Belief Propagation for combinatorial optimization

Alfredo Braunstein

December 21, 2010

3-COLORING

- Given a (finite) undirected graph $G=(V, E)$
- A proper 3-coloring is $c: V \rightarrow\{\bullet, \bullet, \bullet\}$ such that $c(i) \neq c(j)$ if $(i, j) \in E$
- Finding proper colorings is a hard computational problem (NP-Complete)
- Counting proper colorings is also a hard problem

Belief Propagation on a slide: 3-COLORING

$N_{0}(\bullet)=N^{(0)}(\bullet \bullet \bullet)+N^{(0)}(\bullet \bullet \bullet)+N^{(0)}(\bullet \bullet \bullet)+N^{(0)}(\bullet \bullet \bullet)+\cdots$

Belief Propagation on a slide: 3-COLORING

$$
\begin{aligned}
N_{0}(\bullet) & =N^{(0)}(\bullet \bullet \bullet)+N^{(0)}(\bullet \bullet \bullet)+N^{(0)}(\bullet \bullet)+N^{(0)}(\bullet \bullet \bullet)+\cdots \\
& =N_{1}^{(0)}(\bullet) N_{2}^{(0)}(\bullet) N_{3}^{(0)}(\bullet)+N_{1}^{(0)}(\bullet) N_{2}^{(0)}(\bullet) N_{3}^{(0)}(\bullet)+\cdots
\end{aligned}
$$

Belief Propagation on a slide: 3-COLORING

$$
\begin{aligned}
N_{0}(\bullet) & =N^{(0)}(\bullet \bullet \bullet)+N^{(0)}(\bullet \bullet \bullet)+N^{(0)}(\bullet \bullet \bullet)+N^{(0)}(\bullet \bullet \bullet)+\cdots \\
& =N_{1}^{(0)}(\bullet) N_{2}^{(0)}(\bullet) N_{3}^{(0)}(\bullet)+N_{1}^{(0)}(\bullet) N_{2}^{(0)}(\bullet) N_{3}^{(0)}(\bullet)+\cdots \\
& =\left(N_{1}^{(0)}(\bullet)+N_{1}^{(0)}(\bullet)\right)\left(N_{2}^{(0)}(\bullet)+N_{2}^{(0)}(\bullet)\right)\left(N_{3}^{(0)}(\bullet)+N_{3}^{(0)}(\bullet)\right)
\end{aligned}
$$

Belief Propagation on a slide: 3-COLORING

$$
\begin{aligned}
N_{0}(\bullet) & =N^{(0)}(\bullet \bullet \bullet)+N^{(0)}(\bullet \bullet \bullet)+N^{(0)}(\bullet \bullet \bullet)+N^{(0)}(\bullet \bullet \bullet)+\cdots \\
& =N_{1}^{(0)}(\bullet) N_{2}^{(0)}(\bullet) N_{3}^{(0)}(\bullet)+N_{1}^{(0)}(\bullet) N_{2}^{(0)}(\bullet) N_{3}^{(0)}(\bullet)+\cdots \\
& =\left(N_{1}^{(0)}(\bullet)+N_{1}^{(0)}(\bullet)\right)\left(N_{2}^{(0)}(\bullet)+N_{2}^{(0)}(\bullet)\right)\left(N_{3}^{(0)}(\bullet)+N_{3}^{(0)}(\bullet)\right) \\
N_{0}(\bullet) & =\left(N_{1}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet)\right)\left(N_{2}^{(0)}(\bullet)+N_{2}^{(0)}(\bullet)\right)\left(N_{3}^{(0)}(\bullet)+N_{3}^{(0)}(\bullet)\right)
\end{aligned}
$$

Belief Propagation on a slide: 3-COLORING

$$
\begin{aligned}
N_{0}(\bullet) & =N^{(0)}(\bullet \bullet \bullet)+N^{(0)}(\bullet \bullet)+N^{(0)}(\bullet \bullet \bullet)+N^{(0)}(\bullet \bullet \bullet)+\cdots \\
& =N_{1}^{(0)}(\bullet) N_{2}^{(0)}(\bullet) N_{3}^{(0)}(\bullet)+N_{1}^{(0)}(\bullet) N_{2}^{(0)}(\bullet) N_{3}^{(0)}(\bullet)+\cdots \\
& =\left(N_{1}^{(0)}(\bullet)+N_{1}^{(0)}(\bullet)\right)\left(N_{2}^{(0)}(\bullet)+N_{2}^{(0)}(\bullet)\right)\left(N_{3}^{(0)}(\bullet)+N_{3}^{(0)}(\bullet)\right) \\
N_{0}(\bullet) & =\left(N_{1}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet)\right)\left(N_{2}^{(0)}(\bullet)+N_{2}^{(0)}(\bullet)\right)\left(N_{3}^{(0)}(\bullet)+N_{3}^{(0)}(\bullet)\right) \\
N_{0}(\bullet) & =\left(N_{1}^{(0)}(\bullet)+N_{1}^{(0)}(\bullet)\right)\left(N_{2}^{(0)}(\bullet)+N_{2}^{(0)}(\bullet)\right)\left(N_{3}^{(0)}(\bullet)+N_{3}^{(0)}(\bullet)\right)
\end{aligned}
$$

Belief Propagation on a slide: 3-COLORING

$P_{0}(\bullet) \propto P^{(0)}(\bullet \bullet \bullet)+P^{(0)}(\bullet \bullet \bullet)+P^{(0)}(\bullet \bullet \bullet)+P^{(0)}(\bullet \bullet \bullet)+\cdots$
$=P_{1}^{(0)}(\bullet) P_{2}^{(0)}(\bullet) P_{3}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet) P_{2}^{(0)}(\bullet) P_{3}^{(0)}(\bullet)+\cdots$
$=\left(P_{1}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet)\right)\left(P_{2}^{(0)}(\bullet)+P_{2}^{(0)}(\bullet)\right)\left(P_{3}^{(0)}(\bullet)+P_{3}^{(0)}(\bullet)\right)$
$P_{0}(\bullet) \propto\left(P_{1}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet)\right)\left(P_{2}^{(0)}(\bullet)+P_{2}^{(0)}(\bullet)\right)\left(P_{3}^{(0)}(\bullet)+P_{3}^{(0)}(\bullet)\right)$
$P_{0}(\bullet) \propto\left(P_{1}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet)\right)\left(P_{2}^{(0)}(\bullet)+P_{2}^{(0)}(\bullet)\right)\left(P_{3}^{(0)}(\bullet)+P_{3}^{(0)}(\bullet)\right)$

Belief Propagation on a slide: 3-COLORING

$$
\begin{aligned}
P_{0}^{(4)}(\bullet) & \propto P^{(0)}(\bullet \bullet \bullet)+P^{(0)}(\bullet \bullet \bullet)+P^{(0)}(\bullet \bullet)+P^{(0)}(\bullet \bullet \bullet)+\cdots \\
& =P_{1}^{(0)}(\bullet) P_{2}^{(0)}(\bullet) P_{3}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet) P_{2}^{(0)}(\bullet) P_{3}^{(0)}(\bullet)+\cdots \\
& =\left(P_{1}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet)\right)\left(P_{2}^{(0)}(\bullet)+P_{2}^{(0)}(\bullet)\right)\left(P_{3}^{(0)}(\bullet)+P_{3}^{(0)}(\bullet)\right) \\
P_{0}^{(4)}(\bullet) & \propto\left(P_{1}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet)\right)\left(P_{2}^{(0)}(\bullet)+P_{2}^{(0)}(\bullet)\right)\left(P_{3}^{(0)}(\bullet)+P_{3}^{(0)}(\bullet)\right) \\
P_{0}^{(4)}(\bullet) & \propto\left(P_{1}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet)\right)\left(P_{2}^{(0)}(\bullet)+P_{2}^{(0)}(\bullet)\right)\left(P_{3}^{(0)}(\bullet)+P_{3}^{(0)}(\bullet)\right)
\end{aligned}
$$

Belief Propagation on a slide: 3-COLORING

BP Equations

Given $\Psi_{a}\left(\mathbf{x}_{a}\right) \geq 0$ with $\mathbf{x}_{a}=\left\{x_{i}\right\}_{i \in V(a)}\left(x_{i} \in X_{i}\right.$ finite), and $P(\mathbf{x})=\frac{1}{Z} \prod_{a \in A} \Psi_{a}\left(\mathbf{x}_{a}\right)$, BP Equations are

BP Equations

Given $\Psi_{a}\left(\mathbf{x}_{a}\right) \geq 0$ with $\mathbf{x}_{a}=\left\{x_{i}\right\}_{i \in V(a)}\left(x_{i} \in X_{i}\right.$ finite), and $P(\mathbf{x})=\frac{1}{Z} \prod_{a \in A} \Psi_{a}\left(\mathbf{x}_{\mathrm{a}}\right)$, BP Equations are

$$
\begin{aligned}
m_{a i}\left(x_{i}\right) & \propto \sum_{\left\{x_{j}\right\}_{j \in V(a) \backslash i}} \Psi_{a}\left(x_{a}\right) \prod_{j \in V(a) \backslash i} m_{j a}\left(x_{j}\right) \\
m_{i a}\left(x_{i}\right) & \propto \prod_{b \in V(i) \backslash a} m_{b i}\left(x_{i}\right) \\
m_{i}\left(x_{i}\right) & \propto \prod_{a \in V(i)} m_{a i}\left(x_{i}\right)
\end{aligned}
$$

BP Equations

Given $\Psi_{a}\left(\mathbf{x}_{a}\right) \geq 0$ with $\mathbf{x}_{a}=\left\{x_{i}\right\}_{i \in V(a)}\left(x_{i} \in X_{i}\right.$ finite), and $P(\mathbf{x})=\frac{1}{Z} \prod_{a \in A} \Psi_{a}\left(\mathbf{x}_{a}\right)$, BP Equations are

$$
\begin{aligned}
m_{a i}\left(x_{i}\right) & \propto \sum_{\left\{x_{j}\right\}_{j \in V(a) \backslash i}} \Psi_{a}\left(\mathbf{x}_{a}\right) \prod_{j \in V(a) \backslash i} m_{j a}\left(x_{j}\right) \\
m_{i a}\left(x_{i}\right) & \propto \prod_{b \in V(i) \backslash a} m_{b i}\left(x_{i}\right) \\
m_{i}\left(x_{i}\right) & \propto \prod_{a \in V(i)} m_{a i}\left(x_{i}\right)
\end{aligned}
$$

- $m_{i}\left(x_{i}\right) \approx P\left(x_{i}\right)=\sum_{\left\{x_{j}\right\}_{j \in \backslash i}} P(\mathbf{x})$,
- $m_{a}\left(\mathbf{x}_{a}\right) \propto \Psi_{a}\left(\mathbf{x}_{\mathrm{a}}\right) \prod_{i \in V(a)} m_{i a}\left(x_{i}\right) \approx P\left(\mathbf{x}_{\mathrm{a}}\right)=\sum_{\left\{x_{j}\right\}_{j \in \boldsymbol{V} \boldsymbol{V}(\mathrm{a})}} P(\mathbf{x})$

BP Equations

Given $\Psi_{a}\left(\mathbf{x}_{a}\right) \geq 0$ with $\mathbf{x}_{a}=\left\{x_{i}\right\}_{i \in V(a)}\left(x_{i} \in X_{i}\right.$ finite), and $P(\mathbf{x})=\frac{1}{Z} \prod_{a \in A} \Psi_{a}\left(\mathbf{x}_{a}\right)$, BP Equations are

$$
\begin{aligned}
m_{a i}\left(x_{i}\right) & \propto \sum_{\left\{x_{j}\right\}_{j \in V(a) \backslash i}} \Psi_{a}\left(\mathbf{x}_{a}\right) \prod_{j \in V(a) \backslash i} m_{j a}\left(x_{j}\right) \\
m_{i a}\left(x_{i}\right) & \propto \prod_{b \in V(i) \backslash a} m_{b i}\left(x_{i}\right) \\
m_{i}\left(x_{i}\right) & \propto \prod_{a \in V(i)} m_{a i}\left(x_{i}\right)
\end{aligned}
$$

- $m_{i}\left(x_{i}\right) \approx P\left(x_{i}\right)=\sum_{\left\{x_{j}\right\}_{j \in \backslash i}} P(\mathbf{x})$,
- $m_{a}\left(\mathbf{x}_{\mathrm{a}}\right) \propto \Psi_{\mathrm{a}}\left(\mathbf{x}_{\mathrm{a}}\right) \prod_{i \in V(\mathrm{a})} m_{i a}\left(x_{i}\right) \approx P\left(\mathbf{x}_{\mathrm{a}}\right)=\sum_{\left\{\mathrm{x}_{\mathrm{j}}\right\}_{j \in \backslash \backslash(\mathbf{a})}} P(\mathbf{x})$
- $-\log Z \approx F_{\text {Bethe }}=$
$\sum_{a} \sum_{\mathbf{x a}_{\mathbf{a}}} m_{a}\left(\mathbf{x}_{a}\right) \log \frac{m_{\mathbf{a}}\left(\mathbf{x}_{\mathbf{a}}\right)}{\psi_{\mathbf{a}}\left(\mathrm{x}_{\mathbf{a}}\right)}+\sum_{i}(1-|V(i)|) \sum_{x_{i}} m_{i}\left(x_{i}\right) \log m_{i}\left(x_{i}\right)$

BP Algo

- The FP equation $F_{B P}(\mathbf{m})=\mathbf{m}$ is solved by iteration $\lim _{n \rightarrow \infty} F_{B P}^{(n)}\left(\mathbf{m}_{0}\right)$

BP Algo

- The FP equation $F_{B P}(\mathbf{m})=\mathbf{m}$ is solved by iteration $\lim _{n \rightarrow \infty} F_{B P}^{(n)}\left(\mathbf{m}_{0}\right)$

$$
m_{i a}^{(t+1)}\left(x_{i}\right) \propto \prod_{b \in V(i) \backslash a} \sum_{\left\{x_{j}\right\}_{j \in V(b) \backslash i}} \psi_{b}\left(\mathbf{x}_{b}\right) \prod_{j \in V(b) \backslash i} m_{j b}^{(t)}\left(x_{j}\right)
$$

BP Algo

- The FP equation $F_{B P}(\mathbf{m})=\mathbf{m}$ is solved by iteration $\lim _{n \rightarrow \infty} F_{B P}^{(n)}\left(\mathbf{m}_{0}\right)$

$$
m_{i a}^{(t+1)}\left(x_{i}\right) \propto \prod_{b \in V(i) \backslash a} \sum_{\left\{x_{j}\right\}_{j \in \boldsymbol{V}(b) \backslash i}} \Psi_{b}\left(\mathbf{x}_{b}\right) \prod_{j \in V(b) \backslash i} m_{j b}^{(t)}\left(x_{j}\right)
$$

- On a tree BP Equations are exact: there is 1 FP and $m_{i}\left(x_{i}\right)=P\left(x_{i}\right), m_{a}\left(\mathbf{x}_{a}\right)=P\left(\mathbf{x}_{a}\right), F_{\text {Bethe }}=-\log Z$

BP Algo

- The FP equation $F_{B P}(\mathbf{m})=\mathbf{m}$ is solved by iteration $\lim _{n \rightarrow \infty} F_{B P}^{(n)}\left(\mathbf{m}_{0}\right)$

$$
m_{i a}^{(t+1)}\left(x_{i}\right) \propto \prod_{b \in V(i) \backslash a} \sum_{\left\{x_{j}\right\}_{j \in \boldsymbol{V}(b) \backslash i}} \Psi_{b}\left(\mathbf{x}_{b}\right) \prod_{j \in V(b) \backslash i} m_{j b}^{(t)}\left(x_{j}\right)
$$

- On a tree BP Equations are exact: there is 1 FP and $m_{i}\left(x_{i}\right)=P\left(x_{i}\right), m_{a}\left(\mathbf{x}_{a}\right)=P\left(\mathbf{x}_{a}\right), F_{\text {Bethe }}=-\log Z$
- Loopy graphs $\Longrightarrow \mathrm{BP}$ solutions are usually good approximations

Applications of BP

- SAMPLER $\left(\mathbf{x}^{*} \sim P(\mathbf{x})\right)$: Note $P(\mathbf{x})=P\left(x_{1}\right) P\left(x_{2}, \ldots x_{n} \mid x_{1}\right)$.

1. Use BP to estimate $P\left(x_{1}\right)$
2. Extract $x_{1}^{*} \sim P\left(x_{1}\right)$.
3. Modify the problem by adding a factor $\Psi_{1}\left(x_{1}\right)=\delta\left(x_{1} ; x_{1}^{*}\right)$ to P, reiterate

Applications of BP

- SAMPLER $\left(\mathbf{x}^{*} \sim P(\mathbf{x})\right)$: Note $P(\mathbf{x})=P\left(x_{1}\right) P\left(x_{2}, \ldots x_{n} \mid x_{1}\right)$.

1. Use BP to estimate $P\left(x_{1}\right)$
2. Extract $x_{1}^{*} \sim P\left(x_{1}\right)$.
3. Modify the problem by adding a factor $\Psi_{1}\left(x_{1}\right)=\delta\left(x_{1} ; x_{1}^{*}\right)$ to P, reiterate

- COUNTER (estimate $\#\left\{\mathbf{x}: \prod_{a} \Psi_{a}(\mathbf{x})=1\right\}$ where $\left.\Psi_{a}\left(\mathbf{x}_{a}\right) \in\{0,1\}\right)$: Use BP estimation of $\log Z$

Applications of BP

- SAMPLER ($\mathbf{x}^{*} \sim P(\mathbf{x})$): Note $P(\mathbf{x})=P\left(x_{1}\right) P\left(x_{2}, \ldots x_{n} \mid x_{1}\right)$.

1. Use BP to estimate $P\left(x_{1}\right)$
2. Extract $x_{1}^{*} \sim P\left(x_{1}\right)$.
3. Modify the problem by adding a factor $\Psi_{1}\left(x_{1}\right)=\delta\left(x_{1} ; x_{1}^{*}\right)$ to P, reiterate

- COUNTER (estimate $\#\left\{\mathbf{x}: \prod_{a} \Psi_{a}(\mathbf{x})=1\right\}$ where $\left.\Psi_{a}\left(\mathbf{x}_{a}\right) \in\{0,1\}\right)$: Use BP estimation of $\log Z$
- SOLVER $\left(\mathbf{x}^{*} \in\left\{\mathbf{x}: \prod_{a} \Psi_{a}\left(\mathbf{x}^{*}\right)=1\right\}\right.$, where $\left.\Psi_{a}\left(\mathbf{x}_{a}\right) \in\{0,1\}\right)$:

1. Run BP.
2. Find i and x_{i}^{*} s.t. $P\left(x_{i}^{*}\right)=\max \left\{P\left(x_{j}\right): j \in V, x_{j} \in X_{j}\right\}$
3. Modify the problem by adding a factor $\Psi_{1}\left(x_{1}\right)=\delta\left(x_{1} ; x_{1}^{*}\right)$, reiterate

Applications of BP

- SAMPLER ($\mathbf{x}^{*} \sim P(\mathbf{x})$): Note $P(\mathbf{x})=P\left(x_{1}\right) P\left(x_{2}, \ldots x_{n} \mid x_{1}\right)$.

1. Use BP to estimate $P\left(x_{1}\right)$
2. Extract $x_{1}^{*} \sim P\left(x_{1}\right)$.
3. Modify the problem by adding a factor $\Psi_{1}\left(x_{1}\right)=\delta\left(x_{1} ; x_{1}^{*}\right)$ to P, reiterate

- COUNTER (estimate $\#\left\{\mathbf{x}: \prod_{a} \Psi_{a}(\mathbf{x})=1\right\}$ where $\left.\Psi_{a}\left(\mathbf{x}_{a}\right) \in\{0,1\}\right)$: Use BP estimation of $\log Z$
- SOLVER $\left(\mathbf{x}^{*} \in\left\{\mathbf{x}: \prod_{a} \Psi_{a}\left(\mathbf{x}^{*}\right)=1\right\}\right.$, where $\left.\Psi_{a}\left(\mathbf{x}_{a}\right) \in\{0,1\}\right)$:

1. Run BP.
2. Find i and x_{i}^{*} s.t. $P\left(x_{i}^{*}\right)=\max \left\{P\left(x_{j}\right): j \in V, x_{j} \in X_{j}\right\}$
3. Modify the problem by adding a factor $\Psi_{1}\left(x_{1}\right)=\delta\left(x_{1} ; x_{1}^{*}\right)$, reiterate

- OPTIMIZER (find $\arg \max P(x)$) ... more later!

Crosswords!

	A	L	M	I	R	A		L	E
A	L	A		L	A	S	S	E	S
R	I	N	S	E	D		H	A	T
I	N		P	A	S	S	E	D	
S	A	R	A	N		T	E	S	S
E		I	R	A	T	E	R		A
S	A	V	E		R	E	S	T	S
	R	E	S	E	E	D		A	S
M	I	R		R	E	S	A	L	E
B	A	S	T	E	S		M	E	D

Crosswords!

- Around 100.000 english words (taken from the aspell dictionary)

	A	L		I	R	A		L	E
A	L	A		L	A	S	S	E	S
R	I	N		E	D		H	A	T
1	N			A	S	S	E	D	
S	A	R		N		T	E	S	A
E		I	R	A	T	E	R		A
S	A	V	R		R	E	S	T	S
	R	E		E	E	D		A	S
M	1	R		R	E	S	A	L	E
B	A	S		E			M	E	D

Crosswords!

- Around 100.000 english words (taken from the aspell dictionary)

	A	L	M	I	R	A		L	E
A	L	A		L	A	S	S	E	S
R	I	N	S	E	D		H	A	T
I	N		P	A	S	S	E	D	
S	A	R	A	N		T	E	S	S
E		I	R	A	T	E	R		A
S	A	V	E		R	E	S	T	S
	R	E	S	E	E	D		A	S
M	I	R		R	E	S	A	L	E
B	A	S	T	E	S		M	E	D

- Each contiguous sequence of white squares must be filled by an english word

Crosswords!

- Around 100.000 english words (taken from the aspell dictionary)

	A	L	M	1	R	A		L	E
A	L	A		L	A	S	S	E	S
R	1	N	S	E	D		H	A	T
1	N		P	A	S	S	E	D	
S	A	R	A	N		T	E	S	S
E		I	R	A	T	E	R		A
S	A	V	E		R	E	S	T	S
	R	E	S	E	E	D		A	S
M	I	R		R	E	S	A	L	E
B	A	S	T	E	S		M	E	D

- Each contiguous sequence of white squares must be filled by an english word
- How many ways to create a crossword for a given pattern of black squares?

Crosswords!

- Around 100.000 english words (taken from the aspell dictionary)

	A	L	M	1	R	A		L	E
A	L	A		L	A	S	S	E	S
R	1	N	S	E	D		H	A	T
1	N		P	A	S	S	E	D	
S	A	R	A	N		T	E	S	S
E		I	R	A	T	E	R		A
S	A	V	E		R	E	S	T	S
	R	E	S	E	E	D		A	S
M	I	R		R	E	S	A	L	E
B	A	S	T	E	S		M	E	D

- Each contiguous sequence of white squares must be filled by an english word
- How many ways to create a crossword for a given pattern of black squares?
- Which proportion of those have a "D" in its bottom right square?

Crosswords!

- Around 100.000 english words (taken from the aspell dictionary)

	A	L	M	I	R	A		L

- Each contiguous sequence of white squares must be filled by an english word
- How many ways to create a crossword for a given pattern of black squares?
- Which proportion of those have a " D " in its bottom right square?
- These problems are mathematically easy: all sets here are finite!

Enumerating Crosswords

- Solution: Write in traslucent paper all crosswords (possibly with the help of monkeys) and put them in a stack, look at a light source through the stack

Enumerating Crosswords

- Solution: Write in traslucent paper all crosswords (possibly with the help of monkeys) and put them in a stack, look at a light source through the stack
- Drawback 1: Even one crossword with a given pattern is highly non-trivial to obtain...

Enumerating Crosswords

- Solution: Write in traslucent paper all crosswords (possibly with the help of monkeys) and put them in a stack, look at a light source through the stack

- Drawback 1: Even one crossword with a given pattern is highly non-trivial to obtain...
- Drawback 2: There are around 10^{30} valid crosswords for the pattern in the previous slide (how do I know?). Estimating conservatively in 0.01 mm the thickness of a piece of paper, this gives a $\sim 10^{22} \mathrm{~km}$ stack (distance earth-moon $\sim 3 \times 10^{5} \mathrm{~km}$)

Enumerating Crosswords

- Solution: Write in traslucent paper all crosswords (possibly with the help of monkeys) and put them in a stack, look at a light source through the stack

- Drawback 1: Even one crossword with a given pattern is highly non-trivial to obtain...
- Drawback 2: There are around 10^{30} valid crosswords for the pattern in the previous slide (how do I know?). Estimating conservatively in 0.01 mm the thickness of a piece of paper, this gives a $\sim 10^{22} \mathrm{~km}$ stack (distance earth-moon $\sim 3 \times 10^{5} \mathrm{~km}$) \Longrightarrow nearly not enough bananas

BP for crosswords

- English dictionary D (set of english words)

BP for crosswords

- English dictionary D (set of english words)
- Indices: a set X of letters coordinates, one for each non-black square, a set H of horizontal words indices, one for each horizontal blank sequence, a set V of vertical word indices, one for each vertical blank sequence,

BP for crosswords

- English dictionary D (set of english words)
- Indices: a set X of letters coordinates, one for each non-black square, a set H of horizontal words indices, one for each horizontal blank sequence, a set V of vertical word indices, one for each vertical blank sequence,
- Variables: $h_{s} \in D$ for each $s \in H, v_{t} \in D$ for each $t \in V$, $x_{i j} \in\{a, \ldots, z\}$ for each $i j \in X$

BP for crosswords

- English dictionary D (set of english words)
- Indices: a set X of letters coordinates, one for each non-black square, a set H of horizontal words indices, one for each horizontal blank sequence, a set V of vertical word indices, one for each vertical blank sequence,
- Variables: $h_{s} \in D$ for each $s \in H, v_{t} \in D$ for each $t \in V$, $x_{i j} \in\{a, \ldots, z\}$ for each $i j \in X$
- For each non-black square $i j$,

BP for crosswords

- English dictionary D (set of english words)
- Indices: a set X of letters coordinates, one for each non-black square, a set H of horizontal words indices, one for each horizontal blank sequence, a set V of vertical word indices, one for each vertical blank sequence,
- Variables: $h_{s} \in D$ for each $s \in H, v_{t} \in D$ for each $t \in V$, $x_{i j} \in\{a, \ldots, z\}$ for each $i j \in X$
- For each non-black square $i j$,
- $s(i j) \in H=$ crossing horizontal word, $p(i j)=$ position of $i j$ within,
- $t(i j) \in V=$ crossing vertical word, $q(i j)$ position of $i j$ within

BP for crosswords

- English dictionary D (set of english words)
- Indices: a set X of letters coordinates, one for each non-black square, a set H of horizontal words indices, one for each horizontal blank sequence, a set V of vertical word indices, one for each vertical blank sequence,
- Variables: $h_{s} \in D$ for each $s \in H, v_{t} \in D$ for each $t \in V$, $x_{i j} \in\{a, \ldots, z\}$ for each $i j \in X$
- For each non-black square $i j$,
- $s(i j) \in H=$ crossing horizontal word, $p(i j)=$ position of $i j$ within,
- $t(i j) \in V=$ crossing vertical word, $q(i j)$ position of $i j$ within
- Constraints: For each non black position $i j$: the following two conditions have to be ensured: $\left(h_{s(i j)}\right)_{p(i j)}=x_{i j}$ and $\left(v_{t(i j)}\right)_{q(i j)}=x_{i j}$

BP for crosswords

- English dictionary D (set of english words)
- Indices: a set X of letters coordinates, one for each non-black square, a set H of horizontal words indices, one for each horizontal blank sequence, a set V of vertical word indices, one for each vertical blank sequence,
- Variables: $h_{s} \in D$ for each $s \in H, v_{t} \in D$ for each $t \in V$, $x_{i j} \in\{a, \ldots, z\}$ for each $i j \in X$
- For each non-black square $i j$,
- $s(i j) \in H=$ crossing horizontal word, $p(i j)=$ position of $i j$ within,
- $t(i j) \in V=$ crossing vertical word, $q(i j)$ position of ij within
- Constraints: For each non black position ij: the following two conditions have to be ensured: $\left(h_{s(i j)}\right)_{p(i j)}=x_{i j}$ and $\left(v_{t(i j)}\right)_{q(i j)}=x_{i j}$
- In summary: $|H|+|V|+|X|$ variable nodes, $2|X|$ constraints

$$
P(\mathbf{h}, \mathbf{v}, \mathbf{x})=\frac{1}{Z} \prod_{i j \in X} \delta\left(\left(h_{s(i j)}\right)_{p(i j)} ; x_{i j}\right) \delta\left(\left(v_{t(i j)}\right)_{q(i j)} ; x_{i j}\right)
$$

BP for crosswords

- English dictionary D (set of english words)
- Indices: a set X of letters coordinates, one for each non-black square, a set H of horizontal words indices, one for each horizontal blank sequence, a set V of vertical word indices, one for each vertical blank sequence,
- Variables: $h_{s} \in D$ for each $s \in H, v_{t} \in D$ for each $t \in V$, $x_{i j} \in\{a, \ldots, z\}$ for each $i j \in X$
- For each non-black square $i j$,
- $s(i j) \in H=$ crossing horizontal word, $p(i j)=$ position of $i j$ within,
- $t(i j) \in V=$ crossing vertical word, $q(i j)$ position of ij within
- Constraints: For each non black position ij: the following two conditions have to be ensured: $\left(h_{s(i j)}\right)_{p(i j)}=x_{i j}$ and $\left(v_{t(i j)}\right)_{q(i j)}=x_{i j}$
- In summary: $|H|+|V|+|X|$ variable nodes, $2|X|$ constraints

$$
P(\mathbf{h}, \mathbf{v}, \mathbf{x})=\frac{1}{Z} \prod_{i j \in X} \delta\left(\left(h_{s(i j)}\right)_{p(i j)} ; x_{i j}\right) \delta\left(\left(v_{t(i j)}\right)_{q(i j)} ; x_{i j}\right)
$$

- $Z=\sum_{\mathbf{h}, \mathbf{v}, \mathbf{x}} \Pi_{i j \in X} \delta(\cdot) \delta(\cdot)=\#$ crosswords

BP for crosswords

- English dictionary D (set of english words)
- Indices: a set X of letters coordinates, one for each non-black square, a set H of horizontal words indices, one for each horizontal blank sequence, a set V of vertical word indices, one for each vertical blank sequence,
- Variables: $h_{s} \in D$ for each $s \in H, v_{t} \in D$ for each $t \in V$, $x_{i j} \in\{a, \ldots, z\}$ for each $i j \in X$
- For each non-black square $i j$,
- $s(i j) \in H=$ crossing horizontal word, $p(i j)=$ position of $i j$ within,
- $t(i j) \in V=$ crossing vertical word, $q(i j)$ position of ij within
- Constraints: For each non black position ij: the following two conditions have to be ensured: $\left(h_{s(i j)}\right)_{p(i j)}=x_{i j}$ and $\left(v_{t(i j)}\right)_{q(i j)}=x_{i j}$
- In summary: $|H|+|V|+|X|$ variable nodes, $2|X|$ constraints

$$
P(\mathbf{h}, \mathbf{v}, \mathbf{x})=\frac{1}{Z} \prod_{i j \in X} \delta\left(\left(h_{s(i j)}\right)_{p(i j)} ; x_{i j}\right) \delta\left(\left(v_{t(i j)}\right)_{q(i j)} ; x_{i j}\right)
$$

- $Z=\sum_{\mathbf{h}, \mathbf{v}, \mathrm{x}} \Pi_{i j \in X} \delta(\cdot) \delta(\cdot)=\#$ crosswords
- Results?

Max-Sum (1)

Definitions

In Statistical Physics, Gibbs measures are often studied :

$$
P_{G i b b s}(\mathbf{x})=\frac{1}{Z} e^{-\beta H(\mathbf{x})} \text { with } H(\mathbf{x})=\sum_{a \in A} H_{a}\left(\mathbf{x}_{a}\right)
$$

Max-Sum (1)

Definitions

In Statistical Physics, Gibbs measures are often studied :

$$
P_{G i b b s}(\mathbf{x})=\frac{1}{Z} e^{-\beta H(\mathbf{x})} \text { with } H(\mathbf{x})=\sum_{a \in A} H_{a}\left(\mathbf{x}_{a}\right)
$$

- Same old formalism, with $\Psi_{a}\left(\mathbf{x}_{a}\right)=\exp \left(-\beta H_{a}\left(\mathbf{x}_{a}\right)\right)$

Max-Sum (1)

Definitions

In Statistical Physics, Gibbs measures are often studied :

$$
P_{G i b b s}(\mathbf{x})=\frac{1}{Z} e^{-\beta H(\mathbf{x})} \text { with } H(\mathbf{x})=\sum_{a \in A} H_{a}\left(\mathbf{x}_{a}\right)
$$

- Same old formalism, with $\Psi_{a}\left(\mathbf{x}_{a}\right)=\exp \left(-\beta H_{a}\left(\mathbf{x}_{a}\right)\right)$
- In the limit $\beta \rightarrow \infty, P_{\text {Gibbs }}$ concentrates on the minimums of H.

Max-Sum (1)

Definitions

In Statistical Physics, Gibbs measures are often studied :

$$
P_{G i b b s}(\mathbf{x})=\frac{1}{Z} e^{-\beta H(\mathbf{x})} \text { with } H(\mathbf{x})=\sum_{a \in A} H_{a}\left(\mathbf{x}_{a}\right)
$$

- Same old formalism, with $\Psi_{a}\left(\mathbf{x}_{a}\right)=\exp \left(-\beta H_{a}\left(\mathbf{x}_{a}\right)\right)$
- In the limit $\beta \rightarrow \infty, P_{\text {Gibbs }}$ concentrates on the minimums of H.
- $\phi_{a i}\left(x_{i}\right)=\frac{1}{\beta} \log m_{a i}\left(x_{i}\right), \phi_{i a}\left(x_{i}\right)=\frac{1}{\beta} \log m_{i a}\left(x_{i}\right)$, The $\beta \rightarrow \infty$ limit of BP equations is:

Max-Sum (1)

Definitions

In Statistical Physics, Gibbs measures are often studied :

$$
P_{G i b b s}(\mathbf{x})=\frac{1}{Z} e^{-\beta H(\mathbf{x})} \text { with } H(\mathbf{x})=\sum_{a \in A} H_{a}\left(\mathbf{x}_{a}\right)
$$

- Same old formalism, with $\Psi_{a}\left(\mathbf{x}_{a}\right)=\exp \left(-\beta H_{a}\left(\mathbf{x}_{a}\right)\right)$
- In the limit $\beta \rightarrow \infty, P_{\text {Gibbs }}$ concentrates on the minimums of H.
- $\phi_{a i}\left(x_{i}\right)=\frac{1}{\beta} \log m_{a i}\left(x_{i}\right), \phi_{i a}\left(x_{i}\right)=\frac{1}{\beta} \log m_{i a}\left(x_{i}\right)$, The $\beta \rightarrow \infty$ limit of BP equations is:

$$
\begin{aligned}
& \phi_{a i}\left(x_{i}\right)=\max _{\left\{x_{j}\right\}_{j \in V(a) \backslash i}\left\{\sum_{j \in V(a) \backslash i} \phi_{j a}\left(x_{j}\right)-H_{a}\left(\mathbf{x}_{a}\right)\right\}+c} \\
& \phi_{i a}\left(x_{i}\right)=\sum_{b \in V(i) \backslash a} \phi_{b i}\left(x_{i}\right)+c
\end{aligned}
$$

Max-Sum (1)

Definitions

In Statistical Physics, Gibbs measures are often studied :

$$
P_{G i b b s}(\mathbf{x})=\frac{1}{Z} e^{-\beta H(\mathbf{x})} \text { with } H(\mathbf{x})=\sum_{a \in A} H_{a}\left(\mathbf{x}_{a}\right)
$$

- Same old formalism, with $\Psi_{a}\left(\mathbf{x}_{a}\right)=\exp \left(-\beta H_{a}\left(\mathbf{x}_{a}\right)\right)$
- In the limit $\beta \rightarrow \infty, P_{\text {Gibbs }}$ concentrates on the minimums of H.
- $\phi_{a i}\left(x_{i}\right)=\frac{1}{\beta} \log m_{a i}\left(x_{i}\right), \phi_{i a}\left(x_{i}\right)=\frac{1}{\beta} \log m_{i a}\left(x_{i}\right)$, The $\beta \rightarrow \infty$ limit of BP equations is:

$$
\begin{aligned}
& \phi_{a i}\left(x_{i}\right)=\max _{\left\{x_{j}\right\}_{j \in V(a) \backslash i}\left\{\sum_{j \in V(a) \backslash i} \phi_{j a}\left(x_{j}\right)-H_{a}\left(\mathbf{x}_{a}\right)\right\}+c} \\
& \phi_{i a}\left(x_{i}\right)=\sum_{b \in V(i) \backslash a} \phi_{b i}\left(x_{i}\right)+c
\end{aligned}
$$

- i.e. just BP equations with $\sum \rightarrow \max , \Pi \rightarrow \sum$

Max-Sum (1)

Definitions

In Statistical Physics, Gibbs measures are often studied :

$$
P_{G i b b s}(\mathbf{x})=\frac{1}{Z} e^{-\beta H(\mathbf{x})} \text { with } H(\mathbf{x})=\sum_{a \in A} H_{a}\left(\mathbf{x}_{a}\right)
$$

- Same old formalism, with $\Psi_{a}\left(\mathbf{x}_{a}\right)=\exp \left(-\beta H_{a}\left(\mathbf{x}_{a}\right)\right)$
- In the limit $\beta \rightarrow \infty, P_{\text {Gibbs }}$ concentrates on the minimums of H.
- $\phi_{a i}\left(x_{i}\right)=\frac{1}{\beta} \log m_{a i}\left(x_{i}\right), \phi_{i a}\left(x_{i}\right)=\frac{1}{\beta} \log m_{i a}\left(x_{i}\right)$, The $\beta \rightarrow \infty$ limit of BP equations is:

$$
\begin{aligned}
& \phi_{a i}\left(x_{i}\right)=\max _{\left\{x_{j}\right\}_{j \in V(a) \backslash i}\left\{\sum_{j \in V(a) \backslash i} \phi_{j a}\left(x_{j}\right)-H_{a}\left(\mathbf{x}_{a}\right)\right\}+c} \\
& \phi_{i a}\left(x_{i}\right)=\sum_{b \in V(i) \backslash a} \phi_{b i}\left(x_{i}\right)+c
\end{aligned}
$$

- i.e. just BP equations with $\sum \rightarrow \max , \Pi \rightarrow \sum$
- Max Sum is exact on trees, if the solution is unique, $\arg \max \phi_{i}\left(x_{i}\right)$ for $\phi_{i}\left(x_{i}\right)=\sum_{b \in V(i)} \phi_{b i}\left(x_{i}\right)$ gives the optimum

Max Sum (2)

MS for D-bounded Minimum Steiner Tree

- Input: Rooted graph $G=(V, E, r)$, edge costs $\left\{c_{e}\right\}_{e \in E}$, vertex prizes $\left\{b_{i}\right\}_{i \in V}$
- Problem: Find $\min _{T \subset G}$ tree $\sum_{e \in E_{T}} c_{e}-\sum_{i \in V_{T}} b_{i}$

Max Sum (2)

MS for D-bounded Minimum Steiner Tree

- Input: Rooted graph $G=(V, E, r)$, edge costs $\left\{c_{e}\right\}_{e \in E}$, vertex prizes $\left\{b_{i}\right\}_{i \in V}$
- Problem: Find $\min _{T \subset G}$ tree $\sum_{e \in E_{T}} c_{e}-\sum_{i \in V_{T}} b_{i}$

Max Sum representation:

Max Sum (2)

MS for D-bounded Minimum Steiner Tree

- Input: Rooted graph $G=(V, E, r)$, edge costs $\left\{c_{e}\right\}_{e \in E}$, vertex prizes $\left\{b_{i}\right\}_{i \in V}$
- Problem: Find $\min _{T \subset G}$ tree $\sum_{e \in E_{T}} c_{e}-\sum_{i \in V_{T}} b_{i}$

Max Sum representation:

- Variables $\left(d_{i}, p_{i}\right)$ associated to $i \in V .1 \leq d_{i} \leq D$ and $p_{i} \in V(i) \cup\{*\}$.

Max Sum (2)

MS for D-bounded Minimum Steiner Tree

- Input: Rooted graph $G=(V, E, r)$, edge costs $\left\{c_{e}\right\}_{e \in E}$, vertex prizes $\left\{b_{i}\right\}_{i \in V}$
- Problem: Find $\min _{T \subset G}$ tree $\sum_{e \in E_{T}} c_{e}-\sum_{i \in V_{T}} b_{i}$

Max Sum representation:

- Variables $\left(d_{i}, p_{i}\right)$ associated to $i \in V .1 \leq d_{i} \leq D$ and $p_{i} \in V(i) \cup\{*\}$.
- Constraints on links: $p_{i}=j \Rightarrow d_{i}=d_{j}+1 \wedge p_{j} \neq *$

Max Sum (2)

MS for D-bounded Minimum Steiner Tree

- Input: Rooted graph $G=(V, E, r)$, edge costs $\left\{c_{e}\right\}_{e \in E}$, vertex prizes $\left\{b_{i}\right\}_{i \in V}$
- Problem: Find $\min _{T \subset G}$ tree $\sum_{e \in E_{T}} c_{e}-\sum_{i \in V_{T}} b_{i}$

Max Sum representation:

- Variables $\left(d_{i}, p_{i}\right)$ associated to $i \in V .1 \leq d_{i} \leq D$ and $p_{i} \in V(i) \cup\{*\}$.
- Constraints on links: $p_{i}=j \Rightarrow d_{i}=d_{j}+1 \wedge p_{j} \neq *$
- Cost: $H(\mathbf{p}, \mathbf{d})=\sum_{i \in V} c_{i p_{i}}$ where $c_{i *}=b_{i}$

Max Sum (2)

MS for D-bounded Minimum Steiner Tree

- Input: Rooted graph $G=(V, E, r)$, edge costs $\left\{c_{e}\right\}_{e \in E}$, vertex prizes $\left\{b_{i}\right\}_{i \in V}$
- Problem: Find $\min _{T \subset G}$ tree $\sum_{e \in E_{T}} c_{e}-\sum_{i \in V_{T}} b_{i}$ Max Sum representation:

- Variables $\left(d_{i}, p_{i}\right)$ associated to $i \in V .1 \leq d_{i} \leq D$ and $p_{i} \in V(i) \cup\{*\}$.
- Constraints on links: $p_{i}=j \Rightarrow d_{i}=d_{j}+1 \wedge p_{j} \neq *$
- Cost: $H(\mathbf{p}, \mathbf{d})=\sum_{i \in V} c_{i p_{i}}$ where $c_{i *}=b_{i}$

Max-Sum (3)

Optimality results
Theorem
If the min is unique, in a FP of Max Sum for the Minimum Spanning Tree (i.e. $D=N, T=V$) on arbitrary graphs,
$\left(p_{i}^{*}, d_{i}^{*}\right)=\arg \max \phi_{i}\left(p_{i}, d_{i}\right)$ define the optimum tree

Max-Sum (3)

Optimality results
Theorem
If the min is unique, in a FP of Max Sum for the Minimum Spanning Tree (i.e. $D=N, T=V$) on arbitrary graphs,
$\left(p_{i}^{*}, d_{i}^{*}\right)=\arg \max \phi_{i}\left(p_{i}, d_{i}\right)$ define the optimum tree
Proof.
(Sketch): Assume FP giving unoptimal solution on G, and consider the computation tree rooted at $v \in V, T_{k}=\left(V_{k}, E_{k}\right)$:

Max-Sum (3)

Optimality results
Theorem
If the min is unique, in a FP of Max Sum for the Minimum Spanning Tree (i.e. $D=N, T=V$) on arbitrary graphs,
$\left(p_{i}^{*}, d_{i}^{*}\right)=\arg \max \phi_{i}\left(p_{i}, d_{i}\right)$ define the optimum tree
Proof.
(Sketch): Assume FP giving unoptimal solution on G, and consider the computation tree rooted at $v \in V, T_{k}=\left(V_{k}, E_{k}\right)$:

- $V_{k}=\left\{v=v_{1}, \ldots v_{l}: I \leq k,\left(v_{i} v_{i+1}\right) \in E, v_{i+2} \neq v_{i}\right\}$

Max-Sum (3)

Optimality results
Theorem
If the min is unique, in a FP of Max Sum for the Minimum Spanning Tree (i.e. $D=N, T=V$) on arbitrary graphs,
$\left(p_{i}^{*}, d_{i}^{*}\right)=\arg \max \phi_{i}\left(p_{i}, d_{i}\right)$ define the optimum tree
Proof.
(Sketch): Assume FP giving unoptimal solution on G, and consider the computation tree rooted at $v \in V, T_{k}=\left(V_{k}, E_{k}\right)$:

- $V_{k}=\left\{v=v_{1}, \ldots v_{l}: I \leq k,\left(v_{i} v_{i+1}\right) \in E, v_{i+2} \neq v_{i}\right\}$
- $E_{k}=\left\{\left(p_{1}, p_{2}\right)\right.$ if $\left.p_{1}=p_{2} v\right\}$

Max-Sum (3)

Optimality results
Theorem
If the min is unique, in a FP of Max Sum for the Minimum Spanning Tree (i.e. $D=N, T=V$) on arbitrary graphs,
$\left(p_{i}^{*}, d_{i}^{*}\right)=\arg \max \phi_{i}\left(p_{i}, d_{i}\right)$ define the optimum tree
Proof.
(Sketch): Assume FP giving unoptimal solution on G, and consider the computation tree rooted at $v \in V, T_{k}=\left(V_{k}, E_{k}\right)$:

- $V_{k}=\left\{v=v_{1}, \ldots v_{l}: I \leq k,\left(v_{i} v_{i+1}\right) \in E, v_{i+2} \neq v_{i}\right\}$
- $E_{k}=\left\{\left(p_{1}, p_{2}\right)\right.$ if $\left.p_{1}=p_{2} v\right\}$
- T_{k} is locally isomorphic to G, but T_{k} is a tree (covering)

Max-Sum (3)

Optimality results
Theorem
If the min is unique, in a FP of Max Sum for the Minimum Spanning Tree (i.e. $D=N, T=V$) on arbitrary graphs,
$\left(p_{i}^{*}, d_{i}^{*}\right)=\arg \max \phi_{i}\left(p_{i}, d_{i}\right)$ define the optimum tree
Proof.
(Sketch): Assume FP giving unoptimal solution on G, and consider the computation tree rooted at $v \in V, T_{k}=\left(V_{k}, E_{k}\right)$:

- $V_{k}=\left\{v=v_{1}, \ldots v_{l}: I \leq k,\left(v_{i} v_{i+1}\right) \in E, v_{i+2} \neq v_{i}\right\}$
- $E_{k}=\left\{\left(p_{1}, p_{2}\right)\right.$ if $\left.p_{1}=p_{2} v\right\}$
- T_{k} is locally isomorphic to G, but T_{k} is a tree (covering)

Max-Sum (4)

General scheme:

1. FP of MS in $G \leftrightarrow \mathrm{FP}$ in T_{k} with appropriate leaf conditions

Max-Sum (4)

General scheme:

1. FP of MS in $G \leftrightarrow \mathrm{FP}$ in T_{k} with appropriate leaf conditions
2. T_{k} is a tree $\Longrightarrow \mathrm{MS}$ is exact on T_{k}

Max-Sum (4)

General scheme:

1. FP of MS in $G \leftrightarrow \mathrm{FP}$ in T_{k} with appropriate leaf conditions
2. T_{k} is a tree $\Longrightarrow \mathrm{MS}$ is exact on T_{k}
3. On T_{k} the [lifting of] $\left\{p_{i}^{*}\right\}$ defines a forest with each connected component not touching the leaves isomorphic to $\left\{p_{i}^{*}\right\}$ on G.

Max-Sum (4)

General scheme:

1. FP of MS in $G \leftrightarrow \mathrm{FP}$ in T_{k} with appropriate leaf conditions
2. T_{k} is a tree $\Longrightarrow \mathrm{MS}$ is exact on T_{k}
3. On T_{k} the [lifting of] $\left\{p_{i}^{*}\right\}$ defines a forest with each connected component not touching the leaves isomorphic to $\left\{p_{i}^{*}\right\}$ on G.
4. Take the optimal solution $\left\{q_{i}\right\}$ on G and use it to improve the solution on T_{k} (by
 replacing the pink $C C) \Longrightarrow$ contradiction

The End

Thanks, and happy holidays!

