# Inference in Computer Science and Systems Biology Part I 

Alfredo Braunstein

June 11, 2012

## Outline

1 Motivation
■ Inference of Gene Regulation networks

- Inference of protein structure from protein families sequences

2 Bayesian inference

- Bayes
- Likelihood
- Examples
- Complex models

3 Approximate direct inference

- Belief propagation

4 Inverse inference of trees
5 Coming up with models: maximum entropy principle ■ Observations

- Examples

6 Other network reconstruction methods
7 Insufficient data

## Motivation

- Inference of Gene Regulation networks


## Transcriptional Gene Regulation


-Inference of Gene Regulation networks

## Expression Data

- Identifying each precise regulation mechanism by experiments is very costly and time consuming: too many genes, way too many possible interactions!
- Hope to infer regulatory mechanisms from whole genome-scale experiments: microarrays

|  |  | 172 stress conditions |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | YAL001C | 1.53 | -0.06 | $\cdots$ |
|  | YAL002W | -0.01 | -0.30 | $\cdots$ |
|  | YALO2 | $\cdots$ |  |  |
|  | YAL004W | 0.24 | 0.76 | $\cdots$ |
|  | $\vdots$ | $\vdots$ | $\vdots$ |  |

Yeast Dataset from: Grasch, Spellman, Mol. Biol. Cell (2000)

- Log-ratios of expression data: overexpression, underexpression.


## Inference of the gene-regulatory network

Two main goals:

- Inference of topology: Who regulates who?
- Inference of behaviour: predict the expresssion of a gene given the expression of other genes
- These are method of inverse inference: infer the model from the data


## Inference of topology

- One way to do this is using coexpression networks.
- Compute the Pearson correlation coefficient $C_{i j}$ for every pair $i, j$ of genes
- Potential regulators of a gene are most correlated inputs
- Build the network of links for which $\left|C_{i j}\right|$ is above a certain treshold.

■ But we can do better!

- Inference of protein structure from protein families sequences

Inference of protein structure from protein families sequences

top DI pairs

top MI pairs
F. Morcos, A.Pagnani et al, 2011

## Conditional probability

Conditional probability: restriction of a probability distribution to a subspace $B$ :

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A, B)}{P(B)}
$$

"Probability of $A$ given $B$ "

## Example

What is the probability of the output of a die to be $\geq 2$ given that the result is odd?

$$
P(d \geq 2 \mid d \text { odd })=P(d \geq 2, d \text { odd }) / P(d \text { odd })=\frac{2}{6} / \frac{1}{2}=\frac{2}{3}
$$

$$
P(A \mid B)=\frac{P(A, B)}{P(A)}=P(B \mid A) \frac{P(A)}{P(B)}
$$

## Example

You are tested for an illness that is very rare (about $1: 100000$ ) with a fairly precise test ( $99 \%$ accuracy in both cases). You come up positive, yuck! Probability of illness? (a) $99 \%$ (b) $90 \%$ (c) $10 \%$ (d) $1 \%$ (e) $0.1 \%$

$$
\begin{aligned}
P(I \mid+) & =P(+\mid I) P(I) P(+)^{-1} \approx 0.99 \cdot 10^{-5}(0.01)^{-1} \approx 10^{-3}! \\
P(+) & =P(+, I)+P(+, \text { not } I) \\
& =P(+\mid I) P(I)+P(+\mid \operatorname{not} I) P(\text { not } I) \\
& =0.99 \times 10^{-5}+0.01 \times\left(1-10^{-5}\right) \approx 0.01
\end{aligned}
$$

## Bayes' rule in inference

- $D=$ data, $S=$ stochastic "machine", $P(D \mid S)=$ stochastic rule, $P(S)$ prior information about $S$

A double stochastic process:
11 is extracted from $P(S)$

- $D$ is extracted from $P(D \mid S)$

We observe only $D$. What can we guess about $S$ ?

$$
\overbrace{P(S \mid D)}^{\text {posterior }}=\frac{P(D \mid S) P(S)}{P(D)} \propto \overbrace{P(D \mid S)}^{\text {likelihood prior }} \overbrace{P(S)}
$$

Just the maths of common sense!

## Bayes' rule iterated

Suppose we have the following multiple stochastic process:
■ $S$ is extracted from $P(S)$
2. $D^{1}, \ldots, D^{M}$ are extracted i.i.d from $P(D \mid S)$

$$
P\left(S \mid D^{1}, \ldots, D^{M}\right)=\frac{P\left(D^{1}, \ldots, D^{M} \mid S\right)}{P(D)} P(S) \propto P(S) \prod_{\mu=1}^{M} P\left(D^{\mu} \mid S\right)
$$

Sometimes it is written in update form:

$$
\begin{aligned}
P\left(S \mid D^{1}, \ldots, D^{M}\right) & \propto P\left(D^{M} \mid S\right)\left(P(S) \prod_{\mu=1}^{M-1} P\left(D^{\mu} \mid S\right)\right) \\
& =P\left(D^{M} \mid S\right) P\left(S \mid D^{1}, \ldots, D^{M-1}\right)
\end{aligned}
$$

## MAP vs. Max likelihood

$$
\overbrace{P(S \mid D)}^{\text {posterior }} \propto \overbrace{P(S)}^{\text {prior likelihood }} \overbrace{P(D \mid S)}
$$

- Maximum A Posteriori (MAP):

$$
(\arg ) \max _{S} P(S \mid D)
$$

■ Maximum Likelihood (ML):

$$
(\arg ) \max _{S} P(D \mid S)
$$

- ML=MAP for uniform prior, when it makes sense
- Two "Schools of thought"


## Example: biased coins

I have two coins with head probabilities $p_{1}=0.5$ and $p_{2}=0.2$.
11 choose one at random with $P(1)=0.6, P(2)=0.4$.
[2 I flip the coin and the output is tail.
Can we say something about the coin?

$$
\begin{aligned}
P(1 \mid \text { tail }) & \propto P(\text { tail } \mid 1) P(1)=0.5 \times 0.6=0.30 \\
P(2 \mid \text { tail }) & \propto P(\text { tail } \mid 2) P(2)=0.8 \times 0.4=0.32 \\
P(1 \mid \text { tail }) & =0.30 /(0.30+0.32)=0.484 \\
P(2 \mid \text { tail }) & =0.32 /(0.30+0.32)=0.516
\end{aligned}
$$

Not much!

## Binomial distribution

Consider the outcome of $n p$-biased coins. The probability of $k$ heads is

$$
P(k \mid p)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

## Uniform prior

If $P(p)=$ uniform, likelihood $=$ posterior!

$$
P\left(k_{1}, \ldots, k_{M} \mid p\right) \propto p^{\Sigma_{\mu=1}^{M} k_{\mu}}(1-p)^{\Sigma_{\mu=1}^{M} n-k_{\mu}}=\left(p^{\tilde{k}}(1-p)^{n-\tilde{k}}\right)^{M}
$$

## Binomial distribution

$$
P\left(k_{1}, \ldots, k_{M} \mid p\right) \propto\left(p^{\tilde{k}}(1-p)^{n-\tilde{k}}\right)^{M}
$$

with $\tilde{k}=\frac{1}{M} \sum_{\mu=1}^{M} k_{\mu}$ heads, the ML is attained at the max of

$$
\mathscr{L}=\tilde{k} \log p+(n-\tilde{k}) \log (1-p)
$$

Let us find critical points:

$$
0=\frac{\partial \mathscr{L}}{\partial p}=\frac{\tilde{k}}{p}-\frac{(n-\tilde{k})}{1-p}
$$

So $\frac{n-\tilde{k}}{\tilde{k}}=\frac{1-p}{p}$, i.e. $p=\frac{\tilde{k}}{n}$.
Note!

$$
\langle p\rangle=\frac{\int_{0}^{1} p p^{M \tilde{k}}(1-p)^{M(n-\tilde{k})} d p}{\int_{0}^{1} p^{M \tilde{k}}(1-p)^{M(n-\tilde{k})} d p}=\frac{M \tilde{k}+1}{M n+2}
$$

Bayesian inference

- Examples


## Binomial



## gnuplot code

```
f(p,n,k)=p**k*(1-p)**(n-k)/(k!*(n-k)!/(n+1)!)
pml(n,k)=k*1./n
pav(n,k)=(k+1)*1.0/(n+2)
n=10;k=2;
set arrow from pml(n,k),0 to pml(n,k), f(pml(n,k), n, k)
set arrow from pav(n,k),0 to pav(n,k), f(pav(n,k), n, k)
plot [0:1] f(x,n,2) lw 3, f(x,2*n,2+3), f(x,3*n,2+3+2),
f(x,4*n, 2+3+2+4), f(x,5*n, 2+3+2+4+3), f(x,6*n,2+3+2+4+3+2)
```


## Example: Normal

$$
P(x \mid(m, \sigma))=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}(x-m)^{2}}
$$

Given $x^{1}, \ldots, x^{M}$, we have

$$
P\left(x^{1}, \ldots, x^{M} \mid(m, \sigma)\right) \propto e^{-\frac{1}{2 \sigma^{2}} \sum_{\mu=1}^{M}\left(x^{\mu}-m\right)^{2}-M \log \sigma}
$$

If we try to maximize the log-likelihood
$\mathscr{L}(m, \sigma)=-\frac{1}{2 \sigma^{2}} \frac{1}{M} \sum_{\mu=1}^{M}\left(x^{\mu}-m\right)^{2}-\log \sigma$
$0=\frac{\partial \mathscr{L}}{\partial m}=\frac{1}{\sigma^{2}} \frac{1}{M} \sum_{\mu=1}^{M}\left(x^{\mu}-m\right) \quad 0=\frac{\partial \mathscr{L}}{\partial \sigma}=\sigma^{-3}\left(\frac{1}{M} \sum_{\mu=1}^{M}\left(x^{\mu}-m\right)^{2}-\sigma^{2}\right)$
I.e. $m=\frac{1}{M} \sum_{\mu}^{M} x^{\mu}, \sigma=\sqrt{\frac{1}{M} \sum_{\mu=1}^{M}\left(x^{\mu}-m\right)^{2}}$

- What is the likelihood of $(m, \sigma)$ when $M=1$ ?


## ML and KL divergence

Remember the $K L$ divergence

$$
K L(P \| Q)=\sum_{\mathbf{x}} P(\mathbf{x}) \log \frac{P(\mathbf{x})}{Q(\mathbf{x})}
$$

Assume you have a set of sample data $\mathbf{x}^{\mu}$ for $\mu=1, \ldots, M$. Then consider the distribution $P(\mathbf{x})=\frac{1}{M} \sum_{\mu=1}^{M} \delta\left(\mathbf{x}, \mathbf{x}^{\mu}\right)$, and a distribution $Q_{\theta}$ parametrized by $\theta$

$$
\begin{aligned}
K L\left(P \| Q_{\theta}\right) & =\sum_{\mathbf{x}} \sum_{\mu=1}^{M} \delta\left(\mathbf{x}, \mathbf{x}^{\mu}\right) \log \frac{\sum_{\mu^{\prime}=1}^{M} \delta\left(\mathbf{x}, \mathbf{x}^{\mu^{\prime}}\right)}{Q_{\theta}(\mathbf{x})} \\
& =-\log \prod_{\mu=1}^{M} Q_{\theta}\left(\mathbf{x}^{\mu}\right)
\end{aligned}
$$

That is, ML is the same as minimizing the KL divergence with $\frac{1}{M} \sum_{\mu=1}^{M} \delta\left(\mathbf{x}, \mathbf{x}^{\mu}\right)!$

## Ising model

Suppose given $\sigma^{1}, \ldots, \sigma^{M}$ samples, and assume they were generated independently by an Ising model

$$
\begin{aligned}
P_{J, \boldsymbol{h}}(\sigma) & =Z_{J, \boldsymbol{h}}^{-1} e^{\sum_{i<j} J_{i j} \sigma_{i} \sigma_{j}+\sum_{i} h_{i} \sigma_{i}} \\
P\left(\sigma^{1}, \ldots, \sigma^{M} \mid \boldsymbol{J}, \boldsymbol{h}\right) & =\prod_{\mu=1}^{M} e^{\sum_{i<j} J_{i j} \sigma_{i}^{\mu} \sigma_{j}^{\mu}+\sum_{i} h_{i} \sigma_{i}^{\mu}-\log Z_{J, \boldsymbol{h}}} \\
& =e^{M\left(\sum_{i<j} J_{i j} \tilde{c}_{i j}+\sum_{i} h_{i} \tilde{m}_{i}-\log Z_{J, h}\right)}
\end{aligned}
$$

■ Depends only on the experimental first $\left(\tilde{m}_{i}\right)$ and second moments ( $\tilde{c}_{i j}$ ) of the data!

- The log-likelihood

$$
\mathscr{L}(\boldsymbol{J}, \boldsymbol{h})=M\left(\sum_{i<j} J_{i j} \tilde{c}_{i j}+\sum_{i} h_{i} \tilde{m}_{i}-\log Z_{J, \boldsymbol{h}}\right)
$$

How can we find $\boldsymbol{J}, \boldsymbol{h}$ of maximum likelihood?

## Ising Likelihood

$$
\mathscr{L}(\boldsymbol{J}, \boldsymbol{h})=M\left(\sum_{i<j} J_{i j} \tilde{c}_{i j}+\sum_{i} h_{i} \tilde{m}_{i}-\log Z_{J, h}\right)
$$

Lets try to find critical points:

$$
0=\frac{\partial \mathscr{L}}{\partial J_{i j}}=M\left(\tilde{c}_{i j}-\frac{\partial \log Z_{J, h}}{\partial J_{i j}}\right)=M\left(\tilde{c}_{i j}-\left\langle\sigma_{i} \sigma_{j}\right\rangle\right) \quad 0=\frac{\partial \mathscr{L}}{\partial h_{i}}=M\left(\tilde{m}_{i}-\left\langle\sigma_{i}\right\rangle\right)
$$

- Better: $-\log Z_{J, h}$ is a concave ( $\cap$ ) function on $\mathbf{J}, \mathbf{h}$ (and so is $\mathscr{L}$ ), so we can use gradient ascent!
- Unfortunately, estimating $\left\langle\sigma_{i} \sigma_{j}\right\rangle$ and $\left\langle\sigma_{i}\right\rangle$ is computationally hard! (NP-Complete). Possibilities:

1 Exact enumeration (up to $N \approx 30$ )
2 Monte-Carlo methods (slow!)
3 Mean-field type approximations (e.g. Belief Propagation)

## Boltzmann learning

## Boltzmann learning algorithm

1 (init) Set $\mathbf{J}=0, \mathbf{h}=0$
2 (direct inference) somehow estimate $\left\{\left\langle\sigma_{i} \sigma_{j}\right\rangle\right\}_{i<j}$ and $\left\{\left\langle\sigma_{i}\right\rangle\right\}_{i}$ from $P_{\mathrm{J}, \mathrm{h}}$
3 (delta) Compute $\Delta J_{i j}=\tilde{c}_{i j}-\left\langle\sigma_{i} \sigma_{j}\right\rangle, \Delta h_{i}=\tilde{m}_{i}-\left\langle\sigma_{i}\right\rangle$
4 (end?) if $\left|\Delta J_{i j}\right|<\varepsilon$ for all $i<j,\left|\Delta h_{i}\right|<\varepsilon$ for all $i$, exit
5 (update) $\mathbf{J} \leftarrow \mathbf{J}+\eta \Delta \mathbf{J}, \mathbf{h} \leftarrow \mathbf{h}+\eta \Delta \mathbf{h}$
[6 Go to 2
But we need an (approximate) inference method for $\boldsymbol{2}$ !

## Example: 3-Coloring (Potts)

- Given a (finite) undirected graph $G=(V, E)$
- A proper 3 -coloring is $\sigma_{i} \in\{\bullet, \bullet, \bullet\}$ for $i \in V$ such that $\sigma_{i} \neq \sigma_{j}$ if $(i, j) \in E$

$$
P(\sigma)=\frac{1}{Z} \prod_{(i j) \in E}\left(1-\delta\left(\sigma_{i}, \sigma_{j}\right)\right)
$$

- Hard computational problems (NP-Complete):
- Finding a proper coloring
- Estimating $P\left(\sigma_{i}, \sigma_{j}\right)$
- Counting proper colorings
- Deciding if there is at least one proper coloring!
- Approximate direct inference
-Belief propagation


## Belief Propagation



$$
\begin{aligned}
N_{0}(\bullet) & =N^{(0)}(\bullet \bullet \bullet)+N^{(0)}(\bullet \bullet \bullet)+N^{(0)}(\bullet \bullet \bullet)+N^{(0)}(\bullet \bullet \bullet)+\cdots \\
& =N_{1}^{(0)}(\bullet) N_{2}^{(0)}(\bullet) N_{3}^{(0)}(\bullet)+N_{1}^{(0)}(\bullet) N_{2}^{(0)}(\bullet) N_{3}^{(0)}(\bullet)+\cdots \\
& =\left(N_{1}^{(0)}(\bullet)+N_{1}^{(0)}(\bullet)\right)\left(N_{2}^{(0)}(\bullet)+N_{2}^{(0)}(\bullet)\right)\left(N_{3}^{(0)}(\bullet)+N_{3}^{(0)}(\bullet)\right) \\
N_{0}(\bullet) & =\left(N_{1}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet)\right)\left(N_{2}^{(0)}(\bullet)+N_{2}^{(0)}(\bullet)\right)\left(N_{3}^{(0)}(\bullet)+N_{3}^{(0)}(\bullet)\right) \\
N_{0}(\bullet) & =\left(N_{1}^{(0)}(\bullet)+N_{1}^{(0)}(\bullet)\right)\left(N_{2}^{(0)}(\bullet)+N_{2}^{(0)}(\bullet)\right)\left(N_{3}^{(0)}(\bullet)+N_{3}^{(0)}(\bullet)\right)
\end{aligned}
$$

-Approximate direct inference
-Belief propagation

## Belief Propagation



$$
\begin{aligned}
P_{0}(\bullet) & \propto P^{(0)}(\bullet \bullet \bullet)+P^{(0)}(\bullet \bullet \bullet)+P^{(0)}(\bullet \bullet)+P^{(0)}(\bullet \bullet \bullet)+\cdots \\
& =P_{1}^{(0)}(\bullet) P_{2}^{(0)}(\bullet) P_{3}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet) P_{2}^{(0)}(\bullet) P_{3}^{(0)}(\bullet)+\cdots \\
& =\left(P_{1}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet)\right)\left(P_{2}^{(0)}(\bullet)+P_{2}^{(0)}(\bullet)\right)\left(P_{3}^{(0)}(\bullet)+P_{3}^{(0)}(\bullet)\right) \\
P_{0}(\bullet) & \propto\left(P_{1}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet)\right)\left(P_{2}^{(0)}(\bullet)+P_{2}^{(0)}(\bullet)\right)\left(P_{3}^{(0)}(\bullet)+P_{3}^{(0)}(\bullet)\right) \\
P_{0}(\bullet) & \propto\left(P_{1}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet)\right)\left(P_{2}^{(0)}(\bullet)+P_{2}^{(0)}(\bullet)\right)\left(P_{3}^{(0)}(\bullet)+P_{3}^{(0)}(\bullet)\right)
\end{aligned}
$$

-Approximate direct inference
-Belief propagation

## Belief Propagation



$$
\begin{aligned}
P_{0}^{(4)}(\bullet) & \propto P^{(0)}(\bullet \bullet \bullet)+P^{(0)}(\bullet \bullet \bullet)+P^{(0)}(\bullet \bullet)+P^{(0)}(\bullet \bullet \bullet)+\cdots \\
& =P_{1}^{(0)}(\bullet) P_{2}^{(0)}(\bullet) P_{3}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet) P_{2}^{(0)}(\bullet) P_{3}^{(0)}(\bullet)+\cdots \\
& =\left(P_{1}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet)\right)\left(P_{2}^{(0)}(\bullet)+P_{2}^{(0)}(\bullet)\right)\left(P_{3}^{(0)}(\bullet)+P_{3}^{(0)}(\bullet)\right) \\
P_{0}^{(4)}(\bullet) & \propto\left(P_{1}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet)\right)\left(P_{2}^{(0)}(\bullet)+P_{2}^{(0)}(\bullet)\right)\left(P_{3}^{(0)}(\bullet)+P_{3}^{(0)}(\bullet)\right) \\
P_{0}^{(4)}(\bullet) & \propto\left(P_{1}^{(0)}(\bullet)+P_{1}^{(0)}(\bullet)\right)\left(P_{2}^{(0)}(\bullet)+P_{2}^{(0)}(\bullet)\right)\left(P_{3}^{(0)}(\bullet)+P_{3}^{(0)}(\bullet)\right)
\end{aligned}
$$

- Approximate direct inference
$\left\llcorner_{\text {Belief propagation }}\right.$


## Belief Propagation



Approximate direct inference
-Belief propagation

## BP Equations (coloring)

$$
q_{i j}\left(\sigma_{i}\right) \propto \psi_{i}\left(\sigma_{i}\right) \prod_{k \in \partial i} \sum_{\sigma_{k} \neq \sigma_{i}} q_{k i}\left(\sigma_{k}\right)
$$

This system is a fixed point $\mathbf{F}(\mathbf{q})=\mathbf{q}$ equation for
$\mathbf{q}=\left\{q_{i j}, q_{j i}\right\}_{(i j) \in E} \in[0,1]^{2|E|}$ and is solved normally by iteration:

$$
\mathbf{q}_{\infty}=\lim _{k \rightarrow \infty} \mathbf{F}^{(k)}\left(\mathbf{q}_{0}\right)
$$

On a fixed point, we can compute

$$
\begin{aligned}
p_{i}\left(\sigma_{i}\right) & \propto \psi_{i}\left(\sigma_{i}\right) \prod_{k \in \partial i} \sum_{\sigma_{k} \neq \sigma_{i}} q_{k i}\left(\sigma_{k}\right) \\
p_{i j}\left(\sigma_{i}, \sigma_{j}\right) & \propto q_{i j}\left(\sigma_{i}\right) q_{j i}\left(\sigma_{j}\right)\left(1-\delta\left(\sigma_{i}, \sigma_{j}\right)\right)
\end{aligned}
$$

Approximate direct inference
-Belief propagation

## Belief Propagation (pairwise models)

Given a distribution:

$$
P(\sigma)=\frac{1}{Z} \prod_{(i j) \in E} \psi_{i j}\left(\sigma_{i}, \sigma_{j}\right) \prod_{i} \psi_{i}\left(\sigma_{i}\right)=\frac{1}{Z} e^{-\left(\Sigma_{(i j) \in E}-\log \psi_{i j}\left(\sigma_{i}, \sigma_{j}\right)+\Sigma_{i}-\log \psi_{i}\left(\sigma_{i}\right)\right)}
$$

## BP Equations, pairwise potentials

$$
\begin{aligned}
q_{i j}\left(\sigma_{i}\right) & \propto \psi_{i}\left(\sigma_{i}\right) \prod_{k \in \partial i \backslash j} \sum_{\sigma_{k}} q_{k i}\left(\sigma_{k}\right) \psi_{k i}\left(\sigma_{k}, \sigma_{i}\right) \text { (message) } \\
p_{i}\left(\sigma_{i}\right) & \propto \psi_{i}\left(\sigma_{i}\right) \prod_{k \in \partial i} \sum_{\sigma_{k}} q_{k i}\left(\sigma_{k}\right) \psi_{k i}\left(\sigma_{k}, \sigma_{i}\right) \text { (marginal) } \\
p_{i j}\left(\sigma_{i}, \sigma_{j}\right) & \propto \psi_{i j}\left(\sigma_{i}, \sigma_{j}\right) q_{i j}\left(\sigma_{i}\right) q_{j i}\left(\sigma_{j}\right) \text { (marginal) }
\end{aligned}
$$

## BP for crosswords

- English dictionary $D$ (set of english words)
- Indices: a set $X$ of letters coordinates, one for each non-black square, a set $H$ of horizontal words indices, one for each horizontal blank sequence, a set $V$ of vertical word indices, one for each vertical blank sequence,
- Variables: $h_{s} \in D$ for each $s \in H, v_{t} \in D$ for each $t \in V$, $x_{i j} \in\{a, \ldots, z\}$ for each $i j \in X$
- For each non-black square $i j$,
- $s(i j) \in H=$ crossing horizontal word, $p(i j)=$ position of $i j$ within,
- $t(i j) \in V=$ crossing vertical word, $q(i j)$ position of $i j$ within
- Constraints: For each non black position ij: the following two conditions have to be ensured: $\left(h_{s(i j)}\right)_{p(i j)}=x_{i j}$ and $\left(v_{t(i j)}\right)_{q(i j)}=x_{i j}$
■ In summary: $|H|+|V|+|X|$ variable nodes, $2|X|$ constraints

$$
P(\mathbf{h}, \mathbf{v}, \mathbf{x})=\frac{1}{Z} \prod_{i j \in X} \delta\left(\left(h_{s(i j)}\right)_{p(i j)} ; x_{i j}\right) \delta\left(\left(v_{t(i j)}\right)_{q(i j)} ; x_{i j}\right)
$$

-Approximate direct inference
-Belief propagation

## Exact inference on trees

Let $T=(V, E)$ be a tree, and assume $P$ a $T$-factorized distribution, i.e. $P(\sigma)=\frac{1}{Z} \prod_{(j) \in E} \psi_{i j}\left(\sigma_{i}, \sigma_{j}\right)$. Then:

$$
P(\sigma)=\prod_{(i j) \in E} \frac{P\left(\sigma_{i}, \sigma_{j}\right)}{P\left(\sigma_{i}\right) P\left(\sigma_{j}\right)} \prod_{i} P\left(\sigma_{i}\right)
$$

For a general graph $G$, it is only an approximation!

- It is called the Bethe approximation.

Approximate direct inference
-Belief propagation

## Entropy of a tree distribution

If $P$ is $T$-factorized, then

$$
\begin{aligned}
-S(P) & =\sum_{\sigma} P(\sigma) \ln P(\sigma) \\
& =\sum_{(i j) \in E} K L\left(P\left(\sigma_{i}, \sigma_{j}\right) \| P\left(\sigma_{i}\right) P\left(\sigma_{j}\right)\right)-\sum_{i} S\left(P\left(\sigma_{i}\right)\right) \\
& =\sum_{(i j) \in E} M_{i j}-\sum_{i} H_{i}
\end{aligned}
$$

Approximate direct inference
-Belief propagation

## Average Energy and Free Energy

For every $G=(V, E)$-factorized Ising model,

$$
\begin{aligned}
-\langle H\rangle & =\sum_{(i j) \in E} J_{i j}\left\langle\sigma_{i} \sigma_{j}\right\rangle+\sum_{i} h_{i}\left\langle\sigma_{i}\right\rangle \\
-\log Z_{J, \boldsymbol{h}} & =\langle H\rangle-S \\
& =\langle H\rangle+\sum_{\sigma} P(\sigma) \log P(\sigma)
\end{aligned}
$$

If $P$ is $T$-factorized, then

$$
-\log Z_{J, h}=\langle H\rangle+\sum_{(i j) \in E} M_{i j}-\sum_{i} H_{i}
$$

These expressions for $S$ and $\log Z$ are exact for trees, just approximations for general graphs!

## Mutual Information

Mutual Information is a measure of correlation:

$$
M I(x, y)=\sum_{x} P(x, y) \log \frac{P(x, y)}{P(x) P(y)}
$$

- In terms of the KL divergence:

$$
M I(x, y)=K L(P(x, y) \| P(x) P(y))
$$

- It can be also thought as "information gain": how much information about $x$ is gained (in average) by knowing the value of $y$ :

$$
\begin{aligned}
M I(x, y) & =S(P(x))-\sum_{y} P(y) S(P(x \mid y)) \\
& =S(P(y))-\sum_{x} P(x) S(P(y \mid x))
\end{aligned}
$$

- $M I(x, y) \leq S(P(x))$
- If $x=y$ (i.e. $P(x, y)=\delta(x, y) P(x)), M I(x, y)=S(P(x))$.
- If $P(x, y)=P(x) P(y), M I(x, y)=0$


## Inference of trees

- Suppose that we are told that some tree-factorized Ising model produced a set of samples:

$$
\sigma^{1}, \ldots, \sigma^{M} \sim P(\sigma)=\frac{1}{Z_{\mathrm{J}, \mathrm{~h}}} e^{\sum_{i<j} J_{i j} \sigma_{i} \sigma_{j}+\sum_{i} h_{i} \sigma_{i}}
$$

- How do we find the tree $T=(V, E)$ and the $T$-factorized $\mathbf{J}, \mathbf{h}$ (i.e. such that $\left.J_{i j} \neq 0 \Longrightarrow(i j) \in E\right)$ of ML?


## Likelihood of a tree

Given samples $\sigma^{1}, \ldots, \sigma^{M}$, consider $\boldsymbol{J}^{*}, \boldsymbol{h}^{*}$ the $T=(V, E)$-factorized ML couplings ( $T$ tree), then

$$
\begin{aligned}
\mathscr{L}\left(\boldsymbol{J}^{*}, \boldsymbol{h}^{*}\right) & =\sum_{(i j) \in E} J_{i j}^{*} \tilde{c}_{i j}+\sum_{i} h_{i}^{*} \tilde{m}_{i}-\log Z_{\boldsymbol{J}^{*}, \boldsymbol{h}^{*}} \\
& =-\left\langle\tilde{H}^{*}\right\rangle-\log Z_{\boldsymbol{J}^{*}, \boldsymbol{h}^{*}} \\
& =-\left\langle\tilde{H}^{*}\right\rangle+\left\langle H^{*}\right\rangle-S^{*} \\
& =-\left\langle\tilde{H}^{*}\right\rangle+\left\langle H^{*}\right\rangle+\sum_{(i j) \in E} M_{i j}^{*}+\sum_{i} S_{i}^{*}
\end{aligned}
$$

## Chow-Liu (1968)

$$
\mathscr{L}\left(\boldsymbol{J}^{*}, \boldsymbol{h}^{*}\right)=-\left\langle\tilde{H}^{*}\right\rangle+\left\langle H^{*}\right\rangle+\sum_{(i j) \in E} M_{i j}^{*}+\sum_{i} S_{i}^{*}
$$

Two key observations:
11 We have seen that $\mathbf{P}_{\mathbf{J}^{*}, \mathbf{h}^{*}}$ must reproduce the first $\left(\tilde{m}_{i}\right)$ and second $\left(\tilde{c}_{i j}\right)$ moments of the data over $T$ (so $\left\langle\tilde{H}^{*}\right\rangle=\left\langle H^{*}\right\rangle$ ). Then it must reproduce also $\tilde{P}\left(\sigma_{i}, \sigma_{j}\right)=\frac{1}{4}\left(\tilde{c}_{i j} \sigma_{i} \sigma_{j}+\tilde{m}_{i} \sigma_{i}+\tilde{m}_{j} \sigma_{j}+1\right)$. In particular, $M_{i j}^{*}=\tilde{M}_{i j}$ and $S_{i}^{*}=\tilde{S}_{i}$.
■ The term $\tilde{S}_{i}$ does not depend on $T$

$$
\mathscr{L}\left(\boldsymbol{J}^{*}, \boldsymbol{h}^{*}\right)=\sum_{(i j) \in E} \tilde{M}_{i j}+\text { const. }
$$

And we want to maximize with respect to $T$ (topology)

## Maximum Spanning Tree (Kruskal 1956)

Given a connected graph $G=(V, E)$ and weights $M: E \rightarrow \mathbb{R}_{+}$, finding the maximum spanning tree can be done as follows:

## Kruskal's algorithm

[1 Order edges so as to have $M_{e_{1}} \geq M_{e_{2}} \geq \cdots M_{e_{E \mid}}$
$\boxed{2}$ Set $E^{\prime} \leftarrow \emptyset$
3 For $s=1, \ldots,|E|$ :

- If $\left(V, E^{\prime} \cup\left\{e_{s}\right\}\right)$ has no loop: $E^{\prime} \leftarrow E^{\prime} \cup\left\{e_{s}\right\}$

At the end, $\left(V, E^{\prime}\right)$ is a maximum spanning tree, i.e. a tree that maximizes $\sum_{e \in E^{\prime}} M_{e}$

## Putting all the bits toghether

1 Compute $M_{i j}$ for $i<j$
1 Use Kruskal to compute $T$ the MST for the $M_{i j}$
1 $\tilde{P}\left(\sigma_{i}, \sigma_{j}\right)=e^{J_{i j} \sigma_{i} \sigma_{j}+a_{i j} \sigma_{i}+b_{i j} \sigma_{j}+f_{i j}} \quad \tilde{P}\left(\sigma_{i}\right)=e^{h_{i}^{\prime} \sigma_{i}+f_{i}}$

$$
\begin{aligned}
P(\sigma) & =\prod_{(i j) \in T} \tilde{P}\left(\sigma_{i}, \sigma_{j}\right) \prod_{i} \tilde{P}\left(\sigma_{i}\right)^{1-d_{i}} \\
& \propto e^{\sum_{(j j) \in T} J_{i j} \sigma_{i} \sigma_{j}+a_{i j} \sigma_{i}+b_{i j} \sigma_{j}+\sum_{i} h_{i}^{\prime} \sigma_{i}\left(1-d_{i}\right)} \\
& \propto e^{\sum_{(j j) \in T} J_{i j} \sigma_{i} \sigma_{j}+\sum_{i} \sigma_{i} h_{i}}
\end{aligned}
$$

where $h_{i}$ is computed by collecting all coefficients of $\sigma_{i}$.

## Maximum Spanning Tree

Proof by induction on $t$ : $E^{\prime} \subseteq E^{\prime \prime}$ for some MST $E^{\prime \prime}$ in every step $t$ of Kruskal (assume that for some step $t \geq 0, E^{\prime}$ is included in an MST $E^{\prime \prime}$ and prove that $E^{\prime} \cup\left\{e_{t}\right\}$ is also included in some MST)
1 If $E^{\prime} \cup\left\{e_{t}\right\}$ is also included in $E^{\prime \prime}$, done. Otherwise:
$2 E^{\prime \prime} \cup\left\{e_{t}\right\}$ has a loop $p$ ( $E^{\prime \prime}$ is a tree).
3 Take any edge $f$ in $p \backslash\left(E^{\prime} \cup\left\{e_{t}\right\}\right)$ (such an edge must exist, otherwise $\left.p \subseteq E^{\prime} \cup\left\{e_{t}\right\}\right)$.
4 We have $M_{e_{t}} \geq M_{f}$ (otherwise $f$ would have been added before $e_{t}$ ).
$5 E^{\prime \prime \prime}=E^{\prime \prime} \backslash\{f\} \cup\left\{e_{t}\right\}$ is a tree, $\sum_{(i j) \in E^{\prime \prime \prime}} M_{i j} \geq \sum_{(i j) \in E^{\prime \prime}} M_{i j}$, so $E^{\prime \prime \prime}$ MST, and $E^{\prime} \cup\left\{e_{t}\right\} \subseteq E^{\prime \prime \prime}$ done

## Example

$N=5, M=6$, Data:

$$
\begin{array}{rrrrr}
\sigma_{1} & \sigma_{2} & \sigma_{3} & \sigma_{4} & \sigma_{5} \\
1 & 1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 & 1 \\
-1 & -1 & 1 & 1 & 1 \\
-1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & -1
\end{array}
$$

Marginals:
$P_{1}=\frac{1}{6}\binom{3}{3}, P_{2}=\frac{1}{6}\binom{2}{4}, P_{3}=\frac{1}{6}\binom{1}{5}, P_{4}=\frac{1}{6}\binom{4}{2}, P_{5}=\frac{1}{6}\binom{3}{3}$ and $P_{12}=\frac{1}{6}\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right), P_{13}=\frac{1}{6}\left(\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right), P_{14}=\frac{1}{6}\left(\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right), P_{15}=$
$\frac{1}{6}\left(\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right), P_{23}=\frac{1}{6}\left(\begin{array}{ll}0 & 2 \\ 1 & 3\end{array}\right), P_{24}=\frac{1}{6}\left(\begin{array}{ll}1 & 1 \\ 3 & 1\end{array}\right), P_{25}=\frac{1}{6}\left(\begin{array}{ll}0 & 2 \\ 2 & 2\end{array}\right), P_{34}=$
$\frac{1}{6}\left(\begin{array}{ll}0 & 1 \\ 4 & 1\end{array}\right), P_{35}=\frac{1}{6}\left(\begin{array}{ll}1 & 0 \\ 1 & 4\end{array}\right), P_{45}=\frac{1}{6}\left(\begin{array}{ll}1 & 3 \\ 1 & 1\end{array}\right)$

Mutual information: $M_{15}=0.459, M_{45}=0.459, M_{35}=0.317, M_{34}=0.317, M_{25}=$ $0.252, M_{13}=0.191, M_{23}=0.109, M_{45}=0.044, M_{24}=0.044, M_{12}=0$ Kruskal edges: (15),(45),(35),(34),(25)

## Independent pairs

Assume the Bethe expression for trees to be valid for the complete graph:

$$
P(\sigma \mid \boldsymbol{J}, \boldsymbol{h})=\prod_{i<j} \frac{P\left(\sigma_{i}, \sigma_{j}\right)}{P\left(\sigma_{i}\right) P\left(\sigma_{i}\right)} \prod_{i} P\left(\sigma_{i}\right)
$$

we parametrize

$$
P\left(\sigma_{i}, \sigma_{j}\right)=e^{J_{i j}^{\prime} \sigma_{i} \sigma_{j}+a_{i j} \sigma_{i}+b_{i j} \sigma_{j}+f_{i j}} \quad P\left(\sigma_{i}\right)=e^{h_{i}^{\prime \prime} \sigma_{i}+f_{i}}
$$

But then,

$$
P(\sigma \mid J, \boldsymbol{h})=e^{\sum_{i<j} J_{i j}^{\prime} \sigma_{i} \sigma_{j}+\sum_{i}\left(1-d_{i}\right)\left(\sum_{j>i}\left(a_{i j}+b_{j i}\right)+h_{i}^{\prime \prime}\right) \sigma_{i}} \Longrightarrow J_{i j}^{\prime}=J_{i j}
$$

but we know that on the point of ML, $P\left(\sigma_{i} \sigma_{j}\right)=\tilde{P}\left(\sigma_{i}, \sigma_{j}\right)$ so we can get $J_{i j}$ directly from the data as in the two-spin system:

$$
J_{i j}=\log \frac{\tilde{p}_{++} \tilde{p}_{--}}{\tilde{p}_{+-} \tilde{p}_{-+}}
$$

This exactly the same as if we consider each link separately (a single link is a tree!). This is called the independent pairs approximation.

## BP on the Ising model

With the change of variables

$$
h_{i j}=\frac{1}{2} \log \frac{q_{i j}(+1)}{q_{i j}(-1)}
$$

The BP equations for the Ising model

$$
q_{i j}\left(\sigma_{i}\right) \propto e^{h_{i} \sigma_{i}} \prod_{k \in \partial i \backslash j} \sum_{\sigma_{k}} q_{k i}\left(\sigma_{k}\right) e^{J_{k i} \sigma_{k} \sigma_{i}}
$$

become:

$$
\begin{aligned}
& h_{i j}=h_{i}+\sum_{l \in \partial i \backslash j} \tanh ^{-1}\left(\tanh J_{l i} \tanh h_{l i}\right) \\
& m_{i}=\tanh \left(h_{i}+\sum_{l \in \partial i} \tanh ^{-1}\left(\tanh J_{l i} \tanh h_{l i}\right)\right)
\end{aligned}
$$

## Susceptibility Propagation

If we define

$$
g_{i j k}=\frac{\partial h_{i j}}{\partial h_{k}}
$$

Taking derivatives of the BP equations we obtain Susceptibility Propagation Equations (Mézard \& Mora 2007):

$$
g_{i j k}=\delta_{i k}+\sum_{l \in \partial i \backslash j} g_{l i k} \tanh J_{l i} \frac{1-\tanh ^{2} h_{l i}}{1-\tanh ^{2} J_{l i} \tanh ^{2} h_{l i}}
$$

This gives a much better approximation for the susceptibility $\chi_{i j}=c_{i j}-m_{i} m_{j}=\frac{\partial m_{i}}{\partial h_{j}}:$

$$
\chi_{i j}=\left(\frac{\tanh J_{i j}+\tanh h_{i j} \tanh h_{j i}}{1+\tanh J_{i j} \tanh h_{i j} \tanh h_{j i}}-m_{i} m_{j}\right) g_{j i j}+g_{i j}\left(1-m_{i}^{2}\right)
$$

that can be employed for gradient ascent or on a coordinated $h_{i j}, g_{i j k}, J_{i j}, h_{i}$ updating scheme.

## Example

We will deal with partial observation of extractions from a distribution over $X=\{1, \ldots, n\}$.

- Suppose you see that over $M$ samples, $n_{3}$ samples were the number 3. In the remaining $M-n_{3}$, you just don't know.
- You need to point out one plausible distribution for the data.
- Would your guess be e.g. $P(k)=\frac{n_{3}}{M} \delta(k, 3)+\frac{M-n_{3}}{M} \delta(k, 2)$ ? This one is compatible with the observations!
- Or would you rather guess $P(k)=\frac{n_{3}}{M} \delta(k, 3)+\frac{M-n_{3}}{M}(1-\delta(k, 3))$, i.e. completely flat in the unobserved part?

Coming up with models: maximum entropy principle
-Observations

## Another example

Same setup as before.

- Suppose you only observe that over $M$ samples, $n_{23}$ samples were either 2 or 3 , and $n_{34}$ samples were either 3 or 4 .
- How do we find the flattest possible distribution given the observations?


## General case: making predictions from partial observations

- How can we come up with reasonable models?
- Suppose we have a distribution $\mathbf{P}: \mathbf{X} \rightarrow[0,1]$ and we are given an observable for a variable $f$ :

$$
\bar{f}=\sum_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{x})
$$

How does one compute

$$
\bar{g}=\sum_{\mathbf{x}} g(\mathbf{x}) P(\mathbf{x}) ?
$$

## But!

(very) undertermined system ( $|\mathbf{X}|$ unknows, 2 equations)!

## Maximum Entropy

- Let us find the distribution $\mathbf{P}$ that satisfies $\bar{f}=\sum_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{x})$ and $S(\mathbf{P})=-\sum_{\mathbf{x}} P(\mathbf{x}) \ln P(\mathbf{x})$ is maximum (Jaynes 1957)
- This is the "less constrained / flattest distribution" compatible with the observation
- Using Lagrange multipliers...

$$
\Gamma(\lambda, \mu, \mathbf{P})=S(\mathbf{P})+\mu\left(\bar{f}-\sum_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{x})\right)+\lambda\left(1-\sum_{\mathbf{x}} P(\mathbf{x})\right)
$$

- And we need to find an unconstrained maximum for $\max _{\lambda, \mu, \mathbf{P}} \Gamma(\lambda, \mu, \mathbf{P})$. Taking derivative w.r.t $P(\mathbf{x})$

$$
\begin{gathered}
0=\frac{\partial \Gamma}{\partial P(\mathbf{x})}=-\ln P(\mathbf{x})-P(\mathbf{x}) / P(\mathbf{x})-\mu f(\mathbf{x})-\lambda \\
P(\mathbf{x})=e^{-\mu f(\mathbf{x})-(1+\lambda)} \propto e^{-\mu f(\mathbf{x})}
\end{gathered}
$$

- (A Boltzmann / exponential distribution!)


## Many observations

In general for many simultaneous observations $f_{1}, \ldots, f_{m}$,

$$
\begin{gathered}
\max _{\lambda, \mu_{1}, \ldots, \mu_{m}, \mathbf{P}} S(\mathbf{P})+\sum_{a=1}^{m} \mu_{a}\left(\bar{f}_{a}-\sum_{\mathbf{x}} f_{a}(\mathbf{x}) P(\mathbf{x})\right)+\lambda\left(1-\sum_{\mathbf{x}} P(\mathbf{x})\right) \\
0=\frac{\partial\ulcorner }{\partial P(\mathbf{x})}=-\ln P(\mathbf{x})-P(\mathbf{x}) / P(\mathbf{x})-\sum_{a=1}^{m} \mu_{a} f_{a}(\mathbf{x})-\lambda, \text { so } \\
P(\mathbf{x}) \propto e^{-\sum_{a=1}^{m} \mu_{a} f_{a}(\mathbf{x})}
\end{gathered}
$$

## Fact!

$\sum_{x} P(\mathbf{x}) \log \frac{P(x)}{\alpha}=-S-\log \alpha$, i.e. $\min K L(P$, uniform $)=\max S$

## Going back to our $n_{23}, n_{34}$ example

- Our observables were $f_{1}(i)=\delta(i, 2)+\delta(i, 3)$ and $f_{2}(i)=\delta(i, 3)+\delta(i, 4)$, and $\left\langle f_{1}\right\rangle=\frac{n_{23}}{M}=p_{23},\left\langle f_{2}\right\rangle=\frac{n_{34}}{M}=p_{34}$
- Maximum entropy says:

$$
P(i) \propto e^{-\mu_{1}(\delta(i, 2)+\delta(i, 3))-\mu_{2}(\delta(i, 3)+\delta(i, 4))}
$$

- i.e, defining $r=e^{-\mu_{1}}$ and $s=e^{-\mu_{2}}$ we get

$$
\begin{aligned}
P(i) & =\frac{1}{Z} r^{\delta(i, 2)+\delta(i, 3)} s^{\delta(i, 4)+\delta(i, 3)} \\
Z & =\sum_{i=1}^{n} r^{\delta(i, 2)+\delta(i, 3)} s^{\delta(i, 4)+\delta(i, 3)}=r+r s+s+(n-3) \\
p_{23} & =\frac{1}{Z} \sum_{i=1}^{n}(\delta(i, 2)+\delta(i, 3)) r^{\delta(i, 2)+\delta(i, 3)} s^{\delta(i, 4)+\delta(i, 3)}=\frac{1}{Z}(r+r s) \\
p_{34} & =\frac{1}{Z} \sum_{i=1}^{n}(\delta(i, 3)+\delta(i, 4)) r^{\delta(i, 2)+\delta(i, 3)} s^{\delta(i, 4)+\delta(i, 3)}=\frac{1}{Z}(r s+s)
\end{aligned}
$$

a $3 \times 3$ system (solve it!)

## Example: ME distribution on $\mathbb{N}_{0}$ with fixed mean

Let $P$ be the distribution of maximum entropy on $\{0,1, \ldots\}$ with mean $m \geq 0$ (that is $m=\sum_{i} i P(i)$ ).

$$
P(i)=\frac{1}{Z} e^{-\mu i}=\frac{1}{Z}\left(e^{-\mu}\right)^{i}
$$

Denote $r=e^{-\mu}$.

$$
1=\sum_{i=0}^{\infty} P(i)=\frac{1}{Z} \sum_{i=0}^{\infty} r^{i}
$$

So $Z=\frac{1}{1-r}$, i.e. $P(i)=r^{i}(1-r)$. This is called the geometric distribution.

$$
\begin{aligned}
m & =\sum_{i=0}^{\infty} i P(i)=(1-r) r \sum_{i=0}^{\infty} i r^{i-1}=(1-r) r \frac{\partial}{\partial r}\left(\sum_{i=0}^{\infty} r^{i}\right) \\
& =(1-r) r \frac{1}{(1-r)^{2}}=\frac{r}{1-r}=\frac{1}{1-r}-1
\end{aligned}
$$

So $r=1-\frac{1}{m+1}$.

## Example: spins, first moments

Suppose $\sigma_{i} \in\{-1,1\}$ for $i=1, \ldots, N$, and we are given the $N$ observables $m_{i}=\left\langle\sigma_{i}\right\rangle$ for $i=1, \ldots, N$. Then the maximum entropy distribution is

$$
P(\sigma) \propto e^{-\sum_{i} \mu_{i} \sigma_{i}}=\prod_{i} e^{-\mu_{i} \sigma_{i}}
$$

As $m_{i}=\sum_{\sigma} P(\sigma) \sigma_{i}$,

$$
\begin{aligned}
m_{i} & =\frac{\sum_{\sigma} \sigma_{i} \prod_{j} e^{-\mu_{j} \sigma_{j}}}{\sum_{\sigma} \prod_{j} e^{-\mu_{j} \sigma_{j}}} \\
& =\frac{\sum_{\sigma^{-i}} \prod_{j \neq i} e^{-\mu_{j} \sigma_{j}} \sum_{\sigma_{i}} \sigma_{i} e^{-\mu_{i} \sigma_{i}}}{\sum_{\sigma^{-i}} \prod_{j \neq i} e^{-\mu_{j} \sigma_{j}} \sum_{\sigma_{i}} e^{-\mu_{i} \sigma_{i}}} \\
& =\frac{\sum_{\sigma_{i}} \sigma_{i} e^{-\mu_{i} \sigma_{i}}}{\sum_{\sigma_{i}} e^{-\mu_{i} \sigma_{i}}}=\tanh \left(-\mu_{i}\right)
\end{aligned}
$$

So $\mu_{i}=-\tanh ^{-1}\left(m_{i}\right)$.

## Example: spins, first two moments

Suppose $\sigma_{i} \in\{-1,1\}$ for $i=1, \ldots, N$, and we are given the $\frac{1}{2} N(N-1)+N$ observables $c_{i j}=\left\langle\sigma_{i} \sigma_{j}\right\rangle$ for $1 \leq i<j \leq N$ and $m_{i}=\left\langle\sigma_{i}\right\rangle$ for $i=1, \ldots, N$. Then the maximum entropy distribution is

$$
P(\sigma) \propto e^{\sum_{i<j} J_{i j} \sigma_{i} \sigma_{j}+\sum_{i} h_{i} \sigma_{i}}
$$

i.e. an Ising model!

This model has further restrictions on couplings and fields:
$\Sigma_{\sigma} P(\sigma) \sigma_{i} \sigma_{j}=c_{i j}, \sum_{\sigma} P(\sigma) \sigma_{i}=m_{i}$

- We know how to find $J_{i j}$ and $h_{i}$ in the case of a tree prior...


## Maximum Likelihood and Maximum Entropy

For an Ising model, we have seen that

$$
\mathscr{L}(\mathbf{J}, \mathbf{h})=\sum_{i<j} \tilde{c}_{i j} J_{i j}+\sum_{i} \tilde{m}_{i} h_{i}-\log Z_{\mathbf{J}, \mathbf{h}}
$$

But also that on the point of $\mathrm{ML}, \tilde{c}_{i j}=c_{i j}^{*}=\left\langle\sigma_{i} \sigma_{j}\right\rangle$ and $\tilde{m}_{i}=m_{i}^{*}=\left\langle\sigma_{i}\right\rangle$. So

$$
\mathscr{L}\left(\mathbf{J}^{*}, \mathbf{h}^{*}\right)=-\langle E\rangle_{\mathbf{J}^{*}, \mathbf{h}^{*}}-\log Z_{\mathbf{J}^{*}, \mathbf{h}^{*}}=S\left(P_{\mathbf{J}^{*}, \mathbf{h}^{*}}\right)
$$

## $\mathrm{ML}=\mathrm{ME}$

The $\mathbf{J}, \mathbf{h}$ of ML describe the distribution of ME that reproduce $\tilde{m}_{i}, \tilde{c}_{i j}$

## ARACNE

Data Processing inequality: If $P(x, y \mid z)=P(x \mid z) P(y \mid z)$ then
$M_{x y} \leq \min \left\{M_{x z}, M_{y z}\right\}$

- This can be used for reconstruction (Califano \& al, 2006): for every triplet $i, j, k$ consider $M_{i j}, M_{i k}, M_{j k}$ and eliminate the smallest one.
- The resulting graph contains the Chow-Liu tree.
- Running time $\sim N^{3}$


## Reconstruction using independence

## Observation

If $j \notin \partial i \cup\{i\}$

$$
P\left(x_{i}, x_{j} \mid \mathbf{x}_{\partial i}\right)=P\left(x_{i} \mid \mathbf{x}_{\partial i}\right) P\left(x_{j} \mid \mathbf{x}_{\partial i}\right)
$$

and this can be used to identify $\mathbf{x}_{\partial i}$.

## Reconstruction algorithm (Bresler, Mossel \& Sly 2010)

For each $i$, check $\binom{N}{d}$ candidate neighborhoods $\partial i$. For each candidate $\partial i$, check condition on the remaining $N-d-1$ nodes $j$ Running time: $\sim N^{d+1}$

## The binary perceptron

- The perceptron is an stylized model of a neuron and the simplest example of neural network (NN). The binary perceptron receives $x_{1}, \ldots, x_{N}$ (real valued) inputs and produces a binary output

$$
\sigma=\operatorname{sign}\left(\sum_{i=1}^{N} w_{i} x_{i}\right)=\operatorname{sign}(\mathbf{w} \cdot \mathbf{x})
$$

- A perceptron is capable of learning: let's suppose we are given $\mathbf{x}^{1}, \ldots, \mathbf{x}^{M}$ patterns together with desired classification labels $\sigma^{1}, \ldots, \sigma^{M}$. The learning procedure consists in finding $\mathbf{w}$ such that $\sigma^{\mu}=\operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}^{\mu}\right)$ for $\mu=1, \ldots, M$
- This can be thought as the problem of finding the separating plane


## The perceptron: generalizations and simplifications

- A slightly more general rule $\sigma=\operatorname{sign}\left(\sum_{i=1}^{N} w_{i} x_{i}-\theta\right)$ can be simply implemented as an extra dummy output $x_{N+1}=-1$
- We can assume $\sigma^{\tau}=+1$ for all $\tau$ ! Multiplying by $\sigma^{\tau}$ we get $1=\sigma^{\tau} \sigma^{\tau}=\operatorname{sign}\left(\mathbf{w} \cdot\left(\sigma^{\tau} \mathbf{x}\right)\right)$
- We will be interested in the following cases: $\mathbf{w} \in \mathbb{R}^{N}$ and $\mathbf{w} \in\{-1,1\}^{N}$ and $\mathbf{w} \in\{-q, \ldots, 0, \ldots, q\}^{N}$
- We can assume that $\left\|\mathbf{x}^{\tau}\right\|=1$ since normalization doesn't affect classification


## The online perceptron algorithm

## Perceptron Algorithm

$1 \mathbf{w}_{0}=0$
2 done $=0$
3 while done $=0$ :

- done $=1$
- for $\tau=1, \ldots M$ :
- if $\mathbf{x}^{\tau} \cdot \mathbf{w}_{t} \leq 0$ (mistake):

$$
\begin{aligned}
& \mathbf{w}_{t+1}=\mathbf{w}_{t}+\mathbf{x}^{\tau} \\
& \text { done }=0 \\
& t \leftarrow t+1
\end{aligned}
$$

i.e. on any mistake, the algorithm greedily "helps" the classification of the missclassified pattern $\mathbf{x}^{\tau}$, because $\mathbf{w}_{t+1} \cdot \mathbf{x}^{\tau}=\left(\mathbf{w}_{t}+\mathbf{x}^{\tau}\right) \cdot \mathbf{x}^{\tau}=\mathbf{w}_{t} \cdot \mathbf{x}^{\tau}+1$

## The Perceptron algorithm (analysis)

Assume there exists a classifier $\mathbf{w}^{*}$, i.e. $\mathbf{w}^{*} \cdot \mathbf{x}^{\tau}>0$ for $\tau=1, \ldots, M$. Then the number of (mistake) events $t$ must satisfy $t<\gamma^{-2}$

$$
\gamma=\min _{\tau=1, \ldots, M} \mathbf{x}^{\tau} \cdot \mathbf{w}^{*}
$$

i.e. the algorithm must terminate in less than $\gamma^{-2}$ iterations.
$1 \mathbf{w}_{t+1} \cdot \mathbf{w}^{*} \geq \mathbf{w}_{t} \cdot \mathbf{w}^{*}+\gamma$.
Because $\mathbf{w}_{t+1} \cdot \mathbf{w}^{*}=\mathbf{w}_{t} \cdot \mathbf{w}^{*}+\mathbf{x}^{\tau} \cdot \mathbf{w}^{*} \geq \mathbf{w}_{t} \cdot \mathbf{w}^{*}+\gamma$
$2\left\|\mathbf{w}_{t+1}\right\|^{2} \leq\left\|\mathbf{w}_{t}\right\|^{2}+1$
Because $\left\|\mathbf{w}_{t+1}\right\|^{2}=\mathbf{w}_{t} \cdot \mathbf{w}_{t}+2 \mathbf{x}^{\tau} \cdot \mathbf{w}_{t}+\mathbf{x}^{\tau} \cdot \mathbf{x}^{\tau} \leq\left\|\mathbf{w}_{t}\right\|^{2}+1$. This implies $\left\|\mathbf{w}_{t+1}\right\| \leq \sqrt{t}$

Now after $t$ mistakes, $t \boldsymbol{\gamma} \leq \mathbf{w}_{t+1} \cdot \mathbf{w}^{*} \leq\left\|\mathbf{w}_{t+1}\right\| \leq \sqrt{t}$, thus $t \leq \gamma^{-2}$

## I/O association as Bayesian Inference

We will just use the bayesian framework assuming that

- Data samples are formed by both input and output $D=I, O$
- The stochastic machine defines a stochastic rule $P(O \mid S, I)$
- $S$ and $I$ are independent

Then we can use Bayes:

$$
\begin{aligned}
P(S \mid I, O) & =P(S, I, O) P(I, O)^{-1}=P(O \mid S, I) P(S) P(I) P(I, O)^{-1} \\
& \propto P(O \mid S, I) P(S)
\end{aligned}
$$

Similarly for $I^{1}, O^{1}, \ldots, I^{M}, O^{M}$ (assuming $I^{1}, \ldots, I^{M}, S$ independent):

$$
P\left(S \mid I^{1}, O^{1}, \ldots, I^{M}, O^{M}\right) \propto \prod_{\mu=!}^{M} P\left(O^{\mu} \mid S, I^{\mu}\right) P(S)
$$

## Posterior distribution of binary perceptrons

Suppose we are given $I^{1}=\mathbf{x}^{1}, O^{1}=\sigma^{1}, \ldots, I^{M}=\mathbf{x}^{M}, O^{M}=\sigma^{M}$ and we want to describe the posterior distribution for the binary perceptron $S=\mathbf{w}$

$$
P\left(\mathbf{w} \mid \mathbf{x}^{1}, \sigma^{1}, \ldots, \mathbf{x}^{M}, \sigma^{M}\right) \propto \prod_{\mu=!}^{M} P\left(\sigma^{\mu} \mid \mathbf{w}, \mathbf{x}^{\mu}\right) P(\mathbf{w})
$$

The rule can be e.g. for $\sigma^{\mu} \in\{-1,1\}$ and $\mathbf{w}, \mathbf{x}^{\mu} \in \mathbb{R}^{N}$ :

$$
P\left(\sigma^{\mu} \mid \mathbf{w}, \mathbf{x}^{\mu}\right)=\delta\left(\sigma^{\mu} ; \operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}^{\mu}\right)\right)
$$

or more in general

$$
P\left(\sigma^{\mu} \mid \mathbf{w}, \mathbf{x}^{\mu}\right)=f\left(\sigma^{\mu} ; \mathbf{w} \cdot \mathbf{x}^{\mu}\right)
$$

- Normally much easier to sample from $\mathbf{I}, \mathbf{O}$, given $S$ than from a generic Boltzmann weight!


## Posterior distribution as constraint satisfaction

- $P(S)$ can be set to favour diluted classifiers $S$, e.g. $P(S) \propto \prod_{i} e^{\mu \delta\left(S_{i}, 0\right)}$
- In fact, $P\left(S \mid I^{1}, O^{1}, \ldots, I^{M}, O^{M}\right)$ can be thought as a direct model:

$$
P(S \mid \mathbf{I}, \mathbf{O}) \propto \prod_{\mu=1}^{M} \delta\left(O^{\mu} ; \operatorname{sign}\left(S \cdot I^{\mu}\right)\right) \prod_{i} e^{\mu \delta\left(S_{i}, 0\right)}
$$

- And solved with mean-field approximations (e.g. Belief Propagation)
- Particularly simple if e.g. $S_{i} \in\{-q, \ldots, 0, \ldots, q\}$


## Recurrent network

Suppose we have a binary network $\sigma_{i} \in\{-1,1\}$, and $w_{i j} \in\{-q, \ldots, 0, \ldots, q\}$. Consider

$$
P(\sigma \mid \mathbf{w}) \propto \prod_{i} \delta\left(\sigma_{i} ; \operatorname{sign}\left(\sum_{j \neq i} w_{j i} \sigma_{j}\right)\right)
$$

and dilution prior $P(\mathbf{w})=\prod_{i \neq j} e^{\mu \delta\left(w_{i j}, 0\right)}$

$$
P\left(\mathbf{w} \mid \sigma^{1}, \ldots, \sigma^{\mu}\right) \propto \prod_{i}\left(\prod_{\mu=1}^{M} \delta\left(\sigma_{i} ; \operatorname{sign}\left(\sum_{j \neq i} w_{j i} \sigma_{j}\right)\right) \prod_{j \neq i} e^{\mu \delta\left(w_{i j}, 0\right)}\right)
$$

That is, the posterior distribution factorizes! $N$ separate inference problems
For each $i, \mathrm{BP}$ can be used to find posterior statistics of the $w_{j i}$.

## Insufficient data

- What to do if data is insufficient to infer a good model?
- ML/MAP are too risky: maybe the point of ML/MAP is not representative at all!
- In general we will be happier to get a small amount of sure information (e.g. a number of interactions that are present with high confidence) than a complete model with no poor confidence.
- How to measure performance (at least when we know the answer)? Something finer than correct/incorrect: ROC curves!


## ROC curves

- ROC curves are thoroughly used in diagnostics
- Suppose we have a test which gives a scalar value $0 \leq \alpha \leq 1$ giving confidence of a certain disease.
Then depending on a given criterion value $\alpha_{0}$, we will predict $P$ (disease) if $\alpha \geq \alpha_{0}$ and $N$ (no disease) if $\alpha<\alpha_{0}$. How good is the test?



- Sensitivity=TP/(TP+FN)=TP/disease
- Specificity=TN/(TN+FP)=TN/no disease
- Area below the curve: discrimination. Probability for a random subject with disease to have $\alpha$ larger than that of a random subject without disease.


## ROC curves for network inference

- Subject = edge
- With disease $=$ present link, i.e. $e \in E, J_{i j} \neq 0$
- Without disease $=$ absent link, i.e. $e \notin E, J_{i j}=0$
- Criterion: e.g. $M_{i j}$, inferred $\left|J_{i j}^{M L}\right|$, inferred $\left|J_{i j}^{M A P}\right|, P\left(J_{i j} \neq 0 \mid\right.$ data $)$
- What criterion do we choose to have the best possible ROC curve?
- The best is to use $P\left(J_{i j} \neq 0 \mid\right.$ data $)$ as criterion! Better expected ROC curve than MAP or ML estimate.


## Things to read

- Yedidia, Weiss \& Freeman, Belief propagation and its generalizations + variational interpretations
- David MacKay's book "Information Theory, Inference and Learning Algorithms"
- Jaynes paper on Maximum entropy
- Chow-Liu paper on inference on trees
- Mézard \& Montanari's book
- Mezard \& Mora's Susceptibility Propagation


## The End



