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Inference of Gene Regulation networks

Expression Data

Identifying each precise regulation mechanism by experiments is very
costly and time consuming: too many genes, way too many possible
interactions!

Hope to infer regulatory mechanisms from whole genome-scale
experiments: microarrays

61
52

ge
ne
s

172 stress conditions
YAL001C 1.53 -0.06 · · ·
YAL002W -0.01 -0.30 · · ·
YAL004W 0.24 0.76 · · ·

...
...

...

Yeast Dataset from: Grasch, Spellman, Mol. Biol. Cell (2000)

Log-ratios of expression data: overexpression, underexpression.
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Inference of Gene Regulation networks

Inference of the gene-regulatory network

Two main goals:

Inference of topology: Who regulates who?

Inference of behaviour: predict the expresssion of a gene given the
expression of other genes

These are method of inverse inference: infer the model from the data
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Inference of Gene Regulation networks

Inference of topology

One way to do this is using coexpression networks.
Compute the Pearson correlation coefficient Cij for every pair i , j of
genes
Potential regulators of a gene are most correlated inputs
Build the network of links for which

∣∣Cij
∣∣ is above a certain treshold.

But we can do better!
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Inference of protein structure from protein families sequences

Inference of protein structure from protein families sequences

F. Morcos, A.Pagnani et al, 2011



Inference in Computer Science and Systems Biology Part I
Bayesian inference

Bayes

Conditional probability

Conditional probability: restriction of a probability distribution to a
subspace B:

P (A|B) =
P (A∩B)

P (B)
=

P (A,B)

P (B)

“Probability of A given B”

Example

What is the probability of the output of a die to be ≥ 2 given that the
result is odd?

P (d ≥ 2|d odd) = P (d ≥ 2,d odd)/P (d odd) =
2
6
/
1
2

=
2
3
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Bayes

Bayes

P (A|B) =
P (A,B)

P (A)
= P (B|A)

P (A)

P (B)

Example

You are tested for an illness that is very rare (about 1:100000) with a
fairly precise test (99% accuracy in both cases). You come up positive,
yuck! Probability of illness? (a) 99% (b) 90% (c) 10% (d) 1% (e) 0.1%

P (I |+) = P (+|I )P (I )P (+)−1 ≈ 0.99 ·10−5 (0.01)−1 ≈ 10−3!≈ 0.99 ·10−5 (0.01)−1 ≈ 10−3!

P (+) = P (+, I ) +P (+,not I )
= P (+|I )P (I ) +P (+|not I )P (not I )
= 0.99×10−5 +0.01×

(
1−10−5)≈ 0.01
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Bayes

Bayes’ rule in inference

D =data, S =stochastic “machine”, P (D|S) =stochastic rule, P (S)
prior information about S

A double stochastic process:

1 S is extracted from P (S)

2 D is extracted from P (D|S)

We observe only D. What can we guess about S?

posterior︷ ︸︸ ︷
P (S |D) =

P (D|S)P (S)

P (D)
∝

likelihood︷ ︸︸ ︷
P (D|S)

prior︷ ︸︸ ︷
P (S)

Just the maths of common sense!
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Bayes

Bayes’ rule iterated

Suppose we have the following multiple stochastic process:

1 S is extracted from P (S)

2 D1, . . . ,DM are extracted i.i.d from P (D|S)

P
(
S |D1, . . . ,DM)=

P
(
D1, . . . ,DM |S

)
P (D)

P (S) ∝ P (S)
M

∏
µ=1

P (Dµ |S)

Sometimes it is written in update form:

P
(
S |D1, . . . ,DM)

∝ P
(
DM |S

)(
P (S)

M−1

∏
µ=1

P (Dµ |S)

)
= P

(
DM |S

)
P
(
S |D1, . . . ,DM−1)
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Likelihood

MAP vs. Max likelihood

posterior︷ ︸︸ ︷
P (S |D) ∝

prior︷ ︸︸ ︷
P (S)

likelihood︷ ︸︸ ︷
P (D|S)

Maximum A Posteriori (MAP):

(arg)max
S

P (S |D)

Maximum Likelihood (ML):

(arg)max
S

P (D|S)

ML=MAP for uniform prior, when it makes sense

Two “Schools of thought”
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Examples

Example: biased coins

I have two coins with head probabilities p1 = 0.5 and p2 = 0.2.

1 I choose one at random with P (1) = 0.6,P (2) = 0.4.
2 I flip the coin and the output is tail.

Can we say something about the coin?

P (1|tail) ∝ P (tail|1)P (1) = 0.5×0.6 = 0.30
P (2|tail) ∝ P (tail|2)P (2) = 0.8×0.4 = 0.32
P (1|tail) = 0.30/(0.30+0.32) = 0.484
P (2|tail) = 0.32/(0.30+0.32) = 0.516

Not much!
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Examples

Binomial distribution

Consider the outcome of n p-biased coins. The probability of k heads is

P (k|p) =

(
n
k

)
pk (1−p)n−k

Uniform prior

If P (p) = uniform, likelihood=posterior!

P (k1, . . . ,kM |p) ∝ p∑
M
µ=1 kµ (1−p)∑

M
µ=1 n−kµ =

(
pk̃ (1−p)n−k̃

)M
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Examples

Binomial distribution

P (k1, . . . ,kM |p) ∝

(
pk̃ (1−p)n−k̃

)M

with k̃ = 1
M ∑

M
µ=1 kµ heads, the ML is attained at the max of

L = k̃ logp+
(
n− k̃

)
log (1−p)

Let us find critical points:

0 =
∂L

∂p
=

k̃
p
−

(
n− k̃

)
1−p

So n−k̃
k̃

= 1−p
p , i.e. p = k̃

n .

Note!

〈p〉=

∫ 1
0
ppMk̃ (1−p)M(n−k̃) dp∫ 1

0
pMk̃ (1−p)M(n−k̃) dp

=
Mk̃ +1
Mn+2
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Binomial

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.2  0.4  0.6  0.8  1

f(x,n,2)
f(x,2*n,2+3)

f(x,3*n,2+3+2)
f(x,4*n,2+3+2+4)

f(x,5*n,2+3+2+4+3)
f(x,6*n,2+3+2+4+3+2)

gnuplot code

f(p,n,k)=p**k*(1-p)**(n-k)/(k!*(n-k)!/(n+1)!)
pml(n,k)=k*1./n
pav(n,k)=(k+1)*1.0/(n+2)
n=10;k=2;
set arrow from pml(n,k),0 to pml(n,k), f(pml(n,k), n, k)
set arrow from pav(n,k),0 to pav(n,k), f(pav(n,k), n, k)

plot [0:1] f(x,n,2) lw 3, f(x,2*n,2+3), f(x,3*n,2+3+2),

f(x,4*n,2+3+2+4), f(x,5*n,2+3+2+4+3), f(x,6*n,2+3+2+4+3+2)
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Examples

Example: Normal

P (x |(m,σ)) =
1√
2πσ

e−
1

2σ2 (x−m)2

Given x1, . . . ,xM , we have

P
(
x1, . . . ,xM |(m,σ)

)
∝ e−

1
2σ2 ∑

M
µ=1(xµ−m)2−M logσ

If we try to maximize the log-likelihood
L (m,σ) =− 1

2σ2
1
M ∑

M
µ=1 (xµ −m)2− logσ

0=
∂L

∂m
=

1
σ2

1
M

M

∑
µ=1

(xµ −m) 0=
∂L

∂σ
= σ

−3

(
1
M

M

∑
µ=1

(xµ −m)2−σ
2

)

I.e. m = 1
M ∑

M
µ xµ ,σ =

√
1
M ∑

M
µ=1 (xµ −m)2

What is the likelihood of (m,σ) when M = 1?
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ML and KL divergence

Remember the KL divergence

KL(P||Q) = ∑
x
P (x) log

P (x)

Q (x)

Assume you have a set of sample data xµ for µ = 1, . . . ,M. Then
consider the distribution P (x) = 1

M ∑
M
µ=1 δ (x,xµ ), and a distribution Qθ

parametrized by θ

KL(P||Qθ ) = ∑
x

M

∑
µ=1

δ (x,xµ ) log
∑

M
µ ′=1 δ

(
x,xµ ′

)
Qθ (x)

= − log
M

∏
µ=1

Qθ (xµ )

That is, ML is the same as minimizing the KL divergence with
1
M ∑

M
µ=1 δ (x,xµ )!
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Complex models

Ising model

Suppose given σ1, . . . ,σM samples, and assume they were generated
independently by an Ising model

PJ,h (σ) = Z−1
J,he

∑i<j Jij σi σj +∑i hi σi

P
(
σ

1, . . . ,σM |J ,h
)

=
M

∏
µ=1

e∑i<j Jij σ
µ

i σ
µ

j +∑i hi σ
µ

i −logZJ ,h

= eM(∑i<j Jij c̃ij +∑i hi m̃i−logZJ ,h)

Depends only on the experimental first (m̃i ) and second moments
(c̃ij) of the data!

The log-likelihood

L (J ,h) = M

(
∑
i<j

Jij c̃ij +∑
i
hi m̃i − logZJ,h

)
How can we find J ,h of maximum likelihood?
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Complex models

Ising Likelihood

L (J ,h) = M

(
∑
i<j

Jij c̃ij +∑
i
hi m̃i − logZJ,h

)
Lets try to find critical points:

0=
∂L

∂Jij
=M

(
c̃ij −

∂ logZJ,h

∂Jij

)
=M (c̃ij −〈σiσj〉) 0=

∂L

∂hi
=M (m̃i −〈σi 〉)

Better:− logZJ,h is a concave (∩) function on J,h (and so is L ), so
we can use gradient ascent!

Unfortunately, estimating 〈σiσj〉 and 〈σi 〉 is computationally hard!
(NP-Complete). Possibilities:

1 Exact enumeration (up to N ≈ 30)
2 Monte-Carlo methods (slow!)
3 Mean-field type approximations (e.g. Belief Propagation)
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Complex models

Boltzmann learning

Boltzmann learning algorithm

1 (init) Set J = 0, h = 0
2 (direct inference) somehow estimate {〈σiσj〉}i<j and {〈σi 〉}i from

PJ,h

3 (delta) Compute ∆Jij = c̃ij −〈σiσj〉, ∆hi = m̃i −〈σi 〉
4 (end?) if |∆Jij |< ε for all i < j , |∆hi |< ε for all i , exit
5 (update) J← J+ η∆J, h← h+ η∆h
6 Go to 2

But we need an (approximate) inference method for 2 !
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Belief propagation

Example: 3-Coloring (Potts)

Given a (finite) undirected graph G = (V ,E )

A proper 3−coloring is σi ∈ {•,•,•} for i ∈ V such that σi 6= σj if
(i , j) ∈ E

P (σ) =
1
Z ∏

(ij)∈E
(1−δ (σi ,σj))

Hard computational problems (NP-Complete):
Finding a proper coloring
Estimating P

(
σi ,σj

)
Counting proper colorings
Deciding if there is at least one proper coloring!
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Belief propagation

Belief Propagation

x1

x2

x3

x0

N0 (•) = N(0) (•••) +N(0) (•••) +N(0) (•••) +N(0) (•••) + · · ·
N(4)

0 (•) = N(0)
1 (•)N(0)

2 (•)N(0)
3 (•) +N(0)

1 (•)N(0)
2 (•)N(0)

3 (•) + · · ·

=
(
N(0)

1 (•) +N(0)
1 (•)

)(
N(0)

2 (•) +N(0)
2 (•)

)(
N(0)

3 (•) +N(0)
3 (•)

)
N0 (•) =

(
N(0)

1 (•) +P(0)
1 (•)

)(
N(0)

2 (•) +N(0)
2 (•)

)(
N(0)

3 (•) +N(0)
3 (•)

)
N0 (•) =

(
N(0)

1 (•) +N(0)
1 (•)

)(
N(0)

2 (•) +N(0)
2 (•)

)(
N(0)

3 (•) +N(0)
3 (•)

)
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Belief propagation

Belief Propagation

x1

x2

x3

x0

P0 (•) ∝ P(0) (•••) +P(0) (•••) +P(0) (•••) +P(0) (•••) + · · ·
P(4)

0 (•) = P(0)
1 (•)P(0)

2 (•)P(0)
3 (•) +P(0)

1 (•)P(0)
2 (•)P(0)

3 (•) + · · ·

=
(
P(0)

1 (•) +P(0)
1 (•)

)(
P(0)

2 (•) +P(0)
2 (•)

)(
P(0)

3 (•) +P(0)
3 (•)

)
P0 (•) ∝

(
P(0)

1 (•) +P(0)
1 (•)

)(
P(0)

2 (•) +P(0)
2 (•)

)(
P(0)

3 (•) +P(0)
3 (•)

)
P0 (•) ∝

(
P(0)

1 (•) +P(0)
1 (•)

)(
P(0)

2 (•) +P(0)
2 (•)

)(
P(0)

3 (•) +P(0)
3 (•)

)
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Belief propagation

Belief Propagation

x4

x1

x2

x3

x0

P(4)
0 (•) ∝ P(0) (•••) +P(0) (•••) +P(0) (•••) +P(0) (•••) + · · ·

= P(0)
1 (•)P(0)

2 (•)P(0)
3 (•) +P(0)

1 (•)P(0)
2 (•)P(0)

3 (•) + · · ·

=
(
P(0)

1 (•) +P(0)
1 (•)

)(
P(0)

2 (•) +P(0)
2 (•)

)(
P(0)

3 (•) +P(0)
3 (•)

)
P(4)

0 (•) ∝

(
P(0)

1 (•) +P(0)
1 (•)

)(
P(0)

2 (•) +P(0)
2 (•)

)(
P(0)

3 (•) +P(0)
3 (•)

)
P(4)

0 (•) ∝

(
P(0)

1 (•) +P(0)
1 (•)

)(
P(0)

2 (•) +P(0)
2 (•)

)(
P(0)

3 (•) +P(0)
3 (•)

)
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Belief propagation

Belief Propagation

x4

x1

x2

x3

x0

P(4)
0 (•) ∝ P(0) (•••) +P(0) (•••) +P(0) (•••) +P(0) (•••) + · · ·

' P(0)
1 (•)P(0)

2 (•)P(0)
3 (•) +P(0)

1 (•)P(0)
2 (•)P(0)

3 (•) + · · ·

=
(
P(0)

1 (•) +P(0)
1 (•)

)(
P(0)

2 (•) +P(0)
2 (•)

)(
P(0)

3 (•) +P(0)
3 (•)

)
P(4)

0 (•) ∝

(
P(0)

1 (•) +P(0)
1 (•)

)(
P(0)

2 (•) +P(0)
2 (•)

)(
P(0)

3 (•) +P(0)
3 (•)

)
P(4)

0 (•) ∝

(
P(0)

1 (•) +P(0)
1 (•)

)(
P(0)

2 (•) +P(0)
2 (•)

)(
P(0)

3 (•) +P(0)
3 (•)

)
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Belief propagation

BP Equations (coloring)

qij (σi ) ∝ ψi (σi ) ∏
k∈∂ i\j

∑
σk 6=σi

qki (σk)

This system is a fixed point F(q) = q equation for
q = {qij ,qji}(ij)∈E ∈ [0,1]2|E | and is solved normally by iteration:

q∞ = lim
k→∞

F(k) (q0)

On a fixed point, we can compute

pi (σi ) ∝ ψi (σi ) ∏
k∈∂ i

∑
σk 6=σi

qki (σk)

pij (σi ,σj) ∝ qij (σi )qji (σj)(1−δ (σi ,σj))
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Belief propagation

Belief Propagation (pairwise models)

Given a distribution:

P (σ) =
1
Z ∏

(ij)∈E
ψij (σi ,σj)∏

i
ψi (σi ) =

1
Z
e−(∑(ij)∈E − logψij(σi ,σj)+∑i − logψi (σi ))

BP Equations, pairwise potentials

qij (σi ) ∝ ψi (σi ) ∏
k∈∂ i\j

∑
σk

qki (σk)ψki (σk ,σi ) (message)

pi (σi ) ∝ ψi (σi ) ∏
k∈∂ i

∑
σk

qki (σk)ψki (σk ,σi ) (marginal)

pij (σi ,σj) ∝ ψij (σi ,σj)qij (σi )qji (σj) (marginal)
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Belief propagation

BP for crosswords

English dictionary D (set of english words)
Indices: a set X of letters coordinates, one for each non-black
square, a set H of horizontal words indices, one for each horizontal
blank sequence, a set V of vertical word indices, one for each
vertical blank sequence,
Variables: hs ∈ D for each s ∈ H, vt ∈ D for each t ∈ V ,
xij ∈ {a, . . . ,z} for each ij ∈ X
For each non-black square ij ,

s (ij) ∈ H=crossing horizontal word, p (ij)= position of ij within,
t (ij) ∈ V=crossing vertical word, q (ij) position of ij within

Constraints: For each non black position ij : the following two
conditions have to be ensured:

(
hs(ij)

)
p(ij) = xij and

(
vt(ij)

)
q(ij) = xij

In summary: |H|+ |V |+ |X | variable nodes, 2 |X | constraints

P (h,v,x) =
1
Z ∏

ij∈X
δ

((
hs(ij)

)
p(ij) ;xij

)
δ

((
vt(ij)

)
q(ij) ;xij

)
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Belief propagation

Exact inference on trees

Let T = (V ,E ) be a tree, and assume P a T-factorized distribution, i.e.
P (σ) = 1

Z ∏(ij)∈E ψij (σi ,σj). Then:

P (σ) = ∏
(ij)∈E

P (σi ,σj)

P (σi )P (σj)
∏
i
P (σi )

For a general graph G , it is only an approximation!
It is called the Bethe approximation.
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Belief propagation

Entropy of a tree distribution

If P is T -factorized, then

−S (P) = ∑
σ

P (σ) lnP (σ)

= ∑
(ij)∈E

KL(P (σi ,σj) ||P (σi )P (σj))−∑
i
S (P (σi ))

= ∑
(ij)∈E

Mij −∑
i
Hi



Inference in Computer Science and Systems Biology Part I
Approximate direct inference

Belief propagation

Average Energy and Free Energy

For every G = (V ,E )-factorized Ising model,

−〈H〉 = ∑
(ij)∈E

Jij 〈σiσj〉+∑
i
hi 〈σi 〉

− logZJ,h = 〈H〉−S
= 〈H〉+∑

σ

P (σ) logP (σ)

If P is T -factorized, then

− logZJ,h = 〈H〉+ ∑
(ij)∈E

Mij −∑
i
Hi

These expressions for S and logZ are exact for trees, just approximations
for general graphs!



Inference in Computer Science and Systems Biology Part I
Approximate direct inference

Belief propagation

Mutual Information

Mutual Information is a measure of correlation:

MI (x ,y) = ∑
x
P (x ,y) log

P (x ,y)

P (x)P (y)

In terms of the KL divergence:
MI (x ,y) = KL(P (x ,y) ||P (x)P (y))

It can be also thought as “information gain”: how much information
about x is gained (in average) by knowing the value of y :

MI (x ,y) = S (P (x))−∑
y
P (y)S (P (x |y))

= S (P (y))−∑
x
P (x)S (P (y |x))

MI (x ,y)≤ S (P (x))

If x = y (i.e. P (x ,y) = δ (x ,y)P (x)), MI (x ,y) = S (P (x)).

If P (x ,y) = P (x)P (y), MI (x ,y) = 0
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Inference of trees

Suppose that we are told that some tree-factorized Ising model
produced a set of samples:

σ
1, . . . ,σM ∼ P (σ) =

1
ZJ,h

e∑i<j Jij σi σj +∑i hi σi

How do we find the tree T = (V ,E ) and the T -factorized J,h (i.e.
such that Jij 6= 0 =⇒ (ij) ∈ E ) of ML?
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Likelihood of a tree

Given samples σ1, . . . ,σM , consider J∗,h∗ the T = (V ,E )-factorized ML
couplings (T tree), then

L (J∗,h∗) = ∑
(ij)∈E

J∗ij c̃ij +∑
i
h∗i m̃i − logZJ∗,h∗

= − ˜〈H∗〉− logZJ∗,h∗

= − ˜〈H∗〉+ 〈H∗〉−S∗

= − ˜〈H∗〉+ 〈H∗〉+ ∑
(ij)∈E

M∗ij +∑
i
S∗i
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Chow-Liu (1968)

L (J∗,h∗) =− ˜〈H∗〉+ 〈H∗〉+ ∑
(ij)∈E

M∗ij +∑
i
S∗i

Two key observations:

1 We have seen that PJ∗,h∗ must reproduce the first (m̃i ) and second
(c̃ij) moments of the data over T (so ˜〈H∗〉= 〈H∗〉). Then it must
reproduce also P̃ (σi ,σj) = 1

4 (c̃ijσiσj + m̃iσi + m̃jσj +1). In
particular, M∗ij = M̃ij and S∗i = S̃i .

2 The term S̃i does not depend on T

L (J∗,h∗) = ∑
(ij)∈E

M̃ij + const.

And we want to maximize with respect to T (topology)
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Maximum Spanning Tree (Kruskal 1956)

Given a connected graph G = (V ,E ) and weights M : E → R+, finding
the maximum spanning tree can be done as follows:

Kruskal’s algorithm

1 Order edges so as to have Me1 ≥Me2 ≥ ·· ·Me|E |

2 Set E ′← /0
3 For s = 1, . . . , |E |:

If (V ,E ′∪{es}) has no loop:
E ′← E ′∪{es}

At the end, (V ,E ′) is a maximum spanning tree, i.e. a tree that
maximizes ∑e∈E ′Me
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Putting all the bits toghether

1 Compute Mij for i < j

1 Use Kruskal to compute T the MST for the Mij

1 P̃ (σi ,σj) = eJij σi σj +aij σi +bij σj +fij P̃ (σi ) = eh′i σi +fi

P (σ) = ∏
(ij)∈T

P̃ (σi ,σj)∏
i
P̃ (σi )

1−di

∝ e∑(ij)∈T Jij σi σj +aij σi +bij σj +∑i h′i σi (1−di )

∝ e∑(ij)∈T Jij σi σj +∑i σihi

where hi is computed by collecting all coefficients of σi .
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Maximum Spanning Tree

Proof by induction on t: E ′ ⊆ E ′′ for some MST E ′′ in every step t of
Kruskal (assume that for some step t ≥ 0, E ′ is included in an MST E ′′

and prove that E ′∪{et} is also included in some MST)

1 If E ′∪{et} is also included in E ′′, done. Otherwise:
2 E ′′∪{et} has a loop p (E ′′ is a tree) .
3 Take any edge f in p \ (E ′∪{et}) (such an edge must exist,

otherwise p ⊆ E ′∪{et}).
4 We have Met ≥Mf (otherwise f would have been added before et).
5 E ′′′ = E ′′ \{f }∪{et} is a tree, ∑(ij)∈E ′′′Mij ≥ ∑(ij)∈E ′′Mij , so E ′′′

MST, and E ′∪{et} ⊆ E ′′′ done
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Example

N = 5, M = 6, Data:

σ1 σ2 σ3 σ4 σ5
1 1 1 −1 1
1 −1 1 −1 1
1 1 1 −1 1
−1 −1 1 1 1
−1 1 −1 1 −1
−1 1 1 −1 −1

Marginals:

P1 = 1
6

(
3
3

)
,P2 = 1

6

(
2
4

)
,P3 = 1

6

(
1
5

)
,P4 = 1

6

(
4
2

)
,P5 = 1

6

(
3
3

)
and

P12 = 1
6

(
1 2
1 2

)
,P13 = 1

6

(
1 2
0 3

)
,P14 = 1

6

(
1 2
3 0

)
,P15 =

1
6

(
2 1
0 3

)
,P23 = 1

6

(
0 2
1 3

)
,P24 = 1

6

(
1 1
3 1

)
,P25 = 1

6

(
0 2
2 2

)
,P34 =

1
6

(
0 1
4 1

)
,P35 = 1

6

(
1 0
1 4

)
,P45 = 1

6

(
1 3
1 1

)
Mutual information: M15 = 0.459,M45 = 0.459,M35 = 0.317,M34 = 0.317,M25 =
0.252,M13 = 0.191,M23 = 0.109,M45 = 0.044,M24 = 0.044,M12 = 0
Kruskal edges: (15) ,(45) ,(35) ,(34),(25)
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Independent pairs

Assume the Bethe expression for trees to be valid for the complete graph:

P (σ |J ,h) = ∏
i<j

P (σi ,σj)

P (σi )P (σi )
∏
i
P (σi )

we parametrize

P (σi ,σj) = eJ ′ij σi σj +aij σi +bij σj +fij P (σi ) = eh′′i σi +fi

But then,

P (σ |J ,h) = e∑i<j J ′ij σi σj +∑i (1−di )(∑j>i(aij +bji)+h′′i )σi =⇒ J ′ij = Jij

but we know that on the point of ML, P (σiσj) = P̃ (σi ,σj) so we can get
Jij directly from the data as in the two-spin system:

Jij = log
p̃++p̃−−
p̃+−p̃−+

This exactly the same as if we consider each link separately (a single link
is a tree!). This is called the independent pairs approximation.
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BP on the Ising model

With the change of variables

hij =
1
2
log

qij (+1)

qij (−1)

The BP equations for the Ising model

qij (σi ) ∝ ehi σi ∏
k∈∂ i\j

∑
σk

qki (σk)eJki σkσi

become:

hij = hi + ∑
l∈∂ i\j

tanh−1 (tanhJli tanhhli )

mi = tanh

(
hi + ∑

l∈∂ i
tanh−1 (tanhJli tanhhli )

)
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Susceptibility Propagation

If we define
gijk =

∂hij

∂hk

Taking derivatives of the BP equations we obtain Susceptibility
Propagation Equations (Mézard & Mora 2007):

gijk = δik + ∑
l∈∂ i\j

glik tanhJli
1− tanh2 hli

1− tanh2 Jli tanh2 hli

This gives a much better approximation for the susceptibility
χij = cij −mimj = ∂mi

∂hj
:

χij =

(
tanhJij + tanhhij tanhhji

1+ tanhJij tanhhij tanhhji
−mimj

)
gjij +gijj

(
1−m2

i
)

that can be employed for gradient ascent or on a coordinated
hij ,gijk ,Jij ,hi updating scheme.
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Observations

Example

We will deal with partial observation of extractions from a distribution
over X = {1, . . . ,n}.

Suppose you see that over M samples, n3 samples were the number
3. In the remaining M−n3, you just don’t know.

You need to point out one plausible distribution for the data.

Would your guess be e.g. P (k) = n3
M δ (k,3) + M−n3

M δ (k,2)? This
one is compatible with the observations!

Or would you rather guess P (k) = n3
M δ (k ,3) + M−n3

M (1−δ (k,3)),
i.e. completely flat in the unobserved part?



Inference in Computer Science and Systems Biology Part I
Coming up with models: maximum entropy principle

Observations

Another example

Same setup as before.
Suppose you only observe that over M samples, n23 samples were
either 2 or 3, and n34 samples were either 3 or 4.

How do we find the flattest possible distribution given the
observations?
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Observations

General case: making predictions from partial observations

How can we come up with reasonable models?

Suppose we have a distribution P : X→ [0,1] and we are given an
observable for a variable f :

f̄ = ∑
x
f (x)P (x)

How does one compute

ḡ = ∑
x
g (x)P (x)?

But!
(very) undertermined system (|X| unknows, 2 equations)!
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Observations

Maximum Entropy

Let us find the distribution P that satisfies f̄ = ∑x f (x)P (x) and
S (P) =−∑xP (x) lnP (x) is maximum (Jaynes 1957)
This is the “less constrained / flattest distribution” compatible with
the observation
Using Lagrange multipliers...

Γ(λ ,µ,P) = S (P) + µ

(
f̄ −∑

x
f (x)P (x)

)
+ λ

(
1−∑

x
P (x)

)
And we need to find an unconstrained maximum for
maxλ ,µ,P Γ(λ ,µ,P). Taking derivative w.r.t P (x)

0 =
∂ Γ

∂P (x)
=− lnP (x)−P (x)/P (x)−µf (x)−λ

P (x) = e−µf (x)−(1+λ )
∝ e−µf (x)

(A Boltzmann / exponential distribution!)
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Observations

Many observations

In general for many simultaneous observations f1, . . . , fm,

max
λ ,µ1,...,µm,P

S (P) +
m

∑
a=1

µa

(
f̄a−∑

x
fa (x)P (x)

)
+ λ

(
1−∑

x
P (x)

)
0 = ∂ Γ

∂P(x) =− lnP (x)−P (x)/P (x)−∑
m
a=1 µafa (x)−λ , so

P (x) ∝ e−∑
m
a=1 µafa(x)

Fact!

∑xP (x) log P(x)
α

=−S− logα, i.e. minKL(P,uniform) = maxS
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Examples

Going back to our n23,n34 example

Our observables were f1 (i) = δ (i ,2) + δ (i ,3) and
f2 (i) = δ (i ,3) + δ (i ,4), and 〈f1〉= n23

M = p23,〈f2〉= n34
M = p34

Maximum entropy says:

P (i) ∝ e−µ1(δ (i ,2)+δ (i ,3))−µ2(δ (i ,3)+δ (i ,4))

i.e, defining r = e−µ1 and s = e−µ2 we get
P (i) = 1

Z r
δ (i ,2)+δ (i ,3)sδ (i ,4)+δ (i ,3)

Z =
n

∑
i=1

rδ (i ,2)+δ (i ,3)sδ (i ,4)+δ (i ,3) = r + rs + s + (n−3)

p23 =
1
Z

n

∑
i=1

(δ (i ,2) + δ (i ,3)) rδ (i ,2)+δ (i ,3)sδ (i ,4)+δ (i ,3) =
1
Z

(r + rs)

p34 =
1
Z

n

∑
i=1

(δ (i ,3) + δ (i ,4)) rδ (i ,2)+δ (i ,3)sδ (i ,4)+δ (i ,3) =
1
Z

(rs + s)

a 3×3 system (solve it!)
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Examples

Example: ME distribution on N0 with fixed mean

Let P be the distribution of maximum entropy on {0,1, . . .} with mean
m ≥ 0 (that is m = ∑i iP (i)).

P (i) =
1
Z
e−µ i =

1
Z
(
e−µ

)i
Denote r = e−µ .

1 =
∞

∑
i=0

P (i) =
1
Z

∞

∑
i=0

r i

So Z = 1
1−r , i.e. P (i) = r i (1− r). This is called the geometric

distribution.

m =
∞

∑
i=0

iP (i) = (1− r) r
∞

∑
i=0

ir i−1 = (1− r) r
∂

∂ r

(
∞

∑
i=0

r i

)

= (1− r) r
1

(1− r)2 =
r

1− r
=

1
1− r

−1

So r = 1− 1
m+1 .
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Examples

Example: spins, first moments

Suppose σi ∈ {−1,1} for i = 1, . . . ,N, and we are given the N observables
mi = 〈σi 〉 for i = 1, . . . ,N. Then the maximum entropy distribution is

P (σ) ∝ e−∑i µi σi = ∏
i
e−µi σi

As mi = ∑σ P (σ)σi ,

mi =
∑σ σi ∏j e−µj σj

∑σ ∏j e−µj σj

=
∑σ−i ∏j 6=i e−µj σj ∑σi σie−µi σi

∑σ−i ∏j 6=i e−µj σj ∑σi e
−µi σi

=
∑σi σie−µi σi

∑σi e
−µi σi

= tanh(−µi )

So µi =− tanh−1 (mi ).



Inference in Computer Science and Systems Biology Part I
Coming up with models: maximum entropy principle

Examples

Example: spins, first two moments

Suppose σi ∈ {−1,1} for i = 1, . . . ,N, and we are given the
1
2N (N−1) +N observables cij = 〈σiσj〉 for 1≤ i < j ≤ N and mi = 〈σi 〉
for i = 1, . . . ,N. Then the maximum entropy distribution is

P (σ) ∝ e∑i<j Jij σi σj +∑i hi σi

i.e. an Ising model!
This model has further restrictions on couplings and fields:
∑σ P (σ)σiσj = cij , ∑σ P (σ)σi = mi

We know how to find Jij and hi in the case of a tree prior...
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Examples

Maximum Likelihood and Maximum Entropy

For an Ising model, we have seen that

L (J,h) = ∑
i<j

c̃ijJij +∑
i
m̃ihi − logZJ,h

But also that on the point of ML, c̃ij = c∗ij = 〈σiσj〉 and m̃i = m∗i = 〈σi 〉.
So

L (J∗,h∗) =−〈E 〉J∗,h∗ − logZJ∗,h∗ = S (PJ∗,h∗)

ML=ME
The J,h of ML describe the distribution of ME that reproduce m̃i , c̃ij
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ARACNE

Data Processing inequality: If P (x ,y |z) = P (x |z)P (y |z) then
Mxy ≤min{Mxz ,Myz}

This can be used for reconstruction (Califano & al, 2006): for every
triplet i , j ,k consider Mij ,Mik ,Mjk and eliminate the smallest one.

The resulting graph contains the Chow-Liu tree.

Running time ∼ N3
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Reconstruction using independence

Observation
If j /∈ ∂ i ∪{i}

P (xi ,xj |x∂ i ) = P (xi |x∂ i )P (xj |x∂ i )

and this can be used to identify x∂ i .

Reconstruction algorithm (Bresler, Mossel & Sly 2010)

For each i , check
(

N
d

)
candidate neighborhoods ∂ i . For each candidate

∂ i , check condition on the remaining N−d −1 nodes j
Running time: ∼ Nd+1
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The binary perceptron

The perceptron is an stylized model of a neuron and the simplest
example of neural network (NN). The binary perceptron receives
x1, . . . ,xN (real valued) inputs and produces a binary output

σ = sign

(
N

∑
i=1

wixi

)
= sign(w ·x)

A perceptron is capable of learning: let’s suppose we are given
x1, . . . ,xM patterns together with desired classification labels
σ1, . . . ,σM . The learning procedure consists in finding w such that
σ µ = sign(w ·xµ ) for µ = 1, . . . ,M
This can be thought as the problem of finding the separating plane
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The perceptron: generalizations and simplifications

A slightly more general rule σ = sign
(
∑

N
i=1wixi −θ

)
can be simply

implemented as an extra dummy output xN+1 =−1
We can assume σ τ = +1 for all τ! Multiplying by σ τ we get
1 = σ τ σ τ = sign(w · (σ τx))

We will be interested in the following cases: w ∈ RN and
w ∈ {−1,1}N and w ∈ {−q, . . . ,0, . . . ,q}N

We can assume that ‖xτ‖= 1 since normalization doesn’t affect
classification
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The online perceptron algorithm

Perceptron Algorithm

1 w0 = 0
2 done = 0
3 while done = 0:

done = 1
for τ = 1, . . .M:

if xτ ·wt ≤ 0 (mistake):

wt+1 = wt +xτ

done = 0
t← t+1

i.e. on any mistake, the algorithm greedily “helps” the classification of the
missclassified pattern xτ , because wt+1 ·xτ = (wt +xτ ) ·xτ = wt ·xτ +1
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The Perceptron algorithm (analysis)

Assume there exists a classifier w∗, i.e. w∗ ·xτ > 0 for τ = 1, . . . ,M. Then
the number of (mistake) events t must satisfy t < γ−2

γ = min
τ=1,...,M

xτ ·w∗

i.e. the algorithm must terminate in less than γ−2 iterations.

1 wt+1 ·w∗ ≥wt ·w∗+ γ.
Because wt+1 ·w∗ = wt ·w∗+xτ ·w∗ ≥wt ·w∗+ γ

2 ‖wt+1‖2 ≤ ‖wt‖2 +1
Because ‖wt+1‖2 = wt ·wt +2xτ ·wt +xτ ·xτ ≤ ‖wt‖2 +1. This
implies ‖wt+1‖ ≤

√
t

Now after t mistakes, tγ ≤wt+1 ·w∗ ≤ ‖wt+1‖ ≤
√
t, thus t ≤ γ−2
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I/O association as Bayesian Inference

We will just use the bayesian framework assuming that

Data samples are formed by both input and output D = I ,O

The stochastic machine defines a stochastic rule P (O|S , I )

S and I are independent

Then we can use Bayes:

P (S |I ,O) = P (S , I ,O)P (I ,O)−1 = P (O|S , I )P (S)P (I )P (I ,O)−1

∝ P (O|S , I )P (S)

Similarly for I 1,O1, . . . , IM ,OM (assuming I 1, . . . , IM ,S independent):

P
(
S |I 1,O1, . . . , IM ,OM)

∝

M

∏
µ=!

P (Oµ |S , I µ )P (S)
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Posterior distribution of binary perceptrons

Suppose we are given I 1 = x1,O1 = σ1, . . . , IM = xM ,OM = σM and we
want to describe the posterior distribution for the binary perceptron
S = w

P
(
w|x1,σ1, . . . ,xM ,σM)

∝

M

∏
µ=!

P (σ
µ |w,xµ )P (w)

The rule can be e.g. for σ µ ∈ {−1,1} and w,xµ ∈ RN :

P (σ
µ |w,xµ ) = δ (σ

µ ;sign(w ·xµ ))

or more in general

P (σ
µ |w,xµ ) = f (σ

µ ;w ·xµ )

Normally much easier to sample from I,O, given S than from a
generic Boltzmann weight!
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Posterior distribution as constraint satisfaction

P (S) can be set to favour diluted classifiers S , e.g.
P (S) ∝ ∏i eµδ (Si ,0)

In fact, P
(
S |I 1,O1, . . . , IM ,OM

)
can be thought as a direct model:

P (S |I,O) ∝

M

∏
µ=1

δ (Oµ ;sign(S · I µ ))∏
i
eµδ (Si ,0)

And solved with mean-field approximations (e.g. Belief Propagation)

Particularly simple if e.g. Si ∈ {−q, . . . ,0, . . . ,q}
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Recurrent network

Suppose we have a binary network σi ∈ {−1,1}, and
wij ∈ {−q, . . . ,0, . . . ,q}. Consider

P (σ |w) ∝ ∏
i

δ

(
σi ;sign

(
∑
j 6=i

wjiσj

))

and dilution prior P (w) = ∏i 6=j e
µδ(wij ,0)

P
(
w|σ1, . . . ,σ µ

)
∝ ∏

i

(
M

∏
µ=1

δ

(
σi ;sign

(
∑
j 6=i

wjiσj

))
∏
j 6=i

eµδ(wij ,0)

)

That is, the posterior distribution factorizes! N separate inference
problems
For each i , BP can be used to find posterior statistics of the wji .
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Insufficient data

What to do if data is insufficient to infer a good model?

ML/MAP are too risky: maybe the point of ML/MAP is not
representative at all!

In general we will be happier to get a small amount of sure
information (e.g. a number of interactions that are present with high
confidence) than a complete model with no poor confidence.

How to measure performance (at least when we know the answer)?
Something finer than correct/incorrect: ROC curves!
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ROC curves

ROC curves are thoroughly used in diagnostics

Suppose we have a test which gives a scalar value 0≤ α ≤ 1 giving
confidence of a certain disease.

Then depending on a given criterion value α0, we will predict P (disease)
if α ≥ α0 and N (no disease) if α < α0. How good is the test?

test

criterion

s
u
b
je

c
ts

criterion

specificity

sensitivity

0

1

0

1

11-specificity

s
e
n
s
it

iv
it

y

no disease
disease

Sensitivity=TP/(TP+FN)=TP/disease
Specificity=TN/(TN+FP)=TN/no disease

Area below the curve: discrimination. Probability for a random
subject with disease to have α larger than that of a random subject
without disease.
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ROC curves for network inference

Subject = edge

With disease = present link, i.e. e ∈ E , Jij 6= 0

Without disease = absent link, i.e. e /∈ E , Jij = 0

Criterion: e.g. Mij , inferred
∣∣∣JML

ij

∣∣∣, inferred ∣∣∣JMAP
ij

∣∣∣, P (Jij 6= 0|data)

What criterion do we choose to have the best possible ROC curve?

The best is to use P (Jij 6= 0|data) as criterion! Better expected
ROC curve than MAP or ML estimate.
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Things to read

Yedidia, Weiss & Freeman, Belief propagation and its generalizations
+ variational interpretations
David MacKay’s book “Information Theory, Inference and Learning
Algorithms”
Jaynes paper on Maximum entropy
Chow-Liu paper on inference on trees
Mézard & Montanari’s book
Mezard & Mora’s Susceptibility Propagation
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The End
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