Belief Propagation for combinatorial optimization

Alfredo Braunstein

December 21, 2010

3-COLORING

- Given a (finite) undirected graph G = (V, E)
- ▶ A proper 3—coloring is $c: V \to \{\bullet, \bullet, \bullet\}$ such that $c(i) \neq c(j)$ if $(i, j) \in E$
- ► Finding proper colorings is a hard computational problem (NP-Complete)
- Counting proper colorings is also a hard problem

 $N_{0}(\bullet) = \left(N_{1}^{(0)}(\bullet) + P_{1}^{(0)}(\bullet)\right) \left(N_{2}^{(0)}(\bullet) + N_{2}^{(0)}(\bullet)\right) \left(N_{3}^{(0)}(\bullet) + N_{3}^{(0)}(\bullet)\right)$

$$\begin{aligned}
N_{0}(\bullet) &= N^{(0)}(\bullet\bullet\bullet) + N^{(0)}(\bullet\bullet\bullet) + N^{(0)}(\bullet\bullet\bullet) + N^{(0)}(\bullet\bullet\bullet) + \cdots \\
&= N_{1}^{(0)}(\bullet) N_{2}^{(0)}(\bullet) N_{3}^{(0)}(\bullet) + N_{1}^{(0)}(\bullet) N_{2}^{(0)}(\bullet) N_{3}^{(0)}(\bullet) + \cdots \\
&= \left(N_{1}^{(0)}(\bullet) + N_{1}^{(0)}(\bullet)\right) \left(N_{2}^{(0)}(\bullet) + N_{2}^{(0)}(\bullet)\right) \left(N_{3}^{(0)}(\bullet) + N_{3}^{(0)}(\bullet)\right) \\
N_{0}(\bullet) &= \left(N_{1}^{(0)}(\bullet) + P_{1}^{(0)}(\bullet)\right) \left(N_{2}^{(0)}(\bullet) + N_{2}^{(0)}(\bullet)\right) \left(N_{3}^{(0)}(\bullet) + N_{3}^{(0)}(\bullet)\right) \\
N_{0}(\bullet) &= \left(N_{1}^{(0)}(\bullet) + N_{1}^{(0)}(\bullet)\right) \left(N_{2}^{(0)}(\bullet) + N_{2}^{(0)}(\bullet)\right) \left(N_{3}^{(0)}(\bullet) + N_{3}^{(0)}(\bullet)\right)
\end{aligned}$$

$$\begin{array}{lll} P_{0}\left(\bullet\right) & \propto & P^{(0)}\left(\bullet\bullet\bullet\right) + P^{(0)}\left(\bullet\bullet\bullet\right) + P^{(0)}\left(\bullet\bullet\bullet\right) + P^{(0)}\left(\bullet\bullet\bullet\right) + \cdots \\ & = & P_{1}^{(0)}\left(\bullet\right)P_{2}^{(0)}\left(\bullet\right)P_{3}^{(0)}\left(\bullet\right) + P_{1}^{(0)}\left(\bullet\right)P_{2}^{(0)}\left(\bullet\right)P_{3}^{(0)}\left(\bullet\right) + \cdots \\ & = & \left(P_{1}^{(0)}\left(\bullet\right) + P_{1}^{(0)}\left(\bullet\right)\right)\left(P_{2}^{(0)}\left(\bullet\right) + P_{2}^{(0)}\left(\bullet\right)\right)\left(P_{3}^{(0)}\left(\bullet\right) + P_{3}^{(0)}\left(\bullet\right)\right) \\ P_{0}\left(\bullet\right) & \propto & \left(P_{1}^{(0)}\left(\bullet\right) + P_{1}^{(0)}\left(\bullet\right)\right)\left(P_{2}^{(0)}\left(\bullet\right) + P_{2}^{(0)}\left(\bullet\right)\right)\left(P_{3}^{(0)}\left(\bullet\right) + P_{3}^{(0)}\left(\bullet\right)\right) \\ P_{0}\left(\bullet\right) & \propto & \left(P_{1}^{(0)}\left(\bullet\right) + P_{1}^{(0)}\left(\bullet\right)\right)\left(P_{2}^{(0)}\left(\bullet\right) + P_{2}^{(0)}\left(\bullet\right)\right)\left(P_{3}^{(0)}\left(\bullet\right) + P_{3}^{(0)}\left(\bullet\right)\right) \end{array}$$

 $P_0^{(4)}\left(\bullet\right) \propto \left(P_1^{(0)}\left(\bullet\right) + P_1^{(0)}\left(\bullet\right)\right) \left(P_2^{(0)}\left(\bullet\right) + P_2^{(0)}\left(\bullet\right)\right) \left(P_3^{(0)}\left(\bullet\right) + P_3^{(0)}\left(\bullet\right)\right)$

 $P_0^{(4)}(\bullet) \propto \left(P_1^{(0)}(\bullet) + P_1^{(0)}(\bullet)\right) \left(P_2^{(0)}(\bullet) + P_2^{(0)}(\bullet)\right) \left(P_3^{(0)}(\bullet) + P_3^{(0)}(\bullet)\right)$

Given $\Psi_{a}(\mathbf{x}_{a}) \geq 0$ with $\mathbf{x}_{a} = \{x_{i}\}_{i \in V(a)}$ $(x_{i} \in X_{i} \text{ finite})$, and $P(\mathbf{x}) = \frac{1}{Z} \prod_{a \in A} \Psi_{a}(\mathbf{x}_{a})$, BP Equations are

Given $\Psi_a(\mathbf{x}_a) \ge 0$ with $\mathbf{x}_a = \{x_i\}_{i \in V(a)}$ $(x_i \in X_i \text{ finite})$, and $P(\mathbf{x}) = \frac{1}{Z} \prod_{a \in A} \Psi_a(\mathbf{x}_a)$, BP Equations are

$$\begin{array}{ll} m_{ai}\left(x_{i}\right) & \propto & \displaystyle\sum_{\left\{x_{j}\right\}_{j\in\mathcal{V}\left(\mathbf{a}\right)\backslash i}} \Psi_{a}\left(\mathbf{x}_{a}\right) \prod_{j\in\mathcal{V}\left(a\right)\backslash i} m_{ja}\left(x_{j}\right) \\ \\ m_{ia}\left(x_{i}\right) & \propto & \displaystyle\prod_{b\in\mathcal{V}\left(i\right)\backslash a} m_{bi}\left(x_{i}\right) \\ \\ m_{i}\left(x_{i}\right) & \propto & \displaystyle\prod_{a\in\mathcal{V}\left(i\right)} m_{ai}\left(x_{i}\right) \end{array}$$

Given $\Psi_a(\mathbf{x}_a) \geq 0$ with $\mathbf{x}_a = \{x_i\}_{i \in V(a)}$ $(x_i \in X_i \text{ finite})$, and $P(\mathbf{x}) = \frac{1}{Z} \prod_{a \in A} \Psi_a(\mathbf{x}_a)$, BP Equations are

$$\begin{array}{ll} m_{ai}\left(x_{i}\right) & \propto & \displaystyle\sum_{\left\{x_{j}\right\}_{j\in\mathcal{V}\left(\mathbf{a}\right)\backslash i}} \Psi_{a}\left(\mathbf{x}_{a}\right) \prod_{j\in\mathcal{V}\left(\mathbf{a}\right)\backslash i} m_{ja}\left(x_{j}\right) \\ \\ m_{ia}\left(x_{i}\right) & \propto & \displaystyle\prod_{b\in\mathcal{V}\left(i\right)\backslash a} m_{bi}\left(x_{i}\right) \\ \\ m_{i}\left(x_{i}\right) & \propto & \displaystyle\prod_{a\in\mathcal{V}\left(i\right)} m_{ai}\left(x_{i}\right) \end{array}$$

- $\blacktriangleright m_a(\mathbf{x}_a) \propto \Psi_a(\mathbf{x}_a) \prod_{i \in V(a)} m_{ia}(x_i) \approx P(\mathbf{x}_a) = \sum_{\{x_j\}_{i \in I \setminus V(a)}} P(\mathbf{x})$

Given $\Psi_a(\mathbf{x}_a) \geq 0$ with $\mathbf{x}_a = \{x_i\}_{i \in V(a)}$ $(x_i \in X_i \text{ finite})$, and $P(\mathbf{x}) = \frac{1}{Z} \prod_{a \in A} \Psi_a(\mathbf{x}_a)$, BP Equations are

$$\begin{array}{ll} m_{ai}\left(x_{i}\right) & \propto & \displaystyle\sum_{\left\{x_{j}\right\}_{j\in\mathcal{V}\left(\mathbf{a}\right)\backslash i}} \Psi_{a}\left(\mathbf{x}_{a}\right) \prod_{j\in\mathcal{V}\left(\mathbf{a}\right)\backslash i} m_{ja}\left(x_{j}\right) \\ \\ m_{ia}\left(x_{i}\right) & \propto & \displaystyle\prod_{b\in\mathcal{V}\left(i\right)\backslash a} m_{bi}\left(x_{i}\right) \\ \\ m_{i}\left(x_{i}\right) & \propto & \displaystyle\prod_{a\in\mathcal{V}\left(i\right)} m_{ai}\left(x_{i}\right) \end{array}$$

- $\qquad \qquad m_a\left(\mathbf{x}_a\right) \propto \Psi_a\left(\mathbf{x}_a\right) \prod_{i \in V(a)} m_{ia}\left(x_i\right) \approx P\left(\mathbf{x}_a\right) = \sum_{\left\{x_i\right\}_{i \in I \setminus V(a)}} P\left(\mathbf{x}\right)$
- $-\log Z \approx F_{Bethe} = \sum_{\mathbf{a}} \sum_{\mathbf{x_a}} m_{\mathbf{a}}(\mathbf{x_a}) \log \frac{m_{\mathbf{a}}(\mathbf{x_a})}{\Psi_{\mathbf{a}}(\mathbf{x_a})} + \sum_{i} (1 |V(i)|) \sum_{x_i} m_i(x_i) \log m_i(x_i)$

▶ The FP equation $F_{BP}(\mathbf{m}) = \mathbf{m}$ is solved by iteration $\lim_{n\to\infty} F_{BP}^{(n)}(\mathbf{m}_0)$

▶ The FP equation $F_{BP}(\mathbf{m}) = \mathbf{m}$ is solved by iteration $\lim_{n\to\infty} F_{BP}^{(n)}(\mathbf{m}_0)$

$$m_{ia}^{(t+1)}\left(x_{i}\right) \propto \prod_{b \in V(i) \setminus a} \sum_{\left\{x_{j}\right\}_{j \in V(b) \setminus i}} \Psi_{b}\left(\mathbf{x}_{b}\right) \prod_{j \in V(b) \setminus i} m_{jb}^{(t)}\left(x_{j}\right)$$

▶ The FP equation $F_{BP}(\mathbf{m}) = \mathbf{m}$ is solved by iteration $\lim_{n\to\infty} F_{BP}^{(n)}(\mathbf{m}_0)$

$$m_{ia}^{(t+1)}\left(x_{i}
ight) \propto \prod_{b \in V(i) \setminus a} \sum_{\left\{x_{j}
ight\}_{j \in V\left(b
ight) \setminus i}} \Psi_{b}\left(\mathbf{x}_{b}
ight) \prod_{j \in V\left(b
ight) \setminus i} m_{jb}^{(t)}\left(x_{j}
ight)$$

▶ On a tree BP Equations are exact: there is 1 FP and $m_i(x_i) = P(x_i)$, $m_a(\mathbf{x}_a) = P(\mathbf{x}_a)$, $F_{Bethe} = -\log Z$

▶ The FP equation $F_{BP}(\mathbf{m}) = \mathbf{m}$ is solved by iteration $\lim_{n\to\infty} F_{BP}^{(n)}(\mathbf{m}_0)$

$$m_{ia}^{(t+1)}\left(x_{i}
ight) \propto \prod_{b \in V(i) \setminus a} \sum_{\left\{x_{j}
ight\}_{j \in V\left(b\right) \setminus i}} \Psi_{b}\left(\mathbf{x}_{b}\right) \prod_{j \in V\left(b\right) \setminus i} m_{jb}^{(t)}\left(x_{j}\right)$$

- ▶ On a tree BP Equations are exact: there is 1 FP and $m_i(x_i) = P(x_i)$, $m_a(\mathbf{x}_a) = P(\mathbf{x}_a)$, $F_{Bethe} = -\log Z$
- ▶ Loopy graphs ⇒ BP solutions are usually good approximations

- ► **SAMPLER** ($\mathbf{x}^* \sim P(\mathbf{x})$): Note $P(\mathbf{x}) = P(x_1) P(x_2, ... x_n | x_1)$.
 - 1. Use BP to estimate $P(x_1)$
 - 2. Extract $x_1^* \sim P(x_1)$.
 - 3. Modify the problem by adding a factor $\Psi_1(x_1) = \delta(x_1; x_1^*)$ to P, reiterate

- ► **SAMPLER** ($\mathbf{x}^* \sim P(\mathbf{x})$): Note $P(\mathbf{x}) = P(x_1) P(x_2, ... x_n | x_1)$.
 - 1. Use BP to estimate $P(x_1)$
 - 2. Extract $x_1^* \sim P(x_1)$.
 - 3. Modify the problem by adding a factor $\Psi_1(x_1) = \delta(x_1; x_1^*)$ to P, reiterate
- ▶ **COUNTER** (estimate $\#\{\mathbf{x}: \prod_a \Psi_a(\mathbf{x}) = 1\}$ where $\Psi_a(\mathbf{x}_a) \in \{0,1\}$): Use BP estimation of log Z

- ► **SAMPLER** ($\mathbf{x}^* \sim P(\mathbf{x})$): Note $P(\mathbf{x}) = P(x_1) P(x_2, ... x_n | x_1)$.
 - 1. Use BP to estimate $P(x_1)$
 - 2. Extract $x_1^* \sim P(x_1)$.
 - 3. Modify the problem by adding a factor $\Psi_1(x_1) = \delta(x_1; x_1^*)$ to P, reiterate
- ▶ **COUNTER** (estimate $\#\{\mathbf{x}: \prod_a \Psi_a(\mathbf{x}) = 1\}$ where $\Psi_a(\mathbf{x}_a) \in \{0,1\}$): Use BP estimation of log Z
- ▶ **SOLVER** $(\mathbf{x}^* \in {\mathbf{x} : \prod_a \Psi_a(\mathbf{x}^*) = 1}, \text{ where } \Psi_a(\mathbf{x}_a) \in {\{0,1\}})$:
 - 1. Run BP.
 - 2. Find *i* and x_i^* s.t. $P(x_i^*) = \max\{P(x_j) : j \in V, x_j \in X_j\}$
 - 3. Modify the problem by adding a factor $\Psi_1(x_1) = \delta(x_1; x_1^*)$, reiterate

- ▶ **SAMPLER** ($\mathbf{x}^* \sim P(\mathbf{x})$): Note $P(\mathbf{x}) = P(x_1) P(x_2, ... x_n | x_1)$.
 - 1. Use BP to estimate $P(x_1)$
 - 2. Extract $x_1^* \sim P(x_1)$.
 - 3. Modify the problem by adding a factor $\Psi_1\left(x_1\right)=\delta\left(x_1;x_1^*\right)$ to P, reiterate
- ▶ **COUNTER** (estimate $\#\{\mathbf{x}: \prod_a \Psi_a(\mathbf{x}) = 1\}$ where $\Psi_a(\mathbf{x}_a) \in \{0,1\}$): Use BP estimation of log Z
- ▶ **SOLVER** $(\mathbf{x}^* \in {\mathbf{x} : \prod_a \Psi_a(\mathbf{x}^*) = 1}, \text{ where } \Psi_a(\mathbf{x}_a) \in {\{0,1\}})$:
 - 1. Run BP.
 - 2. Find *i* and x_i^* s.t. $P(x_i^*) = \max\{P(x_j) : j \in V, x_j \in X_j\}$
 - 3. Modify the problem by adding a factor $\Psi_1(x_1) = \delta(x_1; x_1^*)$, reiterate
- **OPTIMIZER** (find arg max P(x)) ... more later!

```
A L A L A S E E
A L A S E D H A T
I N S E D H A T
S A R A N T E S S
E I R A T E R M A
S A V E M R E S T S
M I R M R E S A L E
B A S T E S M R E D
```

► Around 100.000 english words (taken from the aspell dictionary)

- Around 100.000 english words (taken from the aspell dictionary)
- ► Each contiguous sequence of white squares must be filled by an english word

- ► Around 100.000 english words (taken from the aspell dictionary)
- ► Each contiguous sequence of white squares must be filled by an english word
- ► How many ways to create a crossword for a given pattern of black squares?

- ► Around 100.000 english words (taken from the aspell dictionary)
- ► Each contiguous sequence of white squares must be filled by an english word
- ► How many ways to create a crossword for a given pattern of black squares?
- Which proportion of those have a "D" in its bottom right square?

- ► Around 100.000 english words (taken from the aspell dictionary)
- ► Each contiguous sequence of white squares must be filled by an english word
- ► How many ways to create a crossword for a given pattern of black squares?
- ► Which proportion of those have a "D" in its bottom right square?
- These problems are mathematically easy: all sets here are finite!

► Solution: Write in traslucent paper all crosswords (possibly with the help of **monkeys**) and put them in a stack, look at a light source through the stack

 Solution: Write in traslucent paper all crosswords (possibly with the help of monkeys) and put them in a stack, look at a light source through the stack

Drawback 1: Even one crossword with a given pattern is highly non-trivial to obtain...

► Solution: Write in traslucent paper all crosswords (possibly with the help of **monkeys**) and put them in a stack, look at a light source through the stack

- Drawback 1: Even one crossword with a given pattern is highly non-trivial to obtain...
- ▶ Drawback 2: There are around 10^{30} valid crosswords for the pattern in the previous slide (how do I know?). Estimating conservatively in 0.01mm the thickness of a piece of paper, this gives a $\sim 10^{22} \rm km$ stack (distance earth-moon $\sim 3 \times 10^5 \rm km$)

▶ Solution: Write in traslucent paper all crosswords (possibly with the help of monkeys) and put them in a stack, look at a light source through the stack

- Drawback 1: Even one crossword with a given pattern is highly non-trivial to obtain...
- ▶ Drawback 2: There are around 10³⁰ valid crosswords for the pattern in the previous slide (how do I know?). Estimating conservatively in 0.01mm the thickness of a piece of paper, this gives a $\sim 10^{22} \rm km$ stack (distance earth-moon $\sim 3 \times 10^5 \text{km}$)

⇒ nearly not enough **bananas**

► English dictionary *D* (set of english words)

- ► English dictionary *D* (set of english words)
- ► Indices: a set X of letters coordinates, one for each non-black square, a set H of horizontal words indices, one for each horizontal blank sequence, a set V of vertical word indices, one for each vertical blank sequence,

- English dictionary D (set of english words)
- ▶ *Indices*: a set *X* of letters coordinates, one for each non-black square, a set *H* of horizontal words *indices*, one for each horizontal blank sequence, a set *V* of vertical word *indices*, one for each vertical blank sequence,
- ▶ Variables: $h_s \in D$ for each $s \in H$, $v_t \in D$ for each $t \in V$, $x_{ij} \in \{a, ..., z\}$ for each $ij \in X$

- ► English dictionary *D* (set of english words)
- ▶ *Indices*: a set *X* of letters coordinates, one for each non-black square, a set *H* of horizontal words *indices*, one for each horizontal blank sequence, a set *V* of vertical word *indices*, one for each vertical blank sequence,
- ▶ Variables: $h_s \in D$ for each $s \in H$, $v_t \in D$ for each $t \in V$, $x_{ij} \in \{a, ..., z\}$ for each $ij \in X$
- ► For each non-black square *ij*,

- English dictionary D (set of english words)
- ▶ *Indices*: a set *X* of letters coordinates, one for each non-black square, a set *H* of horizontal words *indices*, one for each horizontal blank sequence, a set *V* of vertical word *indices*, one for each vertical blank sequence,
- ▶ Variables: $h_s \in D$ for each $s \in H$, $v_t \in D$ for each $t \in V$, $x_{ij} \in \{a, ..., z\}$ for each $ij \in X$
- For each non-black square ij,
 - ▶ $s(ij) \in H$ =crossing horizontal word, p(ij)= position of ij within,
 - ▶ $t(ij) \in V$ =crossing vertical word, q(ij) position of ij within

- ► English dictionary *D* (set of english words)
- ▶ *Indices*: a set *X* of letters coordinates, one for each non-black square, a set *H* of horizontal words *indices*, one for each horizontal blank sequence, a set *V* of vertical word *indices*, one for each vertical blank sequence,
- ▶ Variables: $h_s \in D$ for each $s \in H$, $v_t \in D$ for each $t \in V$, $x_{ij} \in \{a, ..., z\}$ for each $ij \in X$
- ► For each non-black square ij,
 - ▶ $s(ij) \in H$ =crossing horizontal word, p(ij)= position of ij within,
 - ▶ $t(ij) \in V$ =crossing vertical word, q(ij) position of ij within
- Constraints: For each non black position ij: the following two conditions have to be ensured: $(h_{s(ij)})_{p(ij)} = x_{ij}$ and $(v_{t(ij)})_{q(ij)} = x_{ij}$

- ► English dictionary *D* (set of english words)
- ▶ *Indices*: a set *X* of letters coordinates, one for each non-black square, a set *H* of horizontal words *indices*, one for each horizontal blank sequence, a set *V* of vertical word *indices*, one for each vertical blank sequence,
- ▶ Variables: $h_s \in D$ for each $s \in H$, $v_t \in D$ for each $t \in V$, $x_{ij} \in \{a, ..., z\}$ for each $ij \in X$
- ► For each non-black square ij,
 - ▶ $s(ij) \in H$ =crossing horizontal word, p(ij)= position of ij within,
 - ▶ $t(ij) \in V$ =crossing vertical word, q(ij) position of ij within
- ▶ Constraints: For each non black position ij: the following two conditions have to be ensured: $(h_{s(ij)})_{p(ij)} = x_{ij}$ and $(v_{t(ij)})_{q(ij)} = x_{ij}$
- ▶ In summary: |H| + |V| + |X| variable nodes, 2|X| constraints

$$P\left(\mathbf{h}, \mathbf{v}, \mathbf{x}\right) = \frac{1}{Z} \prod_{i \in X} \delta\left(\left(h_{s(ij)}\right)_{p(ij)}; x_{ij}\right) \delta\left(\left(v_{t(ij)}\right)_{q(ij)}; x_{ij}\right)$$

- ► English dictionary *D* (set of english words)
- ▶ *Indices*: a set *X* of letters coordinates, one for each non-black square, a set *H* of horizontal words *indices*, one for each horizontal blank sequence, a set *V* of vertical word *indices*, one for each vertical blank sequence,
- ▶ Variables: $h_s \in D$ for each $s \in H$, $v_t \in D$ for each $t \in V$, $x_{ij} \in \{a, ..., z\}$ for each $ij \in X$
- ► For each non-black square ij,
 - ▶ $s(ij) \in H$ =crossing horizontal word, p(ij)= position of ij within,
 - ▶ $t(ij) \in V$ =crossing vertical word, q(ij) position of ij within
- Constraints: For each non black position ij: the following two conditions have to be ensured: $(h_{s(ij)})_{p(ij)} = x_{ij}$ and $(v_{t(ij)})_{q(ij)} = x_{ij}$
- ▶ In summary: |H| + |V| + |X| variable nodes, 2|X| constraints

$$P\left(\mathbf{h}, \mathbf{v}, \mathbf{x}\right) = \frac{1}{Z} \prod_{ij \in X} \delta\left(\left(h_{s(ij)}\right)_{p(ij)}; x_{ij}\right) \delta\left(\left(v_{t(ij)}\right)_{q(ij)}; x_{ij}\right)$$

 $ightharpoonup Z = \sum_{\mathbf{h}, \mathbf{v}, \mathbf{x}} \prod_{ij \in X} \delta(\cdot) \delta(\cdot) = \# \text{crosswords}$

- English dictionary D (set of english words)
- ▶ *Indices*: a set *X* of letters coordinates, one for each non-black square, a set *H* of horizontal words *indices*, one for each horizontal blank sequence, a set *V* of vertical word *indices*, one for each vertical blank sequence.
- ▶ Variables: $h_s \in D$ for each $s \in H$, $v_t \in D$ for each $t \in V$, $x_{ij} \in \{a, ..., z\}$ for each $ij \in X$
- ► For each non-black square ij,
 - ▶ $s(ij) \in H$ =crossing horizontal word, p(ij)= position of ij within,
 - ▶ $t(ij) \in V$ =crossing vertical word, q(ij) position of ij within
- ▶ Constraints: For each non black position ij: the following two conditions have to be ensured: $(h_{s(ij)})_{p(ij)} = x_{ij}$ and $(v_{t(ij)})_{q(ij)} = x_{ij}$
- ▶ In summary: |H| + |V| + |X| variable nodes, 2|X| constraints

$$P\left(\mathbf{h}, \mathbf{v}, \mathbf{x}\right) = \frac{1}{Z} \prod_{ij \in X} \delta\left(\left(h_{s(ij)}\right)_{p(ij)}; x_{ij}\right) \delta\left(\left(v_{t(ij)}\right)_{q(ij)}; x_{ij}\right)$$

- $ightharpoonup Z = \sum_{\mathbf{h}, \mathbf{v}, \mathbf{x}} \prod_{ii \in X} \delta(\cdot) \delta(\cdot) = \# \text{crosswords}$
- Results?

Definitions

In Statistical Physics, Gibbs measures are often studied :

$$P_{Gibbs}(\mathbf{x}) = \frac{1}{Z}e^{-\beta H(\mathbf{x})}$$
 with $H(\mathbf{x}) = \sum_{\mathbf{x}, \mathbf{a}} H_{\mathbf{a}}(\mathbf{x}_{\mathbf{a}})$

Definitions

In Statistical Physics, Gibbs measures are often studied :

$$P_{Gibbs}(\mathbf{x}) = \frac{1}{Z}e^{-\beta H(\mathbf{x})}$$
 with $H(\mathbf{x}) = \sum_{a \in A} H_a(\mathbf{x}_a)$

▶ Same old formalism, with $\Psi_a(\mathbf{x}_a) = \exp(-\beta H_a(\mathbf{x}_a))$

Definitions

In Statistical Physics, Gibbs measures are often studied:

$$P_{Gibbs}(\mathbf{x}) = \frac{1}{Z}e^{-\beta H(\mathbf{x})}$$
 with $H(\mathbf{x}) = \sum_{a \in A} H_a(\mathbf{x}_a)$

- ▶ Same old formalism, with $\Psi_a(\mathbf{x}_a) = \exp(-\beta H_a(\mathbf{x}_a))$
- ▶ In the limit $\beta \to \infty$, P_{Gibbs} concentrates on the **minimums** of H.

Definitions

In Statistical Physics, Gibbs measures are often studied :

$$P_{Gibbs}(\mathbf{x}) = \frac{1}{Z}e^{-\beta H(\mathbf{x})}$$
 with $H(\mathbf{x}) = \sum_{a \in A} H_a(\mathbf{x}_a)$

- ► Same old formalism, with $\Psi_a(\mathbf{x}_a) = \exp(-\beta H_a(\mathbf{x}_a))$
- ▶ In the limit $\beta \to \infty$, P_{Gibbs} concentrates on the **minimums** of H.
- $\phi_{ai}(x_i) = \frac{1}{\beta} \log m_{ai}(x_i), \ \phi_{ia}(x_i) = \frac{1}{\beta} \log m_{ia}(x_i), \ \text{The } \beta \to \infty \ \text{limit}$ of BP equations is:

Definitions

In Statistical Physics, Gibbs measures are often studied :

$$P_{Gibbs}(\mathbf{x}) = \frac{1}{Z}e^{-\beta H(\mathbf{x})}$$
 with $H(\mathbf{x}) = \sum_{a \in A} H_a(\mathbf{x}_a)$

- ▶ Same old formalism, with $\Psi_a(\mathbf{x}_a) = \exp(-\beta H_a(\mathbf{x}_a))$
- ▶ In the limit $\beta \to \infty$, P_{Gibbs} concentrates on the **minimums** of H.
- $\phi_{ai}(x_i) = \frac{1}{\beta} \log m_{ai}(x_i), \ \phi_{ia}(x_i) = \frac{1}{\beta} \log m_{ia}(x_i), \ \text{The } \beta \to \infty \ \text{limit}$ of BP equations is:

$$\phi_{ai}(x_i) = \max_{\{x_j\}_{j \in V(a) \setminus i}} \left\{ \sum_{j \in V(a) \setminus i} \phi_{ja}(x_j) - H_a(\mathbf{x}_a) \right\} + c$$

$$\phi_{ia}(x_i) = \sum_{b \in V(i) \setminus a} \phi_{bi}(x_i) + c$$

Definitions

In Statistical Physics, Gibbs measures are often studied :

$$P_{Gibbs}(\mathbf{x}) = \frac{1}{Z}e^{-\beta H(\mathbf{x})}$$
 with $H(\mathbf{x}) = \sum_{a \in A} H_a(\mathbf{x}_a)$

- ▶ Same old formalism, with $\Psi_a(\mathbf{x}_a) = \exp(-\beta H_a(\mathbf{x}_a))$
- ▶ In the limit $\beta \to \infty$, P_{Gibbs} concentrates on the **minimums** of H.
- $\phi_{ai}(x_i) = \frac{1}{\beta} \log m_{ai}(x_i)$, $\phi_{ia}(x_i) = \frac{1}{\beta} \log m_{ia}(x_i)$, The $\beta \to \infty$ limit of BP equations is:

$$\phi_{ai}(x_i) = \max_{\{x_j\}_{j \in V(a) \setminus i}} \left\{ \sum_{j \in V(a) \setminus i} \phi_{ja}(x_j) - H_a(\mathbf{x}_a) \right\} + c$$

$$\phi_{ia}(x_i) = \sum_{b \in V(i) \setminus a} \phi_{bi}(x_i) + c$$

• i.e. just BP equations with $\sum \to \max$, $\prod \to \sum$

Definitions

In Statistical Physics, Gibbs measures are often studied :

$$P_{Gibbs}(\mathbf{x}) = \frac{1}{Z}e^{-\beta H(\mathbf{x})}$$
 with $H(\mathbf{x}) = \sum_{a \in A} H_a(\mathbf{x}_a)$

- ▶ Same old formalism, with $\Psi_a(\mathbf{x}_a) = \exp(-\beta H_a(\mathbf{x}_a))$
- ▶ In the limit $\beta \to \infty$, P_{Gibbs} concentrates on the **minimums** of H.
- $\phi_{ai}(x_i) = \frac{1}{\beta} \log m_{ai}(x_i), \ \phi_{ia}(x_i) = \frac{1}{\beta} \log m_{ia}(x_i), \ \text{The } \beta \to \infty \ \text{limit}$ of BP equations is:

$$\phi_{ai}(x_i) = \max_{\{x_j\}_{j \in V(a) \setminus i}} \left\{ \sum_{j \in V(a) \setminus i} \phi_{ja}(x_j) - H_a(\mathbf{x}_a) \right\} + c$$

$$\phi_{ia}(x_i) = \sum_{b \in V(i) \setminus a} \phi_{bi}(x_i) + c$$

- ▶ i.e. just BP equations with $\sum \rightarrow \max$, $\prod \rightarrow \sum$
- Max Sum is exact on trees, if the solution is unique, $\arg\max\phi_i\left(x_i\right)$ for $\phi_i\left(x_i\right) = \sum_{b \in V(i)} \phi_{bi}\left(x_i\right)$ gives the optimum

MS for D-bounded Minimum Steiner Tree

- ▶ **Input:** Rooted graph G = (V, E, r), edge costs $\{c_e\}_{e \in E}$, vertex prizes $\{b_i\}_{i \in V}$
- ▶ **Problem**: Find min_{$T \subset G$ tree $\sum_{e \in E_T} c_e \sum_{i \in V_T} b_i$}

MS for D-bounded Minimum Steiner Tree

- ▶ **Input:** Rooted graph G = (V, E, r), edge costs $\{c_e\}_{e \in F}$, vertex prizes $\{b_i\}_{i \in V}$
- ▶ **Problem**: Find min_{$T \subset G$ tree $\sum_{e \in E_T} c_e \sum_{i \in V_T} b_i$}

Max Sum representation:

MS for D-bounded Minimum Steiner Tree

- ▶ **Input:** Rooted graph G = (V, E, r), edge costs $\{c_e\}_{e \in F}$, vertex prizes $\{b_i\}_{i \in V}$
- **Problem**: Find min_{$T \subset G$ tree $\sum_{e \in F_T} c_e \sum_{i \in V_T} b_i$} Max Sum representation:
 - ▶ Variables (d_i, p_i) associated to $i \in V$. $1 \le d_i \le D$
 - and $p_i \in V(i) \cup \{*\}$.

MS for D-bounded Minimum Steiner Tree

- ▶ **Input:** Rooted graph G = (V, E, r), edge costs $\{c_e\}_{e \in E}$, vertex prizes $\{b_i\}_{i \in V}$
- ▶ **Problem**: Find min_{$T \subset G$} tree $\sum_{e \in E_T} c_e \sum_{i \in V_T} b_i$ Max Sum representation:
 - ▶ Variables (d_i, p_i) associated to $i \in V$. $1 \le d_i \le D$ and $p_i \in V(i) \cup \{*\}$.
 - ▶ Constraints on links: $p_i = j \Rightarrow d_i = d_j + 1 \land p_j \neq *$

MS for D-bounded Minimum Steiner Tree

- ▶ **Input:** Rooted graph G = (V, E, r), edge costs $\{c_e\}_{e \in F}$, vertex prizes $\{b_i\}_{i \in V}$
- **Problem**: Find min_{T⊂G} tree $\sum_{e \in E_T} c_e \sum_{i \in V_T} b_i$

Max Sum representation:

- ▶ Variables (d_i, p_i) associated to $i \in V$. $1 \le d_i \le D$ and $p_i \in V(i) \cup \{*\}$.
- ▶ Constraints on links: $p_i = j \Rightarrow d_i = d_j + 1 \land p_j \neq *$
- ▶ Cost: $H(\mathbf{p}, \mathbf{d}) = \sum_{i \in V} c_{ip_i}$ where $c_{i*} = b_i$

MS for D-bounded Minimum Steiner Tree

- ▶ **Input:** Rooted graph G = (V, E, r), edge costs $\{c_e\}_{e \in E}$, vertex prizes $\{b_i\}_{i \in V}$
- **Problem**: Find min_{T⊂G} tree $\sum_{e \in E_T} c_e \sum_{i \in V_T} b_i$

Max Sum representation:

- ▶ Variables (d_i, p_i) associated to $i \in V$. $1 \le d_i \le D$ and $p_i \in V(i) \cup \{*\}$.
- ▶ Constraints on links: $p_i = j \Rightarrow d_i = d_j + 1 \land p_j \neq *$
- ► Cost: $H(\mathbf{p}, \mathbf{d}) = \sum_{i \in V} c_{ip_i}$ where $c_{i*} = b_i$

Optimality results

Theorem

If the min is unique, in a FP of Max Sum for the Minimum Spanning Tree (i.e. D=N, T=V) on arbitrary graphs, $(p_i^*,d_i^*)=\arg\max\phi_i\left(p_i,d_i\right)$ define the **optimum** tree

Optimality results

Theorem

If the min is unique, in a FP of Max Sum for the Minimum Spanning Tree (i.e. D=N, T=V) on arbitrary graphs, $(p_i^*,d_i^*)=\arg\max\phi_i\left(p_i,d_i\right)$ define the **optimum** tree

Proof.

Optimality results

Theorem

If the min is unique, in a FP of Max Sum for the Minimum Spanning Tree (i.e. D=N, T=V) on arbitrary graphs, $(p_i^*,d_i^*)=\arg\max\phi_i\left(p_i,d_i\right)$ define the **optimum** tree

Proof.

$$V_k = \{v = v_1, \dots v_l : l \leq k, (v_i v_{i+1}) \in E, v_{i+2} \neq v_i\}$$

Optimality results

Theorem

If the min is unique, in a FP of Max Sum for the Minimum Spanning Tree (i.e. D=N, T=V) on arbitrary graphs, $(p_i^*,d_i^*)=\arg\max\phi_i(p_i,d_i)$ define the **optimum** tree

Proof.

- ▶ $V_k = \{v = v_1, \dots v_l : l \leq k, (v_i v_{i+1}) \in E, v_{i+2} \neq v_i\}$
- $ightharpoonup E_k = \{(p_1, p_2) \text{ if } p_1 = p_2 v\}$

Optimality results

Theorem

If the min is unique, in a FP of Max Sum for the Minimum Spanning Tree (i.e. D = N, T = V) on arbitrary graphs, $(p_i^*, d_i^*) = \arg\max\phi_i(p_i, d_i)$ define the **optimum** tree

Proof.

- ▶ $V_k = \{v = v_1, \dots v_l : l \le k, (v_i v_{i+1}) \in E, v_{i+2} \ne v_i\}$
- $E_k = \{(p_1, p_2) \text{ if } p_1 = p_2 v\}$
- ▶ T_k is locally isomorphic to G, but T_k is a tree (covering)

Optimality results

Theorem

If the min is unique, in a FP of Max Sum for the Minimum Spanning Tree (i.e. D=N, T=V) on arbitrary graphs, $(p_i^*,d_i^*)=\arg\max\phi_i(p_i,d_i)$ define the **optimum** tree

Proof.

- ▶ $V_k = \{v = v_1, \dots v_l : l \le k, (v_i v_{i+1}) \in E, v_{i+2} \ne v_i\}$
- $ightharpoonup E_k = \{(p_1, p_2) \text{ if } p_1 = p_2 v\}$
- $ightharpoonup T_k$ is locally isomorphic to G, but T_k is a tree (covering)

General scheme:

1. FP of MS in $G \leftrightarrow \text{FP}$ in T_k with appropriate leaf conditions

General scheme:

- 1. FP of MS in $G \leftrightarrow \text{FP}$ in T_k with appropriate leaf conditions
- 2. T_k is a tree \implies MS is exact on T_k

General scheme:

- 1. FP of MS in $G \leftrightarrow \text{FP}$ in T_k with appropriate *leaf conditions*
- 2. T_k is a tree \implies MS is exact on T_k
- 3. On T_k the [lifting of] $\{p_i^*\}$ defines a forest with each connected component not touching the leaves isomorphic to $\{p_i^*\}$ on G.

General scheme:

- 1. FP of MS in $G \leftrightarrow \text{FP}$ in T_k with appropriate leaf conditions
- 2. T_k is a tree \implies MS is exact on T_k
- 3. On T_k the [lifting of] $\{p_i^*\}$ defines a forest with each connected component not touching the leaves isomorphic to $\{p_i^*\}$ on G.
- 4. Take the optimal solution $\{q_i\}$ on G and use it to improve the solution on T_k (by replacing the pink CC) \Longrightarrow contradiction

The End

Thanks, and happy holidays!