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MAJOR RESEARCH TOPICS AND CUTTING-EDGE RESULTS 

 

       The academic activities by Alberto Carpinteri (AC) have been developed over the years 

towards different, although correlated, directions: 

(i) Teaching undergraduate, graduate, and postgraduate courses on Structural 

Mechanics Fundamentals, Advanced Structural Mechanics, Static and 

Dynamic Structural Instabilities, Theory of Plasticity, Fracture Mechanics; 

(ii) Organizing Workshops and Conferences at the national and international 

levels, in particular on topics regarding Fracture Mechanics and Structural 

Mechanics; 

(iii) Participating, initially as a member and later with higher responsibilities, to the 

life of different national and international Scientific Societies, in the fields of 

Theoretical and Applied Mechanics, Experimental Mechanics, Structural 

Mechanics, Fracture Mechanics, Civil Engineering, Metrology; 

(iv) Writing or editing volumes on different topics, reflecting various and ample 

scientific interests and teaching activities; 

(v) Publishing the major results of his studies in Refereed International Journals. 

 

  As regards the last two items, AC treated several specific topics, always giving them 

an original and personal contribution. In some cases, such a contribution resulted to be also 

innovative, anticipating even by years the trends in cutting-edge international research. 

Among these peculiar topics, it is significant to remind the following ones (references within 

round parentheses are related to the complete List of Publications reported in the website 

https://staff.polito.it/alberto.carpinteri/ - Capital letter B refers to the list of Books published 

by AC). 

  

(1) Static-kinematic duality and its crucial role in Computational Mechanics  

        Scope and distinctive feature of the research topic developed by AC is that of proposing 

a new matrix-operator formulation of the Finite Element Method, which is introduced on the 

basis of the Static-kinematic Duality in a very general, direct, and unified way. Such 

demonstration is totally original and is reported in the text books on Structural Mechanics by 

AC (B8, B34, B38). 

 

https://staff.polito.it/alberto.carpinteri/


       The mechanics of linear elastic bodies, in particular of bars, beams, plates loaded in 

their middle plane, plates in flexure, arches, shells, ropes, and membranes, is studied 

adopting an original matrix-operator formulation, which is suitable for Computational 

Mechanics applications. The static, constitutive, and kinematic equations, once composed, 

provide a matrix-operator equation presenting the generalized displacement vector as its 

principal unknown. Constant reference is made to Duality, i.e., to the strict correspondence 

between Statics and Kinematics that emerges as soon as the two matrix-operators are 

recognised to be the adjoint of each other. In this context, it is easy to prove the mutual 

implication of Duality and Principle of Virtual Work (748, 830, 924). The Finite Element 

Method can be introduced as a discretization and interpolation procedure for the 

approximate solution of any elastic problem, in static or dynamic regimes, whatever are the 

dimensions of displacement vector and deformation vector, with or without intrinsic 

curvatures. 

 

        More in detail, after considering the case of 3-D body, for which static and kinematic 

matrices present only differential operators among their elements, resulting they the 

transpose of each other (3×6 and 6×3 are the respective dimensions), the sequence 

continues with 1-D and 2-D geometries, for which also algebraical (nondifferential) elements 

appear. In the case of rectilinear beam, the static matrix presents also the element –1,  which 

is due to the well-known relationship between bending moment and shearing force (that are 

both internal actions), as well as the kinematic matrix presents also the element +1, which 

is due to the relationship between shearing strain and rotation (where the former is a 

deformation and the latter a generalised displacement). In the case of curved beam, the two 

matrices present also the intrinsic curvature 1/r of the beam among their elements, and 

appear to be the transpose of each other except for the algebraical elements, which result 

to be the opposite of each other. We can affirm that these matrices are the adjoint of each 

other. The logical sequence continues with the circular plate in flexure, the cylindrical shell, 

the thin dome (or membrane) of revolution, and the shell of revolution, the matrices of the 

last containing the elements of the previous three structural geometries. In all these key 

cases, the static and kinematic matrices are the adjoint of each other.  

 

       Historical remark: The kinematic expressions for the shearing strain of beam 

(Timoshenko), plate (Mindlin),shell of revolution along the meridian (Fluegge), and generic 

shell along the two principal directions of curvature (Novozhilov) are easily defined according 

to the Static-kinematic Duality, whereas they were not in the classical treatments.  

    

      Main conclusions:      

(a) The change in algebraical sign of the nondifferential elements is due to the rule of 

integration by parts, which presents the sign minus before the integral just for the 

differential-operator elements and not for the algebraical elements; 



(b) The complex structure of the composite matrix-operator provided by the product 

of static, constitutive, and kinematic matrix-operators permits to immediately 

recognise the identity between FEM global stiffness matrix and Ritz-Galerkin 

matrix. In other terms, FEM strictly is a particular case of Ritz-Galerkin Method.    

 

(2) Applications of Dimensional Analysis to scaling transitions in solids and fluids  

        The application of Dimensional Analysis (Buckingham’s Theorem for physical similitude 

and scale modelling) leads to the definition of the dimensionless Brittleness Number in the 

scaling competition between plastic collapse and brittle fracture, which are failure 

mechanisms governed by generalised forces with different physical dimensions. 

      

        The  stress-singularity-based Brittleness Number is a function of strength (FL-2), 

toughness (FL-3/2), and size-scale (L) of the solid body. In this context, it is possible to confirm, 

and even to generalize, the small-scale yielding condition, which is just local (small plastic 

zone around the crack tip) and related to an infinite plate. The innovative idea of directly 

comparing the two different failure modes in finite-sized plates was firstly proposed in the 

papers (13, 17, 23, 31, 44). Additional studies on microcracking coalescence were proposed 

later (859, 860), as well as a generalization to critical phenomena besides fracture, like 

resonance and turbulence ( 923).  

 

       By using complex potentials, some light was recently shed on the analogy between the 

singularity problems arising in fluid dynamics and in fracture mechanics –in particular, those 

concerning planar fluid flows around sharp obstacles (957) and plane elasticity in cracked 

bodies. Applications to two equivalent geometries were shown: a thin plate transversally 

immersed in a uniform fluid flow and a crack subjected to uniform out-of-plane shearing 

stress at infinity (Mode III). The matching between the fluid velocity field and the shearing 

stress field is consistent with the hydrodynamic analogy. A velocity-intensity factor was 

defined by AC to predict the vortex shedding phenomenon generated by a transversal sharp 

obstacle. It is important to remark  that the velocity-intensity factor presents physical 

dimensions that are intermediate between those of fluid velocity and those of kinematic 

viscosity. Therefore, it was demonstrated that the size-scale affects the occurrence of 

natural-to-forced turbulence transitions, i.e.,  from Reynolds’ to von Karman’s critical 

phenomena in fluids, in a strict analogy to the ductile-to-brittle failure transitions in solids. By 

this relevant analogy, a new dimensionless number emerges governing the turbulence-to-

vortex shedding transition. As the dimensional mismatch between strength and toughness 

implies a scale-dependent ductile-to-brittle failure transition in solids, so a scale-dependent 

turbulence-to-vortex shedding transition is implied in fluids by the difference in physical 

dimensions between kinematic viscosity and vortex shedding toughness (i.e., the critical 

value of velocity-intensity factor). 

   



(3) Ductile-to-brittle size-scale transition in structural behaviour: Definition of 

Cohesive Crack Model in the Catastrophe Theory context  

       Decreasing the fracture energy of the material, increasing its tensile strength, and/or 

increasing the size-scale of the structural element, the structural response in terms of load 

versus deflection diagram becomes more and more brittle, and finally a cusp-catastrophe 

emerges, with a positive slope in the post-peak softening branch (snap-back instability). It 

was the first time that such a general and rational interpretation was provided to brittle 

mechanical behaviour, with the possibility of capturing also the post-peak branch. From a 

numerical point of view, the crack length was selected as the monotonically increasing input 

parameter (Crack Length Control Scheme), whereas the input parameter in the experiments 

was the crack mouth opening displacement. The theoretical model and the related numerical 

algorithm were called the Cohesive Crack Model by AC and proposed in the papers (41, 52, 

56, 59, 71, 73, 74, 75, 76, 77, 78, 99, 108, 109). On the other hand, the studies on this 

nonlinear model confirmed the importance of the energy-based Brittleness Number in the 

description of the ductile-to-brittle transition by increasing the structural size. Large bodies 

are much more brittle than small bodies with the same shape and made up of the same 

material. More recent applications to superplasticity in polycrystalline ceramic materials (369) 

appear to capture the experimental trends. 

 

       The cusp catastrophe was demonstrated by AC to coincide with the classical Griffith-

Irwin instability in the framework of Linear Elastic Fracture Mechanics (LEFM), when the 

size of the process zone tends to zero.  How can a relatively simple nonlinear constitutive 

law, which is scale-independent, generate a size-scale dependent ductile-to-brittle transition? 

Consistently with the different dimensionalities of the two abscissa axes (strain and crack 

opening displacement), constant reference has to be made to Dimensional Analysis and to 

the definition of suitable nondimensional Brittleness Numbers that govern the transition. 

These numbers can be defined in different ways, according to the selected theoretical model, 

although they always contain information on material strength and toughness, as well as on 

structural size-scale (B40). The simplest way is that of directly comparing critical LEFM 

conditions and plastic limit analysis results. This is an equivalent way −although more 

effective for finite-sized cracked plates− if compared to the traditional evaluation of the crack 

tip plastic-zone extension in an infinite plate. In extremely brittle cases, the plastic zone or 

process zone tends to disappear and the cusp catastrophe conditions prevail over the strain-

softening ones, tending to coincide with the LEFM critical conditions in the case of initially 

cracked plates. In the case of initially uncracked plates, they tend to coincide with the 

ultimate strength critical conditions. 

     

       Besides the Cusp-catastrophe interpretation of brittle crack propagation, also frictional 

stick-slip (550) and buckling in  thin cylindrical and spherical shells (B38) can analogously 

be interpreted  in the context of Catastrophe Theory (see the early contributions by Theodore 

von Karman and his School). 

 



(4) Stability of  cracking and crushing in bar- and/or fibre-reinforced concrete 

elements: Definition of Bridged Crack Model in the discontinuous function context   

       The original solution proposed by AC to the problem of propagation stability for cracks 

bridged by reinforcements and/or fibres was based on rigorous conditions of  static 

equilibrium and kinematic compatibility on the beam cross-section, besides on a condition 

of LEFM criticality at the brittle-matrix crack tip (Bridged Crack Model). The first two papers 

on the subject (21, 37) deal with a single reinforcement layer or fibre in a bent beam 

traversed by an edge crack. The stability condition is governed   by a reinforcement-based 

Brittleness Number where also the reinforcement percentage or the fibre volume fraction 

appears. Based on this analytical model, numerous applications to cementitious materials 

followed over the years. Repeated or cyclic loading and hysteretic behaviour were 

considered in (38, 444, 899, 943), as well as the problem of minimum reinforcement in 

reinforced concrete members (64, 97, 98, 103, 116, 117, 754).  

 

       The model was then extended to beams with multiple longitudinal reinforcements and/or 

fibres (150, 168, 189, 190, 878, 911), as well as to reinforced concrete beams with a 

nonlinear (quasi-brittle) matrix in tension (309, 335). Later, also the nonlinear behaviour in 

compression of the concrete matrix was considered through the definition of the Overlapping 

Crack Model (459, 538, 543, 544, 545, 546, 582, 584, 587, 590, 633, 634, 643, 644, 645, 

661, 668, 705, 706, 871). 

              

        More recent developments deal with the brittle behaviours of high-performance 

reinforced concrete beams occurring for particularly low or high reinforcement percentages. 

In the former case, the loading drop is due to tensile cracking, whereas in the latter it is due 

to compression crushing of concrete at the opposite beam edge. For the former case,  the 

Bridged Crack Model is able, through an original rotational compatibility condition, to deduce 

the redundant closing forces applied by the longitudinal reinforcement to the crack faces. 

This elementary analytical model is conceptually relevant, since it permits to define the 

minimum reinforcement condition. The linear elasticity of the matrix and the LEFM stress-

singularity at the crack tip provide a power-law for the minimum reinforcement percentage, 

which results to be proportional to the beam depth raised to the exponent –1/2. On the other 

hand, introducing a numerical model where concrete is considered as a cohesive softening 

material both in tension and in compression (Cohesive/Overlapping Crack Model), we can 

obtain a double size-scale brittle-to-ductile-to-brittle transition. When the steel percentage is 

too low (or the beam depth too small), then the peak load is higher than the ultimate 

perfectly-plastic plateau, and a condition of vertical loading-drop prevails (hyper-strength). 

On the other hand, when the steel percentage is too high (or the beam depth too large), then 

the ultimate perfectly-plastic plateau reduces its extension up to zero and a condition of  

vertical loading-drop prevails again, in this case due to crushing at the beam extrados (over-

reinforcement) (119, 486, 948). On these geometrical bases, by equating peak load and 

ultimate plastic load in the former case, and tending the plastic plateau extension to zero in 

the latter, it is possible to establish very robust criteria to determine minimum and maximum 



reinforcement percentages (925). By applying Dimensional Analysis and a best-fitting 

procedure, both in tension and in compression, it is possible to find the scaling laws for 

minimum and maximum reinforcement percentages, respectively. The two exponents 

become equal to –0.15 and –0.25, respectively. The absolute values of the exponents are 

both lower than the absolute value of the reference LEFM exponent 0.50 (scaling of extreme 

severity) and agree with the available experimental results very satisfactorily. The former 

has recently been assumed as the reference value in the AASHTO Guidelines for the 

minimum flexural reinforcement. Unfortunately, we can not affirm the same yet for the most 

well-known National and International Standard Codes. 

 

       Very recently, the scaling laws of minimum and maximum reinforcement percentages 

have been extended to next-generation reinforced concrete materials: Prestressed concrete, 

FRP-bar reinforced concrete, Hybrid (steel bars and fibres) reinforced concrete (921, 922,  

941,  942, 944, 949,  954,  955, 964, 965).    

 

(5) Fractals in deformation, damage, fracture, and fatigue  

            Based on some experimental evidence, fractal patterns to describe rough fracture 

surfaces, damaged cross-sections at peak load, and uniaxial crack-band deformations were 

assumed by AC in (136, 137, 223, 284, 313, 360). This innovative conjecture led him to 

define the renormalized (or fractal) counterparts of fracture energy, tensile strength, and 

ultimate strain, which present anomalous and noninteger physical dimensions and represent 

the really scale-invariant material properties. On the other hand, the usual nominal quantities 

consequently become scale-dependent and vary with the specimen size according to 

peculiar power-laws where the scaling exponent is connected to the fractal dimension of the 

same fractal set over which the quantity is defined. 

 

       More recent developments by AC deal with the occurrence of self-similar and fractal 

patterns in a wider class of mechanical phenomena: deformation, damage, microcracking, 

fracture, crushing, fragmentation, comminution, wear, creep (908, 912, 913),  and fatigue 

(182, 542, 585, 625, 627, 749, 811, 866, 883, 926, 938,  939 , 959), in cementitious, ceramic, 

polymeric, and metallic materials. Analogously, he considered the consequent apparent 

scaling in the related nominal mechanical properties. Such a scaling is negative (lacunar 

fractality) for tensile strength and fatigue limit, whereas it is positive (invasive fractality) for 

fracture energy, fracture toughness, and fatigue threshold.  At the same time, corresponding 

fractal (or renormalized) quantities emerge, which are the true scale-invariant properties of 

the material. They  take the role of constant factor in the power-law relating the nominal 

canonical quantity to the size-scale of observation. In this fractal context, it is then possible 

to define a scale-invariant constitutive law: the so-called Fractal Cohesive Crack Law, in 

which stress and strain are defined over two orthogonal lacunar fractal sets, as well as the 

fracture energy in an invasive fractal set that is the Cartesian product of the two previous 

lacunar sets (202, 284, 313, 864).  



 

        In addition, stress-intensity attenuation or mitigation with respect to the LEFM stress-

singularity power ½ was considered, when the material is power-law strain-hardening (31), 

the sharp crack is replaced by a re-entrant corner or V-notch (57, 358, 548, 549, 555, 592, 

626, 628, 631, 632, 676, 695, 696, 742, 743, 756, 769, 770, 823), and/or  the crack faces 

are invasive (extremely rough) fractal sets (137). In all these three cases, the stress-intensity 

factor  assumes anomalous physical dimensions, which rule the scale-effect bi-logarithmic 

diagrams with slopes smaller than that of the most severe case, i.e., a sharp and smooth-

faced crack in a linear elastic material (B40). 

 

        Particularly relevant applications were proposed by AC to size effects on fracture 

energy of concrete and fatigue threshold of metals. As the former is demonstrated to be a 

power-law that is  increasing with the specimen size, the latter is shown to be a power-law 

decreasing by decreasing the initial crack length. In this context, a consistent explanation 

was provided to the short crack problem (900).  As for rough cracks invasive fractal sets are 

applied (dimension greater than 2), so for damaged cross-sections at peak load lacunar 

fractal sets (dimension lower than 2) are considered.  The tensile strength of concrete is 

proved to be a power-law with negative exponent, so that it decreases with the size of the 

specimen.  Analogously, the fatigue limit of metals decreases by increasing the specimen 

size (901). All these trends are faithfully confirmed by extensive experimental results 

reported in the current literature (526). 

     

        Multi-fractal Scaling Laws (MFSL) for tensile strength and fracture energy of concrete-

like materials best-fit the experimental data when the size-scale ranges are beyond one 

order of magnitude. If the concept of self-affinity (in addition to that of self-similarity) is 

applied, the absolute value of slope in the bi-logarithmic scaling laws is the highest and 

equal to 1/2 (1/4 for the fatigue threshold)  at the smallest scales, whereas it tends to vanish 

at the largest scales (147, 148, 149, 171, 172, 184, 185, 204). This homogenization effect 

for tensile strength is captured by the Multi-Fractal Scaling Law (MFSL) very satisfactorily 

for initially uncracked structural elements (147, 148). The MFSL has been adopted by the 

European Standards for concrete and reinforced concrete structures. It also works well for 

ceramic materials at the micro- and nano-scales (400). On the other hand, the Size Effect 

Law (SEL) works well only for initially cracked specimens, when the initial crack length is 

proportional to the structural size-scale, and its concavity is downwards. On the contrary, 

the experimental relative crack depth at the peak load is large in small specimens and small 

in large specimens, when the specimens are initially uncracked. In addition, the concavity 

of the experimental data results to be upwards, like in the MFSL. 

 

       AC provided original and innovative contributions on fragmentation, comminution, wear, 

and drilling (289, 291, 307, 314, 336,  337, 338, 340, 342, 357, 367, 693). Very interesting 

and new scaling laws for these phenomena were established on the basis of fractal 



geometry and related power-laws.  Additional papers by AC deal with a fundamental aspect 

like the size-scale effects on friction coefficient and criticality of rock slopes (222, 334, 370, 

476, 517). The Gutemberg-Richter statistics for seismic analysis was reconsidered, 

providing the b-value with a fractal meaning in a very original way (521, 534, 554, 669, 771, 

773, 814, 872). Also the problems of dynamics and stability of fractal-shaped structures 

(trees, antennas, etc.) were considered and solved with their peculiar implications in Nature 

(520, 593, 629). 

       

       Fractional Calculus (B9) was applied by AC to the field and boundary equations of an 

elastic body that is deformable only over a fractal subset of its domain. The duality of the 

static and kinematic fractional operators was demonstrated, so that a fractal version of the 

Virtual Work Principle emerges (258, 285, 326, 328, 329, 330, 331, 332, 630, 697, 750, 817, 

842). 

 

(6)  Fracto-emissions as seismic precursors 

       TeraHertz phonons are produced in solids and fluids by mechanical instabilities at the 

nano-scale (e.g., fracture and cavitation) (B36). Their frequency is close to the resonance 

frequency of atomic lattices (Debye frequency) as well as their energy is close to that of 

thermal neutrons. A series of fracture experiments on natural rocks and the systematic 

monitoring of seismic events have demonstrated that TeraHertz phonons are able to induce 

fission reactions in medium-weight chemical elements (in particular, Iron and Calcium) with 

neutron and/or alpha particle emissions (529, 530, 579, 636, 639, 670, 673, 702, 776, 778, 

821, 956).  

 

       The same phenomenon appears to occur in several different situations and  to explain 

puzzles related to the history of our planet (641, 642, 862, 874), like the primordial carbon 

pollution (and correlated Iron depletion) or the ocean formation (and correlated Calcium 

depletion), as well as scientific mysteries, like the so-called cold fusion (777, 961,  962),  or 

the correct radio-carbon dating of organic materials (675). Very important implications to and 

applications in earthquake precursors, early-stage fatigue diagnostics, climate change, and 

energy production are likely to develop in the next future (916).  

 

        Three different forms of emitted energy can be used as earthquake precursors. At the 

tectonic scale, Acoustic Emission (AE) prevails, as well as Electro-Magnetic Emission (EME) 

at the meso-scale, and Neutron Emission (NE) at the nano-scale. The three fracto-emissions 

tend to anticipate the next seismic event with an evident and chronologically ordered shifting: 

small cracks, high frequencies, and neutron emission about one week before, whereas 

longer cracks, lower frequencies as well as electromagnetic and acoustic waves later and 

temporally closer to the seismic event (3-4 days and one day, respectively). The very 

repeatable experimental observations over a period of six years reveal a strong correlation 



between the three fracto-emission peaks and the major earthquakes occurring in the areas 

close to the seismic station (839,  868). 

 

(7) Dynamics and stability: From nano- to mega-structures 

       Dynamics and stability were studied by AC for nano-structures (proteins and 

macromolecular structures) and mega-structures (long-span bridges and high-rise 

buildings).  

 

       Proteins and macromolecular structures represent one of the most important building 

blocks for a variety of biological processes. Their biological activity is performed in a dynamic 

fashion, so that their mechanical instabilities and vibrations can help to explain how proteins 

function (B41). Great attention was given by AC to computational approaches and modern 

experimental techniques (837, 838, 865, 877, 906, 914, 920, 931,  932).  

 

       The Euler-Prandtl coupled problem was investigated in the case of thin-walled open-

section Vlasov beams (960). The same kind of vertical elements were considered also in 

the complex problem of high-rise buildings. An analytical algorithm was originally 

implemented (45), where just three degrees-of-freedom per floor are contemplated. This 

model, once enriched by the Vlasov theory,  results to be in a good agreement with the most 

time-consuming FEM codes, both in statics and dynamics (581, 667, 708, 744, 746, 813, 

818, 875, 876, 897, 904, 909, 910, 929 , 940).  Also for long-span suspension bridges, a 

new analytical model was developed to evaluate wind velocity and frequency of Flutter 

Instability (753, 928 , 958). As in the previous case, the comparison with FEM calculations 

is very positive, the computing times being much shorter and the results absolutely 

comparable (700, 835, 836). For shallow space and shell roofing structures, the interaction 

between Buckling and Snap-through was studied, evidencing the related transitions by 

varying shallowness and/or thinness of continuous or trussed shells (812, 833, 834, 915). 

 

       Nonlinear and chaotic dynamics in cracked solids was investigated in (362, 363). A 

transverse crack can change its state, from open to closed and vice-versa (breathing crack), 

when the beam vibrates. As a consequence, a nonlinear dynamic behaviour emerges. 

Considering a continuous variation in the crack state (also partially open or closed), it was 

possible to simulate period doubling and the consequent transition to chaos. 

  

        The mechanics of nanostructured and hierarchical materials was studied by AC and 

co-workers in (361, 373, 403, 409, 483, 484, 487, 488, 489, 490, 491, 492, 494, 518, 525, 

527, 541, 598), as well as the mechanics of layered and functionally graded materials in 

(288, 308, 371, 390,  397, 398, 399, 404, 405, 438, 439, 477, 478, 479, 528, 586, 589, 677, 

768). In all these cases, original and innovative results were achieved. 
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