matrix-tree theorem

allows us to compute the “partition function” Zg = W) where W (T) =

T spanning tree €
Z(ij)e E(T) W (i7). This defines a Boltzmann probability distribution over spanning trees as

follows:
Py (T) = Zgz'e PV

You can easily verify that this is a probability distribution. How can you compute a marginal

edge presence probability
PG =7 Y e
T spanning tree:(ij)eE(T)

How can you compute the average of W in Pg, i.e.:

(W) = > Ps (T)W (T)

Tspanning tree

Use the previous exercise to compute the entropy S (Pg) = — > 1 spanning tree (T)log P (T')

of Pg. The entropy is a measure of how broad the distribution is. Show that for 8 = 0, the

entropy reaches its maximum value, S = (n — 2) log (n).

Let A € R™" be a matrix.

(a) Devise an algorithm to find a permutation of rows, if it exists, leaving no zeros on the

diagonal. That is, find 7 : {1,...,n} — {1,...,n} such that A ;) ; #0fori=1,...n.

(b) Show that 7 exists for any invertible matrix A

Consider mazimum flow problem with multiple sources and sinks defined as follows: Given subsets
S,T C V, and capacity function ¢ : V x V' — R, we define a (¢, S,T)-flow as f: V xV = R

satisfying:
(a) f(uv) < c(uv) uveV

(b) f(u,v)=—f(v,u) u,v eV

(¢) f(u,V)=0VueV\(SUT)

For such f we define |f| = f(S,V) = f(V,T). Find a reduction of the problem of finding the

maximum | f| to a simple maz flow problem.

Consider the problem defined as follows: Given a link capacity function ¢ : V' x V' — Rx, for
source s and sink ¢ and a node capacity function d : V- — R>q, find the maximum (c, s, t)-flow
f:V xV — Rsatisfying also 1> ./ |f (v,w)| < d(v) for v € V'\ {s,t}. Find a reduction of

this problem to a simple max-flow problem.
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Given an undirected graph G, a set of contacts C' C V and a set of exits T' C V, find a set of

non-overlapping paths (not even vertices are allowed to overlap) from each vertex in C' to each

vertex in 7. That is, for each ¢ € C, we need a path p(©) = (c = pgc),pgc), e ,p,(i)) such that

pgc) % pgd)if ¢ # d. Note: this problem is useful to deploy conductive tracks on a microchip. In

this case the graph is a 2 — d lattice.

Let A € R™™ be a matrix such that 37, A;; € N fori = 1,...n and >7i_; Aj; € N for
j=1,...n. Find B € N™*" such that

(a) |Ay; — Byl < 1lfori,je{l,...,n}
(b) Z?:l Aij = Z?:l Bz‘j fori=1,...n.

(C) Z?:l Aij = Z?:l Bij for ] = 1, ...

Hint: Reduce to a flow problem, and think about the augmenting path algorithm.

19. Describe informally the languages accepted by the following deterministic finite automata:

20. Construct deterministic finite automata accepting the following languages:

(a) {w € {a,b}" : each a in w is immediately preceded by a b}

(b) {w € {a,b}" : w has abab as a substring}
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(c) {w € {a,b}" : w has neither aa nor bb as a substring}

(d) {w € {a,b}" : w has an odd number of a’s and an even number of b’s}

(e) {w € {a,b}" : w has both ab and baas a substring}

(f) {we{0,1,2,3,4,5,6,7,8,9}" : w correspond to a positive even integer}

(g) {we{0,1,2,3,4,5,6,7,8,9}" : w correspond to a positive integer divisible by 5}
(h) {w € {0,1,2,3,4,5,6,7,8,9}" : w correspond to a positive integer divisible by 3}

Given two deterministic finite automata deciding languages L1, Lo C ¥*, build a new finite

deterministic automata that decides L1 N Lo.

Devise a (polynomial) method to: given a deterministic finite automata, find an input that
would be accepted (if it exists) or to conclude that there is none (and thus that the automata

decides the language L = ().

Given two deterministic finite automatas, devise a polynomial procedure to decide if they decide

the same language.



