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L Motivation
Inference of Gene Regulation networks

Expression Data

m ldentifying each precise regulation mechanism by experiments is very
costly and time consuming: too many genes, way too many possible

interactions!

m Hope to infer regulatory mechanisms from whole genome-scale

experiments: microarrays

172 stress conditions
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Yeast Dataset from: Grasch,

m Log-ratios of expression data:

Spellman, Mol. Biol. Cell (2000)

overexpression, u nderexpression .



Two main goals:

m Inference of topology: \Who regulates who?

m Inference of behaviour: predict the expresssion of a gene given the
expression of other genes

m These are method of inverse inference: infer the model from the data



m One way to do this is using coexpression networks.

m Compute the Pearson correlation coefficient Cj; for every pair i,/ of
genes

m Potential regulators of a gene are most correlated inputs
m Build the network of links for which |C,J| is above a certain treshold.

m But we can do better!



top DI pairs top Ml pairs

F. Morcos, A.Pagnani et al, 2011
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[ Bayesian inference

Bayes

Conditional probability

Conditional probability: restriction of a probability distribution to a
subspace B:
P(ANB) P(A,B)

P(B)  P(B)

P(A|B) =

“Probability of A given B"

What is the probability of the output of a die to be > 2 given that the
result is odd?

P(d >2|d odd) = P(d > 2,d odd) /P (d odd) = 2/% :%



in C. Sci and S Biol Part |

[ Bayesian inference

Bayes

Bayes

PAIE) = 5 = P(EIA) o)

You are tested for an illness that is very rare (about 1:100000) with a
fairly precise test (99% accuracy in both cases). You come up positive,
yuck! Probability of illness? (a) 99% (b) 90% (c) 10% (d) 1% (e) 0.1%

P(I+) = P(+NPU)P(+)" ~0.99-10°(0.01) "~ 103!
P(+) = P(+.1)+P(+,not /)

P(+|D)P(1)+ P(+|not 1) P(not /)

= 0.99x107°+0.01x (1-107°) ~0.01
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[ Bayesian inference

Bayes

Bayes' rule in inference

m D =data, S =stochastic “machine”, P(D|S) =stochastic rule, P(S)
prior information about S

A double stochastic process:

S is extracted from P(S)
D is extracted from P(D|S)

We observe only D. What can we guess about S7

posterior likelihood prior
—~— P(DIS)P(S) — ==
PsiD)- " ) < PO P(S)

Just the maths of common sense!



Suppose we have the following multiple stochastic process:

S is extracted from P (S)
D!,...,DM are extracted i.i.d from P(D|S)

P(DY,...,DM|S) M
o) PO =POITPE"S)

P(sS|D',...,DM) =

Sometimes it is written in update form:

P(S|DY,...,DM) = P (DM|S) <P(S)Aﬁ1P(D“|S)>
u=1

=P (DM|S)P(S|D,...,DMT)



posterior prior |ikelihood
—— N
P(S|D)=P(S) P(DIS)

m Maximum A Posteriori (MAP):

(arg) max P(S|D)

m Maximum Likelihood (ML):

(arg) mSaxP(D|5)

m ML=MAP for uniform prior, when it makes sense

m Two “Schools of thought”
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|—Bayesian inference

Examples

Example: biased coins

| have two coins with head probabilities p; = 0.5 and p, =0.2.

| choose one at random with P (1) =0.6,P(2) = 0.4.
| flip the coin and the output is tail.

Can we say something about the coin?

R

P (tail|1) P (1) = 0.5 x 0.6 = 0.30
o« P(taill2) P(2) = 0.8 x 0.4 =0.32
0.30/(0.30+0.32) = 0.484
= 0.32/(0.30+0.32) =0.516

—_~ = =~
i
o
=T T
v:/\_/\_/
I

Not much!



Consider the outcome of n p-biased coins. The probability of k heads is

P (klp) = ( P )pk(l—p)"k

If P(p) = uniform, likelihood=posterior!

M M k n—k M
P (ki klp) o< priss i (1 p)Fisa ™t — (p (1 p)"¥)



P(ky,... km|p) o (pk(l_p)n_,;)M

with k = ﬁxﬁ/’:l ky heads, the ML is attained at the max of

% =klogp+ (n—l?) log (1—p)
Let us find critical points:

() = FropMk -0 R dp  mk 41

fol pMk (1 _p)M(n—l"() dp ~ Mn+2
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[ Bayesian inference

Examples

Binomial

T T
f(x,n,2) ——
- f(x,2*n,2+3) - -
f(x,3"n,243+2) --------
B f(x,4*n,2+3+2+4) T
L f(x,5"n,2+3+2+4+3)
. f(x,6*n,2+3+2+4+3+2)

£ (p,n,k)=p**xk*(1-p)**(n-k)/(k!*(n-k)!/(n+1)!)
pml(n,k)=k*1./n

pav(n,k)=(k+1)*1.0/ (n+2)

n=10;k=2;

set arrow from pml(n,k),0 to pml(n,k), f(pml(n,k), n, k)
set arrow from pav(n,k),0 to pav(n,k), f(pav(n,k), n, k)

plot [0:1] f(x,n,2) 1w 3, f(x,2*n,2+3), f(x,3*n,2+3+2),
f(x,4%n,2+3+2+4), f(x,5%n,2+3+2+4+3), f(x,6%n,2+3+2+4+3+2)



1 1l (x—m)?
P(xl(m,0)) = ——e 22"
2o
Given x1,...,xM, we have

P (... x| (m,0)) o= 302 THLaL6" - ~Miog

If we try to maximize the Iog—Ilkellhood

Z(m, G)——meu L(x*—m)?—logo
02 11 02 (1 ¢ 2
0= om M b 0=36=° (m,;(x —my-o

l.e. m= %Zﬁ”x“,o‘ = \/%Zﬁ”ﬂ (xt — m)2
m What is the likelihood of (m,c) when M =17
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|—Bayesian inference

Examples

ML and KL divergence

Remember the KL divergence

L(P||Q) ZP x)log Ex;

Assume you have a set of sample data x* for u =1,...,M. Then
consider the distribution P (x) = ﬁZ;‘Ll 6 (x,x"), and a distribution Qg
parametrized by 0

):ﬁ/,’:l ) (x,x“/)

KL(PIG) Qo (4

(x,x*)log

||M§

IR
= —log H Qe (x*)
n=1

That is, ML is the same as minimizing the KL divergence with

77 Zpie 8 (x,x)!
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[ Bayesian inference

Complex models

Ising model

Suppose given o,...,06M samples, and assume they were generated
independently by an Ising model

Pyn(c)= 1 eLi<jJijoioj+Lihio;

n
P(Gl,...,GM|J,h H eZ,<JJU i O H4yihiol—logZ,

—e M(Eicj JjE;+Xi hifi—log Zy )

m Depends only on the experimental first (/;) and second moments
(&) of the datal

m The log-likelihood

Z(J,h) = (ZJUCU—i—Zh m,—IogZJh>

1<J

How can we find J, h of maximum likelihood?
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[ Bayesian inference

Complex models

Ising Likelihood

Z(J,h) = (ZJUcu+Zh m,IogZJh>

1<J

Lets try to find critical points:

0=

8.,2” - 8|ogZJh
Mz —
dJjj (

m Better:—log Z, p is a concave (N) function on J,h (and so is .Z), so

we can use gradient ascent!

m Unfortunately, estimating (o;0;) and (o;) is computationally hard!
(NP-Complete). Possibilities:
Exact enumeration (up to N =~ 30)

Monte-Carlo methods (slow!)
Mean-field type approximations (e.g. Belief Propagation)

TELL) (e~ (o) 0= = M~
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I—Balyeliﬁm inference

Complex models

Boltzmann learning

(init) Set J=0, h=0
(direct inference) somehow estimate {(c;0;)}
Pyn

(delta) Compute AJjj = & —(0;0j), Ahj = m; —(0;)
(end?) if |AJj| < € for all i < j, |Ahj| < € for all i, exit
(update) J « J+nAJ, h< h+nAh

@A Go to 2

and {(o;)}, from

i<j

But we need an (approximate) inference method for B!



m Given a (finite) undirected graph G = (V,E)

m A proper 3—coloring is 0; € {e,e,e} for i € V such that o; # o if
(ilj)eE

P(o)=5 1 (1-5(c.)

(f)eE

m Hard computational problems (NP-Complete):

Finding a proper coloring

Estimating P (o;,0;)

Counting proper colorings

Deciding if there is at least one proper coloring]!



L
e,
=

No(e) = N© (e0e) + N© (o00) + N© (oc0) + N©) (e00)+---

= NO ()N () NSV (0) + N (o) NV (o) NSV (o) + -
(M7 )+ (2)) (W (o) + N5 ) (67 (o) + N7 ()
No(s) = (M (o) + P (0)) (NS () + NS (o)) (NP (o) + W) (o)

No(e) = (N (&) N () (M (o) + NV () (MY (o) + AL ()



L
e,
=

Py(e) o< p© (o00) + p© (o00) + p©) (oo0) + p©) (e00)+---

= PO ()P (o) P (0) + P (o) P (8) PV (o) + -+
(P )+ P @) (P2 (o) P () (P (o) + 7 (4))
(P @) +P (@) (P (0)+ P (@) (P () + P (#))

(P (&) + P (2)) (P (o) + P (o) ) (PE () + PV ()

Po(*)

Po(e)

R

R



-

P(()4) (o) o< [210) (o0e) + PO (o00) + PO (ove) + PO (e00)+---

PO (o) P () P (0) + P (0) PL) (0) P{) () + -

(P @) +P () (P (0)+ P () (P () + P (9))
(P )+ P (@) (P2 (o) P () (P (o) + PO (4))

(PO )+ P () (P () + P () (P (o) + P (4)

Py (o)

R

Py’ (o)

R



RSV (o)

PgY (o)

12

R

R

[210) (o0e) + PO (o00) + PO (ove) + PO (e00)+---

PO (o) P () P (0) + P (0) PL) (0) P{) () + -

(P @) +P () (P (0)+ P () (P () + P (9))
(P )+ P (@) (P2 (o) P () (P (o) + PO (4))

(PO )+ P () (P () + P () (P (o) + P (4)



gi(0:) o< wi(a) [ Y aw(ow)

kedi\j ox#o;

This system is a fixed point F(q) = q equation for
q= {qij7qji}(ij)eE € [0,1]2|E| and is solved normally by iteration:

a4 = lim F%)(qo)
k—yoo
On a fixed point, we can compute

pi(oi) o< wi(o) [T X awi(ow)

kedi oy #0;
pii(0i,0;) = qjj(0i)qji(0;) (1 — & (0i,05))
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[ Approxil direct inf
L Belief propagation

Belief Propagation (pairwise models)
Given a distribution:

1 1 (6:.6:)+T: — log W: (0;
P(0)=7 [T vilono)]]vi(o) = e Eancelosvilorer)ti—iosvi(on)
z ; z

(if)eE

gi(0i) o (o) [T X qui(ok)Wii(0k,0;) (message)
kedi\j Ok

pi(0i) o< wi(o;) [ Y awi(ok) wii (0k,0i) (marginal)

kedi Ok
pii(0i,0;) o i (0i,05)q; (07) gji (0;) (marginal)
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[ Approximate direct inference

Belief propagation

BP for crosswords

m English dictionary D (set of english words)

m Indices: a set X of letters coordinates, one for each non-black
square, a set H of horizontal words indices, one for each horizontal
blank sequence, a set V of vertical word indices, one for each
vertical blank sequence,

m Variables: h; € D for each s€ H, v, € D for each t € V,
xij €{a,...,z} for each jj € X

m For each non-black square i,

m s(ij) € H=crossing horizontal word, p(ij)= position of ij within,
m t(ij) € V=crossing vertical word, q(ij) position of ij within

m Constraints: For each non black position jj: the following two

conditions have to be ensured: (hs(ij))P(iJ) = x; and (vt )) ali) =

m In summary: |H|+ |V|+|X] variable nodes, 2|X| constraints

P (h,v,x) HS( (i) Xu>6((vt(u)> (i)’ Xu)

UEX



Let T=(V,E) be a tree, and assume P a T-factorized distribution, i.e.
P(o)= %H(U)EE y;i (07,0;). Then:

P(oi,0;
P)= TT pragpia; I1P(@)

(iJ')EE
For a general graph G, it is only an approximation!
m |t is called the Bethe approximation.



If Pis T-factorized, then

-S(P) = ZP(O' InP (o)

= Z KL(P(0i,0))||P(01) P(0})) — ZS(P o))

(if)eE

= ZMU ZH

(i)eE



For every G = (V, E)-factorized Ising model,

—(H) = Y Jiloio;) + Y hi(o)

(if)eE
—logZ;p = (H)-S
(H)+ZP(0‘)IogP(6)

If Pis T-factorized, then

—|0gZJ’h = <H>—|— Z M’J_ZH’
(iHeE i

|
These expressions for S and log Z are exact for trees, just approximations
for general graphs!
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[ Approximate direct inference

Belief propagation

Mutual Information

Mutual Information is a measure of correlation:
P(x,y)
Ml (x,y)=Y) P(x,y)log —————="—
(x.y) ; (<) E500P(y)
m In terms of the KL divergence:
Mi (x,y) = KL(P(x,y)||P(x) P(y))

m It can be also thought as “information gain”: how much information
about x is gained (in average) by knowing the value of y:

Mi(x,y) = ZP )S (P (x]y))
= ZP P(y|x))

m Ml(x,y) <S(P(x))

If x=y (i.e. P(x,y)=6(x,y)P(x)), MI(x,y)=S(P(x)).
If P(x,y)=P(x)P(y), MI(x,y)=0



m Suppose that we are told that some tree-factorized Ising model
produced a set of samples:

1 v 6o hG:
ol,...,cM~P(c)= ZeEKJJU""’J*Z' hioi

m How do we find the tree T = (V,E) and the T-factorized J,h (i.e.
such that J;j #0 = (ij) € E) of ML?



Given samples ¢!,...,6M, consider J*,h* the T = (V, E)-factorized ML
couplings (T tree), then

2k = Y Y c,J—i—Zh i —log Z«
(if)eE
(A —logZy
= —(H)+(H") -5

= —(H)+(HY+ Y M itLS

(ieE
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L Inverse inference of trees

Chow-Liu (1968)

L) =—(H)Y+(HY+ Y M +Zs*

(j)eE
Two key observations:

We have seen that Py h» must reproduce the first (/;) and second
(&) moments of the data over T (so (H*) = (H*)). Then it must
reproduce also IS(G,,GJ) (C,JG,GJer oi+mjo;j+1). In
particular, M I\/I,J and 5/ = =5,

The term 5; does not depend on T
LI h") = Z ;; + const.
(if)eE

And we want to maximize with respect to T (topology)
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I—Inverle inference of trees

Maximum Spanning Tree (Kruskal 1956)

Given a connected graph G = (V,E) and weights M : E — R, finding
the maximum spanning tree can be done as follows:

Order edges so as to have M, > M, > --'l\/le‘E‘
Set £/ <0
For s=1,... |E|:
m If (V,E'U{es}) has no loop:
E'+ E'U{es}

At the end, (V,E’) is a maximum spanning tree, i.e. a tree that
maximizes Y .cgr Me



Compute Mj; for i < j

Use Kruskal to compute T the MST for the M;

p(O',', o:,) _ eJ,:iG,'O:,'-l-a,-jO';-l-b,'jGj-i-ﬂ'j /3(0',') _ eh:-o’,'-l-f,'

. . d

P(e) = [I P(oiop[]P(e)"
(ieT i

eL(i)e T Jij0i0j+a;j0i+bijoj+L; h;o;i(1—d;)

o ex(i)eT Jij0i0j+¥iOih;

where h; is computed by collecting all coefficients of o;.
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L Inverse inference of trees

Maximum Spanning Tree

Proof by induction on t: E' C E” for some MST E” in every step t of
Kruskal (assume that for some step t >0, E’ is included in an MST E”
and prove that E'U{e;} is also included in some MST)

If E'"U{e;} is also included in E”, done. Otherwise:

E"U{e:} has a loop p (E" is a tree) .

Take any edge f in p\ (E'U{e:}) (such an edge must exist,
otherwise p C E'U{e:}).

We have M, > My (otherwise f would have been added before e;).

B £ =E"\{f}U{e:} is a tree, Y(jjcem Mij > L (jycer My, so E”
MST, and E'U{e;} C E"” done



N =5, M =6, Data:

1 1 1 -1 1
1 -1 1 -1 1
1 1 1 -1 1
-1 -1 1 1 1
-1 1 -1 1 -1
-1 1 1 -1 -1
Marginals:
3 2 1 4 3
_1 _1 _1 _1 _1
Aet(3)ret(8)mmi(5 ) remt(5 ) mmi(5) e
1 2 1 2 1 2
P12=%(1 2>7P13=%(0 3)7P14=%(3 0),P15=
2 1 0 2 1 1 0 2
% 0 3)7P23:% 1 3>7P24:%<3 1)7P25:% 2 2)7P34:
0 1 1 0 1 3
1 _1
5(4 1>’P35 6\ 1 4>’P45 6\ 1 1

Mutual information: Mg = 0.459, M5 = 0.459, M35 = 0.317, M34 = 0.317, M5 =
0.252, M13 = 0.191, Moz = 0.109, M5 = 0.044, Moy = 0.044, My = 0
Kruskal edges: (15),(45),(35),(34),(25)
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L Inverse inference of trees

Independent pairs

Assume the Bethe expression for trees to be valid for the complete graph:

P(clJ,h) = Hp """J SI1P (@)

1<J
we parametrize

H! oj4-f;

Jjj0i0j+aij0i+bjjoj+f; P(c;) = ehi

P(oi,0/) = e’
But then,
P(o]J, h) = eLizi it Ei0=an(Lmi(ay i) Hh)or . g —
but we know that on the point of ML, P(c;0;) = P(0;,0;) so we can get
Jjj directly from the data as in the two-spin system:
Jij =log 754”377
P+—P—+

This exactly the same as if we consider each link separately (a single link
is a tree!l). This is called the independent pairs approximation.



With the change of variables

gij (+1)

1
h," =—lo
P 2% g (-1

The BP equations for the Ising model

q; (07) o< ehii H qui (o) ekioCi
kedi\j Ok

become:
hj = hi+ Z tanh_l(tath/,-tanhh,,-)
1€di\j

m; = tanh (h;-i— Z tanh_l(tanh Jiitanh h,,-))
1€di
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L Inverse inference of trees

Susceptibility Propagation
If we define
__ohy
ST

Taking derivatives of the BP equations we obtain Susceptibility
Propagation Equations (Mézard & Mora 2007):

1—tanh2h/-
jk = O+t i tanh Jj; i
&ij k /e;\jglk / 1—tanh? Jj tanh? h;

This gives a much better approximation for the susceptibility
om;
Xij = ¢ij — mimj = Gl

[ tanhJj +tanh hjtanh by mim; ) g+ &35 (1 m?)
Xi =\ T+tanh Jytanh hytanhhy 0 ) 05 8 ST

that can be employed for gradient ascent or on a coordinated
hij, gijk, Jij, hi updating scheme.



Inf in C Sci and Biology Part |

|—Coming up with models: maximum entropy principle

Observations

Example

We will deal with partial observation of extractions from a distribution
over X ={1,...,n}.

m Suppose you see that over M samples, n3 samples were the number
3. In the remaining M — n3, you just don’t know.

m You need to point out one plausible distribution for the data.

m Would your guess be e.g. P (k)= 136 (k,3)+ %5(!{,2)? This
one is compatible with the observations!

m Or would you rather guess P (k) = 738 (k,3) + M5 (18 (k,3)),
i.e. completely flat in the unobserved part?



Same setup as before.

m Suppose you only observe that over M samples, np3 samples were
either 2 or 3, and n34 samples were either 3 or 4.

m How do we find the flattest possible distribution given the
observations?



m How can we come up with reasonable models?

m Suppose we have a distribution P : X — [0,1] and we are given an
observable for a variable f:

f= Z f(x) P(x)
How does one compute

£=Ye()P(x)?

X

(very) undertermined system (|X| unknows, 2 equations)!
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|—Coming up with models: maximum entropy principle

Observations

Maximum Entropy

m Let us find the distribution P that satisfies f = ¥, f (x) P (x) and
S(P)=—=Y,P(x)InP(x) is maximum (Jaynes 1957)
m This is the "less constrained / flattest distribution” compatible with

the observation

m Using Lagrange multipliers...

F(A.u,P)=S(P)+pu <)_‘—2X:f(x)P(x)) +2 (1—Zp(x))

m And we need to find an unconstrained maximum for
max; upl (4,1, P). Taking derivative w.r.t P(x)
or
dP(x)

0= =—InP(x)—P(x)/P(x)—uf(x)—2A

P (x) = e HF)—(1+A) o g HF()

m (A Boltzmann / exponential distribution!)



In general for many simultaneous observations fi,..., fy,

max 5(P)+gua (E—;fa(x)P(x)) +2 (1—;P(x))

}.,}11 ..... Um,P
0= ar) =—InP(x)—P(x)/P(x)—YX™ u.fa(x)— 24, so

P (x) o< ™ Lat1Hafalx)

Y. P(x) Iog@ =—S—loga, i.e. min KL(P,uniform) = max$
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|—Coming up with models: maximum entropy principle

Examples

Going back to our np3, n34 example

m Our observables were f, (/) = 6 (i,2)+ 6 (i,3) and
f2(i)=8(i,3)+6(i,4), and (A) = 5 = po3, () = it = paa
m Maximum entropy says:
P (i) o e~ (8(:2)+5(1:3)~12(8(i3)+3(i.4)

m i.e, defining r=e7# and s = e 2 we get
P(i) = %ré(i,2)+5(i,3)Sb‘(i,4)+5(i,3)

7 _ i p8.2480:3) G4148:3) _ p 4 rs 4 s 4 (n—3)
i=1
I oo oy L8(12)+8(i,3) 8(i.4)+8(i,3) _ L

p23 = 22(5(1,2)+5(1,3))r(') (1:3) 50(14) ('):}(r—&-rs)
L ¥ sy A\ L8(1.2)+8(3) 5(i.4)+6(i3) _ L

P = §Z(5(',3)+5(',4))f( )+5(i:3) 5814y +6( ):f(f5+5)

Il
-

a 3 x 3 system (solve it!)

—~~
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|—Coming up with models: maximum entropy principle

Examples

Example: ME distribution on Ny with fixed mean

Let P be the distribution of maximum entropy on {0,1,...} with mean
m >0 (that is m=Y;iP(/)).

P(i)= %e*‘“’ = % (e*“)"

Denote r = e H. . | =
1=YPiy==Y"r
,-;o (7 z,;)

So Z=-L e P(i)=r"(1—r). This is called the geometric

distribution.

m = iiP(i) —(l—r)ri‘air":l = (1—r)r% (gr’)
1 r 1

= (1—r)r(1ir)2:1_r:1_r—l

—1__1
Sor=1 g



Suppose o; € {—1,1} for i=1,...,N, and we are given the N observables
m; = (o;) for i=1,...,N. Then the maximum entropy distribution is

P(c) o e LiHiCi — He—liiGi
i

As m;=YsP(0)o;,

Y50i Hj e W%
ZO’ Hj eiy‘io:i
Yo-illjzie % Y, 078 Hi%
Yo illjsie % g, e Hici
):c,- o;e HiGi

T T me o RmnH)
Oj

m; =

So ;= —tanh™t (m;).
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|—Coming up with models: maximum entropy principle

Examples

Example: spins, first two moments

Suppose o; € {—1,1} for i=1,...,N, and we are given the
SN (N —1)+ N observables c; = (c;0;) for 1 < i< j< N and m; = (o)
for i=1,...,N. Then the maximum entropy distribution is

P(c) o< eLi<jJijoioj+Lhio;

i.e. an Ising model!
This model has further restrictions on couplings and fields:
ZO‘P(G) 0i0; = Cjj, ZO‘P(G) O = m;

m We know how to find J;j and h; in the case of a tree prior...



For an Ising model, we have seen that

g(J,h) = ZE,'J'J,'J'—I-ZI";‘I;/);— IOgZJJ‘

i<j i

But also that on the point of ML, &; = c,-’J‘- = (0;0;) and m; = m = (o;).
So
g(J*7h*) = — <E>J*,h* — |°gZJ*,h* frg S(PJ*7h*)

The J,h of ML describe the distribution of ME that reproduce /mj, ¢;



Data Processing inequality: If P(x,y|z) = P(x|z) P(y|z) then
M,y < min{M,,,M,,}

m This can be used for reconstruction (Califano & al, 2006): for every
triplet /,j, k consider Mj;, M, M and eliminate the smallest one.

m The resulting graph contains the Chow-Liu tree.

m Running time ~ N3
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L Other network reconstruction methods

Reconstruction using independence

If j ¢ iU{i}
P (xi,xj1x9i) = P (xi|xa:) P (xj|%a;)

and this can be used to identify x;.

For each 7, check o ) candidate neighborhoods di. For each candidate

d
di , check condition on the remaining N —d —1 nodes j
Running time: ~ N9+1
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L Other network reconstruction methods

The binary perceptron

m The perceptron is an stylized model of a neuron and the simplest
example of neural network (NN). The binary perceptron receives
x1,-.-,xn (real valued) inputs and produces a binary output

o =sign (Z W,'X,') = sign (w-x)

i=1

m A perceptron is capable of learning: let's suppose we are given

x!,...,xM patterns together with desired classification labels

ol,...,6M. The learning procedure consists in finding w such that
ot =sign(w-x*) foru=1,....M

m This can be thought as the problem of finding the separating plane
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L Other network reconstruction methods

The perceptron: generalizations and simplifications

m A slightly more general rule o = sign (Z,N:l WiX; — 0) can be simply
implemented as an extra dummy output xy41 = —1

m We can assume o% = +1 for all 7! Multiplying by * we get
1=0%0" =sign(w-(c%x))

m We will be interested in the following cases: w € RV and
we{-1,1"andwe{—q,...,0,....q}"

m We can assume that ||x*|| = 1 since normalization doesn't affect
classification
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L Other network reconstruction methods

The online perceptron algorithm

wo =0
done = 0
while done = 0:

m done =1
mfort=1,...M:

m if x*-w; <0 (mistake):
Wiyl =wi+x°
done =0
t—t+1

i.e. on any mistake, the algorithm greedily “helps” the classification of the
missclassified pattern x%, because w1 -x" = (w; +x%) - x" =w;-x"+1
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L Other network reconstruction methods

The Perceptron algorithm (analysis)

Assume there exists a classifier w*, i.e. w*-x* >0 for t=1,...,M. Then
the number of (mistake) events t must satisfy t < y~2

Y= min x*-w*
t=1,..,M

i.e. the algorithm must terminate in less than y~2 iterations.
Wi W > we w47,
Because w1 -w* =w; w4+ x"-w* > wp w4y
Iwesa ]| < [lwe | +1
Because |[wei1||> = we - we +2x7-we + x7-x7 < |lwe ][>+ 1. This
implies [wey1 < v

Now after t mistakes, ty < w1 -w* < |lwyi1]] <Vt thus t < y2
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L Other network reconstruction methods

|/O association as Bayesian Inference

We will just use the bayesian framework assuming that

m Data samples are formed by both input and output D =1,0
m The stochastic machine defines a stochastic rule P(O|S,/)

m S and / are independent

Then we can use Bayes:

P(S|1,0) = P(S,1,0)P(1,0)*=P(0|S,1)P(S)P(I)P(1,0)*
< P(0|S,1)P(S)

Similarly for /*,0%,...,IM OM (assuming I1,...,/M S independent):

M
P(S|It,0%,...,IM OM) = [T P(O"|S,I*) P(S)
u=!
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L Other network reconstruction methods

Posterior distribution of binary perceptrons

Suppose we are given /' =x!,0' =c!,...,IM =xM OM = oM and we

want to describe the posterior distribution for the binary perceptron

S=w
M
P(w|x1,61,...,xM,GM) o< HP(G"‘|W,X“)P(W)
u=!
The rule can be e.g. for o* € {—1,1} and w,x* € RV:
P(c*|w,x*) =& (o ;sign(w-x"))

or more in general
P(co|w,x*) = f (c*;w-x*)

m Normally much easier to sample from I, 0, given S than from a
generic Boltzmann weight!
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L Other network reconstruction methods

Posterior distribution as constraint satisfaction

m P(S) can be set to favour diluted classifiers S, e.g.
P(S) o< I1;e+2i0)

In fact, P(S\Il, oL,....IM, OM) can be thought as a direct model:

M
P(S1,0) o [T 8 (O*;sign(S - I*)) [T e**i
p=t ;

m And solved with mean-field approximations (e.g. Belief Propagation)

m Particularly simple if e.g. S; € {—g,...,0,...,q}
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L Other network reconstruction methods

Recurrent network

Suppose we have a binary network o; € {—1,1}, and
w; € {—q,...,0,...,q}. Consider

P(o|w) o< H6 (6,-;sign </Z Wj,'Gj))
i i

and dilution prior P(w) =[], eh3(w; 0)

P(wloh.....o") « ] (ﬁ 5 (G,.;Sign y Wj,.c,j>> Heué(w;j,o))
u=1 j#i

i J#i

That is, the posterior distribution factorizes! N separate inference
problems
For each i, BP can be used to find posterior statistics of the wj;.
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U Insufficient data

Insufficient data

m What to do if data is insufficient to infer a good model?

m ML/MAP are too risky: maybe the point of ML/MAP is not
representative at all!

m In general we will be happier to get a small amount of sure
information (e.g. a number of interactions that are present with high
confidence) than a complete model with no poor confidence.

m How to measure performance (at least when we know the answer)?
Something finer than correct/incorrect: ROC curves!
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U Insufficient data

ROC curves

m ROC curves are thoroughly used in diagnostics
m Suppose we have a test which gives a scalar value 0 < a <1 giving
confidence of a certain disease.

Then depending on a given criterion value o, we will predict P (disease)
if @ > ap and N (no disease) if o < 0fp. How good is the test?

") criterion specificity

9] : 1 1
(9]
g ; Z
a i : >
» | nodisease ! disease 2
: c
P Q
sensitivity 0
0 ___ 0
test criterion 1-specificity 1

m Sensitivity=TP/(TP+FN)=TP/disease

m Specificity=TN/(TN+FP)=TN/no disease

m Area below the curve: discrimination. Probability for a random
subject with disease to have o larger than that of a random subject
without disease.
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U Insufficient data

ROC curves for network inference

Subject = edge

m With disease = present link, i.e. e € E, J;; #0

Without disease = absent link, i.e. e¢ E, J; =0

Jg/”", inferred

Criterion: e.g. M, inferred J,-jV’AP), P (J; # 0|data)

m What criterion do we choose to have the best possible ROC curve?

m The best is to use P (Jj; # O|data) as criterion! Better expected
ROC curve than MAP or ML estimate.



m Yedidia, Weiss & Freeman, Belief propagation and its generalizations
+ variational interpretations

m David MacKay's book “Information Theory, Inference and Learning
Algorithms”

Jaynes paper on Maximum entropy
Chow-Liu paper on inference on trees
Mézard & Montanari’'s book

Mezard & Mora's Susceptibility Propagation
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and

L Insufficient data

The End
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