Belief Propagation for combinatorial optimization

Alfredo Braunstein

December 21, 2010



3-COLORING

v

Given a (finite) undirected graph G = (V, E)

A proper 3—coloring is ¢ : V — {e, e e} such that c (i) # c (j) if
(i,j)e E

Finding proper colorings is a hard computational problem
(NP-Complete)

Counting proper colorings is also a hard problem

v

v
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Belief Propagation on a slide: 3-COLORING

[
e
=

No(e) = N© (e0e)+ N (e00) + N© (ec0) + NO (co0) + -

= N (o) NS (o) N5 (o) + N (o) N () NSV () +

= (M (o) + M () (MY (o) + NV (4)) (NS (o) + NP ()
No(e) = (N (0)+ P () (NS (o) + NV (o)) (NS (0) + N“’ ()



Belief Propagation on a slide: 3-COLORING
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Belief Propagation on a slide: 3-COLORING
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BP Equations
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BP Equations

Given WV, (Xa) > 0 with x, = {Xi}ieV(a) (X,' € X; ﬁnite), and
P(x) = %HEGA WV, (x,), BP Equations are

mai (xi) o Z H mJa ()
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BP Equations

Given WV, (Xa) > 0 with x, = {Xi}ieV(a) (X,' € X; ﬁnite), and
P(x) = %HEGA WV, (x,), BP Equations are

mai(x;) o Z H mja (%)

{Xi}je V(a)\ Jev(a\
mia(x) o ] mb,-(x,-)
beV(i)\a
m; (x;) H ma;i (x;)
ac V(i)

> mi(x;) =~ P(x) = Z{Xj} P (x),

jeni

> my(xa) o< Vs (Xa) [Tre vy mia (xi) = P (xa) = Z{ i} P(x)

JjenVi(a

> _IOgZR‘) FBethe—

Y, 3, ma (xa) log el 4+ 37, (1 — [V (i)]) X2, mi (i) log m; ()
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BP Algo

» The FP equation Fgp (M) = m is solved by iteration

limp_ oo F1(37>) (mo)

mi ) o« [T Y wexe) JI mP (x)

beV(i)\a {Xj}jev(b)\i JEV(b)

» On a tree BP Equations are exact: there is 1 FP and
m; (Xi) - P(Xi); mgy (xa) - P(Xa), FBethe = - |OgZ
» Loopy graphs = BP solutions are usually good approximations



Applications of BP

» SAMPLER (x* ~ P (x)): Note P (x) = P (x1) P (x2, ... Xn|x1).

1. Use BP to estimate P (x1)

2. Extract x{ ~ P (x1).

3. Modify the problem by adding a factor W1 (x1) = 6 (x1; x{) to P,
reiterate
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» SAMPLER (x* ~ P (x)): Note P (x) = P (x1) P (x2, ... Xn|x1).

1. Use BP to estimate P (x1)

2. Extract x{ ~ P (x1).

3. Modify the problem by adding a factor W1 (x1) = 6 (x1; x{) to P,
reiterate

» COUNTER (estimate # {x : [, ¥V, (x) = 1} where
W, (x5) € {0,1}): Use BP estimation of log Z
» SOLVER (x* € {x: ][, ¥, (x*) = 1}, where ¥, (x,) € {0,1}):
1. Run BP.
2. Find i and x; s.t. P(x{') = max{P(x):j€ V,x € X;}
3. Modify the problem by adding a factor Wy (x1) = d (x1; 1), reiterate



Applications of BP

v

SAMPLER (x* ~ P(x)): Note P (x) = P (x1) P (x2,...xn|x1).
1. Use BP to estimate P (x1)
2. Extract x{ ~ P (x1).
3. Modify the problem by adding a factor W1 (x1) = 6 (x1; x{) to P,
reiterate
COUNTER (estimate # {x : [[, V4 (x) = 1} where
W, (x5) € {0,1}): Use BP estimation of log Z
SOLVER (x* € {x: [[, ¥, (x*) =1}, where ¥, (x,) € {0,1}):
1. Run BP.
2. Find i and x; s.t. P(x{') = max{P(x):j€ V,x € X;}
3. Modify the problem by adding a factor Wy (x1) = d (x1; 1), reiterate
OPTIMIZER (find arg max P (x)) ... more later!
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» Around 100.000 english words (taken from the
aspell dictionary)
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Crosswords!

» Around 100.000 english words (taken from the
aspell dictionary)

MALm i RANLE » Each contiguous sequence of white squares must
ALAMLASSES . .

RINSEDHAT be filled by an english word

INIPASsSEDH

Eﬁ? Q 2!; Eii » How many ways to create a crossword for a given
SAVERERESTS pattern of black squares?

MR ESEEDMAS

M1 RIIR ESALE . .
BASTESHMED » Which proportion of those have a “D" in its

bottom right square?

» These problems are mathematically easy: all sets
here are finite!
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» Solution: Write in traslucent paper all crosswords (possibly with the
help of monkeys) and put them in a stack, look at a light source
through the stack
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» Drawback 1: Even one crossword with a
given pattern is highly non-trivial to
€ obtain...

» Drawback 2: There are around 10°° valid
crosswords for the pattern in the previous
slide (how do I know?). Estimating
conservatively in 0.0lmm the thickness of
a piece of paper, this gives a ~ 10%?km
stack (distance earth-moon ~ 3 x 10%km)
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Enumerating Crosswords

» Solution: Write in traslucent paper all crosswords (possibly with the
help of monkeys) and put them in a stack, look at a light source
through the stack

» Drawback 1: Even one crossword with a
given pattern is highly non-trivial to
€ obtain...

» Drawback 2: There are around 10°° valid
crosswords for the pattern in the previous
slide (how do I know?). Estimating
conservatively in 0.0lmm the thickness of
a piece of paper, this gives a ~ 10%?km
stack (distance earth-moon ~ 3 x 10%km)
= nearly not enough bananas

030




BP for crosswords
» English dictionary D (set of english words)



BP for crosswords

» English dictionary D (set of english words)

» Indices: a set X of letters coordinates, one for each non-black
square, a set H of horizontal words indices, one for each horizontal
blank sequence, a set V of vertical word indices, one for each
vertical blank sequence,



BP for crosswords

» English dictionary D (set of english words)

» Indices: a set X of letters coordinates, one for each non-black
square, a set H of horizontal words indices, one for each horizontal
blank sequence, a set V of vertical word indices, one for each
vertical blank sequence,

» Variables: hs € D for each s € H, v, € D for each t € V,
xj € {a,...,z} for each jj € X



BP for crosswords

» English dictionary D (set of english words)

» Indices: a set X of letters coordinates, one for each non-black
square, a set H of horizontal words indices, one for each horizontal
blank sequence, a set V of vertical word indices, one for each
vertical blank sequence,

» Variables: hs € D for each s € H, v, € D for each t € V,
xj € {a,...,z} for each jj € X

» For each non-black square i,



BP for crosswords

» English dictionary D (set of english words)

» Indices: a set X of letters coordinates, one for each non-black
square, a set H of horizontal words indices, one for each horizontal
blank sequence, a set V of vertical word indices, one for each
vertical blank sequence,

» Variables: hs € D for each s € H, v, € D for each t € V,
xj € {a,...,z} for each jj € X

» For each non-black square i,

> s(ij) € H=crossing horizontal word, p (ij)= position of ij within,
» t(ij) € V=crossing vertical word, g (ij) position of ij within



BP for crosswords

» English dictionary D (set of english words)

» Indices: a set X of letters coordinates, one for each non-black
square, a set H of horizontal words indices, one for each horizontal
blank sequence, a set V of vertical word indices, one for each
vertical blank sequence,

» Variables: hs € D for each s € H, v, € D for each t € V,
xj € {a,...,z} for each jj € X

» For each non-black square i,

> s(ij) € H=crossing horizontal word, p (ij)= position of ij within,
» t(ij) € V=crossing vertical word, g (ij) position of ij within
» Constraints: For each non black position jj: the following two

conditions have to be ensured: (hs(ij))p(ij) = x;j and (Vt("i))q(ij) = Xjj



BP for crosswords

» English dictionary D (set of english words)

» Indices: a set X of letters coordinates, one for each non-black
square, a set H of horizontal words indices, one for each horizontal
blank sequence, a set V of vertical word indices, one for each
vertical blank sequence,

» Variables: hs € D for each s € H, v, € D for each t € V,
xj € {a,...,z} for each jj € X

» For each non-black square i,

> s(ij) € H=crossing horizontal word, p (ij)= position of ij within,
» t(ij) € V=crossing vertical word, g (ij) position of ij within

» Constraints: For each non black position jj: the following two

conditions have to be ensured: (hs(ij))p(ij) = x;j and (Vt("i))q(ij) = Xjj

» In summary: |H| + |V/|+ |X]| variable nodes, 2 |X]| constraints

P (h,v,x) H 5( () i) X’J) o (("f("ﬂ) alip)’ X’J)



BP for crosswords

» English dictionary D (set of english words)
» Indices: a set X of letters coordinates, one for each non-black

v

square, a set H of horizontal words indices, one for each horizontal
blank sequence, a set V of vertical word indices, one for each
vertical blank sequence,
Vaariables: hs € D for each s € H, v, € D foreach t € V,
xj € {a,...,z} for each jj € X
For each non-black square i,
> s(ij) € H=crossing horizontal word, p (ij)= position of ij within,
» t(ij) € V=crossing vertical word, g (ij) position of ij within
Constraints: For each non black position j: the following two
conditions have to be ensured: (hs(ij))p(ij) = x;j and (Vt("i))q(ij) =
In summary: |H| + |V| + | X| variable nodes, 2 |X| constraints

P (h,v,x) H 5( () i) X’J) o (("f("ﬂ) alip)’ X’J)
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BP for crosswords

» English dictionary D (set of english words)

» Indices: a set X of letters coordinates, one for each non-black
square, a set H of horizontal words indices, one for each horizontal
blank sequence, a set V of vertical word indices, one for each
vertical blank sequence,

» Variables: hs € D for each s € H, v, € D for each t € V,
xj € {a,...,z} for each jj € X

» For each non-black square i,

> s(ij) € H=crossing horizontal word, p (ij)= position of ij within,
» t(ij) € V=crossing vertical word, g (ij) position of ij within

» Constraints: For each non black position jj: the following two

conditions have to be ensured: (hs(ij))p(ij) = x;j and (Vt("i))q(ij) = Xjj

» In summary: |H| + |V/|+ |X]| variable nodes, 2 |X]| constraints

P (h,v,x) H 5( () i) X’J) o (("f("ﬂ) alip)’ X’J)

> Z =3 huxlljexd () 0 (+) =+crosswords

> Results?
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Definitions
In Statistical Physics, Gibbs measures are often studied :

1 .
Pgibbs (X) = ?efﬁH(x) with H (x) = Z Ha (x2)
acA

» Same old formalism, with ¥, (x,) = exp (—5H, (x,))
> In the limit 8 — oo, Pgipps concentrates on the minimums of H.

> ¢ai (Xi) = % |Og mgj (X,'), ¢ia (X,') = % |Og mij, (X,'), The ﬂ — oo limit

of BP equations is:

bai (xi) = max Z Pja (XJ) —Ha(xs) p + ¢

NiSjeviani | jeV(a\i
bia (xi) = Z Pbi (xi) + ¢
beV(i)\a

> i.e. just BP equations with > — max, [[ = >_
» Max Sum is exact on trees, if the solution is unique, arg max ¢; (x;)

for ¢ (xi) = >_pev (i) Pbi (xi) gives the optimum
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Optimality results

Theorem

If the min is unique, in a FP of Max Sum for the Minimum Spanning
Tree (ie. D =N, T = V) on arbitrary graphs,

(pf,d¥) = argmax ¢; (p;, d;i) define the optimum tree

Proof.
(Sketch): Assume FP giving unoptimal solution on G, and consider the
computation tree rooted at v € V, Ty = (Vi, Ex): O

> Vi={v=vi,...vi: I < k,(viviyz1) € E,viy2 # vi}

> Ex = {(p1,p2) if pr = p2v}
> Ty is locally isomorphic to G, but Ty is a tree (covering)
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Max-Sum (4)

General scheme:
1. FP of MS in G <+ FP in T, with
appropriate leaf conditions
2. Txis atree = MS is exact on Ty
3. On Ty the [lifting of] {p}} defines a forest

with each connected component not
touching the leaves isomorphic to {p;} on

G.

4. Take the optimal solution {g;} on G and
use it to improve the solution on Ty (by
replacing the pink CC) = contradiction




The End

Thanks, and happy holidays!



