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ABSTRACT: Fractal Geometry has been widely used for the description of irregular
phenomena in various scientific fields recently. In the subjects concerning
fracture system characterization, fractals represent the [racture surfaces in two or
3D problems. In the last few years the fractal geometry of crack networks in
damaged materials has been statistically characterized by two power laws,
respectively, describing the spatial distribution of crack barycenters, and the crack
length distributioi Iii-this-article; we explore the potential-of -the latter power-law:
Merely using such statistical model to describe the population of cracks,
besides providing a theoretical basis for explaining lower limits to the b-value
both in seismicity and in acoustic emission (AE) tests, we find a simple relation
between b and the fractal dimension D of the crack network. As a result, the b-value
analysis in AE monitoring tests permits evaluation of the dimension D of the
damaged domain. This method of evaluating D is herein applied to a concrete
specimen in compression, subjected to AE monitoring, loaded up to failure. In this
test, the characterization of the fracture process through analysis of AE signals
emerging from the growing cracks has been performed in a post-processing
environment, using two different procedures. In fact, besides the two-point
correlation algorithm introduced by Grassberger and Procaccia, the damage process
has been evaluated through the b-value analysis. Both procedures make it possible

to evaluate the dimension D of the damaged domain, i.e., the fractal dimension
of the crack network. The obtained results are consistent with our understanding of

damage phenomenon.
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INTRODUCTION

HE MANNER IN which fracture system properties at different scales

relate to each other, i.e., their scaling properties, has become an active
field of research in the last 30 years, motivated by the promise of statistical
prediction that scaling laws offer. Power laws are recognized to provide a
key in earthquake hazard assessment, in hydrocarbon reservoir manage-
ment, and in hazardous waste disposal. Power law distributions are clearly
scale invariant. The idea of the scale invariance is that the ratios between
different scales are preserved. One of the first inklings of scale invariance in
Fracture Mechanics came from the observation of the Gutenberg-Richter
(GR) law for earthquakes (Turcotte, 1997), N(zA)ocA"”, where N is the
number of earthquakes with source rupture area >4, and typically b~ 1: for
each earthquake with source rupture area> 4o, there are 10 earthquakes
with area > 4,/10, 100 with area > Ao/100, and so forth.

Fractal Geometry has been widely used for the description of irregular
phenomena in various scientific fields recently. In the subjects concerning
fracture system characterization, fractals represent the fracture surfaces
in 2 or 3D problems. On the other hand, fractal geometry is not only useful
to study complex shapes, but also it may be a powerful tool for a geometric

characterization” of microctdack networks by using fractals with-*dust-like’ -

structure such as the Cantor set. Statistical characteristics of such
damage phenomena in disordered materials (i.e., random position, size,
and orientation of the microcracks) may be taken into account adopting
random fractals. The scale invariance is a peculiarity of fractal objects.

In recent years, the term ‘fractal’— coined by Mandelbrot (1982) from the
Latin fractus, meaning broken, to describe objects that were too irregular to
fit into a traditional geometrical setting — has been widely used to describe
any kind of fracture feature following a power-law distribution, such as size,
displacement, and aperture distributions. Hence, the question that can be
addressed is whether a fracture network, whose crack length distribution

exhibits a power-law behavior describes a morphologic fractal (Turcotte,
1997; Bonnet et al., 2001).

A simple theoretical model of fragmentation, where all scales are involved
during crack growth with repetitive subdivision of breakage patterns, was
originally proposed in the 1980°s (King, 1986; Sammis et al., 1986; Turcotte,
1986). Known in Physics as the Apollonian model, it gives rise to a power-
law size distribution, whose exponent was equated to the fractal dimension
of the system (Hausdorff, 1919). As a matter of fact, for about 15 years this
model remained the only theoretical support for a fractal description of
crack pattern geometry, since the relation between the crack length exponent
and the fractal dimension was poorly investigated. Conversely, a very
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interesting application of the fractal framework to the modeling of damage
of brittle 2D lattices has been recently proposed (Krajcinovic and Rinaldi,
2005; Rinaldi et al., 2006); in this statistical damage mechanics approach,
the connection between damaged random heterogeneous micromaterial and
the system macroparameter is sought. The fractal dimension is used to
investigate the transition between damage nucleation and propagation and
to propose constitutive relations and scaling laws. In this paper, we
investigate a similar topic, aiming at establishing a simple relation between
the fractal dimension D of crack barycenters and the exponent y of the
power law crack length distribution.

In the last few years, a relation D =y/x linking these two quantities has
been introduced (Bonmet et al., 2001; Bour and Davy, 1999; Bour et al.,
2002), where x is the exponent relating the average distance d(L) from the
center of a crack having length L to its nearest neighbor of larger length. The
previously mentioned relation (which agrees with the fragmentation model
in the particular case x=1) derives from three scaling laws assumed for
describing fractal features of a crack network, Nror sP giving the number
Nror of cracks observed within a volume of characteristic linear size s,
N(> L) o< L7 for the number of cracks with length > L, and d(L) o< L* for

the spatial correlation and organization between cracks (Turcotte 1997
" “Bonmet et al., 200T; Bour aiid” Davy, 1999; Bour et al:, 2002):~ .

Since the 1980’s the power-law crack length distribution L™ has been
drawn under the well-founded hypothesis that the larger the body, the larger
the maximum crack inside it (Carpinteri, 1986, 1989, 1994a). Besides
providing a theoretical basis for explaining lower limits to the so-called
‘b-value’ of the GR law for earthquake and AE statistics (Carpinteri et al.,
2006a), this crack length distribution seems intrinsically to account
for fractal morphology of crack networks without need of any further
ad hoc assumptions.

An experimental evidence of this phenomenon can be obtained by
applying the Acoustic Emission (AE) technique to materials experiencing

damage (Ohtsu, 1996; Colombo et al., 2003; Carpinteri et al.,, 2006a,b).
In fact, the exponent b of the GR law N(>A)o<A"’ (where A is the
amplitude of AE signals) changes with the different stages of damage
growth. The initially dominant microcracking generates a large number of
low-amplitude AE signals (which are proportional to their source rupture
surfaces), while the following macrocracking generates less signals but of
higher amplitude. This implies a progressive decrease of the b-value as the
specimen approaches impending failure: this is the core of the b-value
analysis used for damage assessment.

On the other hand, the damage process is also characterized by its
progressive localization: at its early stage, damage consists of a myriad of
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microcracks chaotically distributed over a large part of the specimen
volume, while at the final stage microcracks coalesce to form the through-
going fracture surface. In geometric words, the dimension D of the damaged
domain is expected to decrease from an initial value comprised between
2 and 3 (which is the maximum value since the the fractal dimension of
a fractal object cannot exceed the geometric dimension of the support, in
this case the 3D Euclidean space) towards a final value nearly equal to 2.
Therefore, both parameters b and D share a decreasing trend as the damage
develops.

Adopting only the above-mentioned crack length distribution to describe
a population of cracks and regarding such cracks as sources of AE activity,
we establish a simple relation between b and D. In this way, we propose
a method of characterizing the spatial distribution of damage through the
AE technique avoiding time-consuming location of the cracks.

SPATIAL AND LENGTH DISTRIBUTIONS OF
MICROCRACK NETWORKS

Background

Fractal distributions for particle-size distributions are observed in nature

NGL)=CL™, W

where N(>L) is the number of fragments with a characteristic linear
dimension greater than L and C is a constant chosen to fit the observed
distributions (Turcotte, 1997). Here the term fractal stands for fractional
and it is widely referred to the exponent y, generally not integer, of any
kind_of _statistical_power-law_distribution even if not directly associated

for a.Variety_of-ﬁ-aglnented . ObJ ectsy-- S e et e e e e e ot e £+ i et o+ et e

with a fractal morphology. A simple theoretical model of fragmentation,
where all scales are involved during crack growth with repetitive
subdivision of breakage patterns, see Figure 1, was originally proposed in
the 1980’ (Sammis et al., 1986) in order to explain observed fractal

distributions of rock fragments in crustal shear zones at the plates’

boundaries (King, 1986; Davy et al., 1990).

This model, known in Physics as the Apollonian model discussed and
supported by laboratory observations in Sammis and Steacy (1995), is
based on the hypothesis that the fracture probability is maximum for
neighboring fragments of the same size, while it is unlikely that small
fragments will break large fragments or that large fragments will break

[
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Figure 1. lMustration of a deterministic fractal model for fragméntation (Apollonian model).
Two diagonally opposite cubes are retained at each scale (Sammis et al., 1986).

small fragments. In this model, fragmentation begins at the scale of largest
fragments, since they are the weakest, and continues with a cascade of
fragmentation at progressively smaller scales, leading to a fractal distribu-

““tion” of crushed material. For the configuration  illustrated -in-Figure-1-an-

initially intact cube with a linear dimension / is fragmented in N, =2 blocks
with size r,=h/2, No=12 with r,=h/4, and N3=72 with r;=h/8. The
dimension D of this deterministic fractal, defined as (Turcotte, 1997):

_ In(Nug1/Nw) ’
B In(Ly/Lut1) ’ @)

being N, the number of fragments with linear dimension L, and N,
the number of immediately smaller fragments, is D=In6/In2=2.58.
The cumulative number of blocks larger than a specified size for the three

highest orders are Nic(=r) =2 for i1 =h/2, Nac(Zr) =14 for s =14, and
Nic(=r3) =86 for ry=h/8. The cumulative statistics for this model is in
excellent agreement with the power-law Equation (1) for y =2.60. Thus, in
this fragmentation model the fractal dimension D is nearly equal to the
exponent y of the cumulative length distribution (Turcotte, 1997):

D=y (3)

This model of fragmentation remained for several years the only theoretical
support to connect the fractal dimension D of the spatial distribution of
microcracks to the exponent y of the frequency length distribution
of microcracks. In this case N(>L) stands for the number of microcrack




necessary for covering the microcrack net was taken (Bour and Davy, 1999).
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advancements larger than L in the crack network (Carpinteri et al,
2004, 2006b).

More recently, three scaling-laws were assumed in order to provide
a statistical description of the basic features of crack networks. For a
population of cracks, the manner in which the number of cracks decreases
with size was assumed to follow a power-law behavior, and then the number
N(>L) of microcracks larger than L is given again by (Bour and Davy, 1999;
Bonnet et al., 2001; Bour et al., 2002):

N L)y x L. )

Crack positions were defined from the crack barycenters, whose spatial
distribution was assumed to be fractal with dimension D. According
to Mandelbrot (1982), this means that the number of microcracks embedded
in a volume of lihear size s increases with s such as (Bour and Davy, 1999):

N(s) o sP. ©)

Various operative methods exist to find the box dimension D of a system
(Falconer, 1990). Here, the minimum number N(d) of balls of radius d

In the limit of small d, such number scales as:

s\D
Ny o (5 ©)
d

For mathematical sets D is defined when d tends to zero. In practice, for
natural systems the lower cut-off scale d of the relationship is the distance
between the elements constituting the system. In the case of a microcrack
network the lower limit for d is the size of the grains. Even, there exists an
upper cut-off, given by the size and shape of a given specimen.

A modified box-counting method was proposed by Bour and Davy

(1999), in which the lower cut-off scale is the average distance d(L) between
a crack of length L and its nearest neighbor of length > L. The distance is
calculated between the crack barycenters. This method assumes that any
subset of the crack barycenters, i.e., neglecting cracks <L, remains fractal.
The idea is that the number of balls necessary to cover the set will be equal
to the number N(>L) of sampled points if the ball radius is d(L). Following
Equation (6), the number of sampled points should scale with the distance
between nearest points as:

D
S
NG L) « <d—([>) o
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Since the crack length distribution is assumed to be a power law,
Equations (4) and (7) predict d(L) to scale as (Bour and Davy, 1999;
Bonnet et al., 2001; Bour et al., 2002):

d(L) « L¥, ®)
with:
x= %. ©)

The third scaling law given by Equation (8) describes the spatial organi-
zation of a microcrack network: the longer cracks are more mutually
separated than the shorter. Therefore, according to Bour and Davy (1999)
the fractal dimension D and the length exponent y are related through the
relation of Equation (9), where x is the exponent relating the average
distance from a crack to its nearest neighbor of larger length. It can be noted
that the case of y=D in the fragmentation model corresponds to the self-
similar case x =1 (Bonnet et al., 2001).

From Self-affinities to Power-law Distributions

In Damage Mechanics, the distribution of microcracks in disordered
materials can be statistically approached by defining a probability density
function p'(L, 9, ¢), L, ¢, and ¥ being, respectively, the size of the micro-
crack, the longitude, and the latitude of its orientation (Carpinteri, 1986,
1989, 1994a; Krajcinovic, 1996; Carpinteri et al., 2006a).

For the sake of simplicity, the spatial distribution of cracks is assumed to
be uniform over a fractal domain of dimension 2 <D <3, where cracks
positions are given by their barycenters. As already remarked, the fractal
dimension D cannot exceed the geometric dimension of the support, which is
equal to 3 (in case of a 3D Euclidean space). Furthermore, assuming that

the distribution of microcracks for concrete-like materials—is—isotropic;
ie., p'(L, 9, @) = p'(L), the probability density will take the form (Carpinteri,
1986, 1989, 1994a; Carpinteri et al., 2006a):

ﬁ@m@=%?, (10)

being p(L) the probability density of microcrack size distribution, since all
orientations are alike. )

Now, let us consider a body of characteristic linear size s; we can compute
the value L of the crack size, such that, on average, one defect only (i.e., the
largest) exceeds it. Let the cracking in the body be uniform, so that we may
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Figure 2. In a portion &' given by solving the equation (s'fs)® = L/Lmax the defect of size L can
be statistically considered as the largest defect.

define o as the mean fractal density of microcrack barycenters. Hence, the
following relation holds:

L =Pr[L>TL]ps ——/ /smﬁdﬁdgo (1)

where Pr[X] is the probability of the event X to occur. It is of interest the
particular distribution p(L) for which the maximum crack size Llmx in a
body is proportional to the linear size s of the body itself, Linax 8%, the
condition §=1 representing the case of perfect self-similarity, whereas, in
~ general, § can be different from 1, entailing simply self-affinity (Figure 2).

" Assuming this hypothesis, if a geometrically similar body of characteristic
linear size ks is considered, we impose that one defect only exceeds the
threshold AL it is thus possible to write:

2 pm
1 =Pt[L > K¥*L]p(ks)” —1—/ / sin 9 do de. (12)
drJo Jo :

Equating the right-hand terms of Equations (11) and (12) we readily obtain:

Pr[L > K’L)k® =Pr[L = L]. (13)

The solution of Equation (13) is (Carpinteri, 1986, 1989, 1994a; Carpinteri
et al., 2006a):

160
P(Ly=1—-—=—, VL
(D=1=275 VL>Lo, (14)

being ¢y a constant of proportionality and P(L) the cumulative probability.
By derivation, we obtain the following probability density function:

¢
pL) =35, VL>Lo, (15)
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and:

y= (16)

D
'E.
It can be observed that L. is, in a body of size ks, a random value
exceeding the threshold k°L, and now we also know that L is distributed
according to the probability density function of Equation (15). Therefore,
we can compute its expected value. The result shows that it is proportional
to the threshold k°T itself:

/ L .
L2 =YKL (17

+00 -, _ 2 >
/ pndr 7
KT

Thus, Equation (15) implies the self-affinity relation to hold: Linax(s) 8%,
and vice versa; this result is also confirmed by Newman (2005), who writes a
similar relation linking the maximum size Ly, with the number of
samples from a distribution of the form of Equation (15). This distribution
can be referred to as the crack size distribution of self-affinity. Comparing

E(LIL> kL) =

-~ Equations (6) -and (9), -it -can- be -noted - that §=x"'; the exponent -

8 characterizing the scaling of the maximum crack size with the structural
size s is thus the reciprocal of the exponent x introduced by Bour and Davy
(1999); the implications will be discussed in the forthcoming sections.

Power-law Crack Size Distributions and Gutenberg—Richter Law

Microcracks are now considered as sources of AE activity. It is widely
accepted a fractal interpretation of GR law, initially drawn in seismicity
(Aki, 1981; Turcotte, 1997), which says how AE events generated by source
cracks statistically distribute (Sammonds et al., 1994; Ohtsu, 1996; Colombo

et al., 2003; Rao and Lakshmi, 2005; Carpinteri et al., 2006a):
NEL)yo L™, (18)

where N the number of AE events generated by source microcracks with a
characteristic linear dimension >L, and b is a parameter which says how
large the ratio of events with low magnitude (i.e., smaller microcracks) to
larger ones (that is with higher magnitude) is. On the other hand, the
number of cracks with length> L expected from the distribution of
Equation (14) is (Carpinteri et al., 2006a):

N L)« L7, , (19
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Equating the cumulative distributions of Equations (18) and (19) gives
(Carpinteri et al., 2006a; Carpinteri et al., 2007):

y =2b. (20)

From the literature on AE tests, it is well-known that the b-value decreases
as the specimen approaches impending failure (Sammonds et al., 1994,
Ohtsu, 1996; Colombo et al., 2003; Rao and Lakshmi, 2005; Carpinteri
et al., 2006a; Carpinteri et al., 2007). It is common to observe a trend of b to
the critical value bgi =1 during final crack propagation (Colombo et al.,
2003; Rao and Lakshmi, 2005; Carpinteri et al., 2006a; Carpinteri et al.,
2007). A theoretical basis for explaining beir=1 can be established,
by exploiting properties of the distribution of self-affinity given by
Equation (23) (Carpinteri et al.,, 2006a). Substituting Equation (28) into
Equation (24) we obtain the following expression for b

_D
=5

The minimum of the b-value is obtained when D=2 and §=1 and it is thus
equal to 1. In fact, Lyax(s) s’ is equivalent to the following relations:

b (21)

Liax(k) & ka, (23)

where k is a dimensionless scaling factor.

From relations (22) and (23) in the case §> 1, the largest crack results to
be larger than the body itself for sufficiently large scales (Figure 3),
suggesting a complete separation of the body. This paradox theoretically

leax (K) o< KO
3
3 D
13 S =——> 1
= s(K) o< k y
3
w 1
|
!
! .
0 Ky k

Figure 3. Trends of body size s and maximum defect size Lmax @s functions of the scale in
the case of defect size distribution with §> 1. This plot accounts for §=1 as un upper limit to
the values of & For suitably small scales (k<ky) the crack size distribution with §>1 has

physical meaning.
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accounts for b = | as a lower limit to the b-values observed in most of AE
monitoring tests on specimens loaded up to the failure (Colombo et al.,
2003; Rao and Lakshmi, 2005; Carpinteri et al, 2006a). In fact, the
conditions D=2, i.e., damage concentrated over the through-going fracture
surface, and §=1, ie., the largest crack proportional to the characteristic
size of the structure, are both reached at the collapse (Carpinteri et al.,
2006a; Carpinteri et al., 2007).

Till now no particular assumption has been made about y, which in
principle may take any value greater than 1. In reality, values smaller than 2
should not be allowed, since b usually does not drop below 1 Equation (20).
Nevertheless, for suitably small values of k, i.e., for sufficiently small bodies,
condition Lmax(k)<s(k) is still satisfied. Hence crack-size distributions
with 1 <y<2 are physically admissible for reduced values of k (Carpinteri
et al., 2006a; Carpinteri et al., 2007). In terms of b-value, the condition
1<y<2 reads 1/2<b<1, which have been observed in some AE tests
(Colombo et al., 2003).

As a matter of fact, one way of reducing & is to hold together a body
through confining pressures or structural reinforcements in order to
continue the test after fragmentation (Carpinteri et al.,, 2006b). That
would mean a split of the initial one-body system in a multi-body system,
characterized by reduced scaling factors k', k", k', ete.” (Figure 4(a)).”
Scaling reduction below a threshold &y, makes meaningful distributions with

(a) {
oo —L
[ N

Figure 4. Similarity in fragmentation of a structure into multi-body system on different
scales, from laboratory specimen (a) to Earth’s crust (b).
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1 <y<2 (Figure 3), corresponding to observed b-values between 1/2 and 1
(Carpinteri et al., 2007).

It is possible, therefore, to conclude that y =2 corresponds to berin=1
usually observed both in AE laboratory tests and in tests performed on full-
sized engineering structures during main crack propagation (Colombo et al.,
2003; Rao and Lakshmi, 2005; Carpinteri et al., 2006a; Carpinteri et al.,
2007). In the light of the previous discussion, b-values in the range (1/2, 1)
could be associated with fragmentation. The fragmentation of a structure
seems to reproduce, on strongly reduced scale, the outline proposed by the
Theory of Plate Tectonics, where the Earth’s surface is broken into large
plates moving against each other (Figure 4(b)). The b-value analysis
emphasizes the analogy between these two multi-body systems, since in both
cases b-values in the range 1/2<b<1 can be observed (Schorlemmer, 2005;
Carpinteri et al., 2007).

Power-law Distributions and Fractal Dimensions
The sole knowledge of the fractal dimension D=D, of microcrack

barycenters pattern is not sufficient to fully characterize the fractal geometry
of a microcrack network. As said in the section ‘Generalized fractal

" dimensions’ a fractal object is characterizéd by an infinite set of generalized

dimensions D,, with Do= Dy > D, >-..-called the multifractal spectrum
(Feder, 1988; Falconer, 1990; Bonnet, 2001). The multifractal spectrum fully
characterizes the distribution of a measure on a geometric support; more
precisely, it characterizes the level of regularity and homogeneity of the
distribution. The dimension Dy of the multifractal spectrum is the dimension
of the geometric support, which can be either fractal or not. Here the
geometric support is given by the ensemble of the microcrack barycenters,
whereas the measure is the cumulative length of microcracks.

The box-counting method, in which all d-mesh boxes intersecting the
microcrack barycenters pattern are counted, does not emphasize any fractal

structure when applied to the crack length distribution of self-affinity
modeled in the section ‘From self-affinities to power-law distributions’.
In fact, since all N(d)xd =3 J-mesh boxes must be counted, the dimension
D, of the crack barycenters pattern can be obtained from Equation (5):

. Ind™3
Do=~- (111—13}7 Ind — 3 @4

which agrees with the assumed homogeneous distribution for microcrack
barycenters. It is worth noting that the result of Equation (21) can also be
obtained from the generalized definition of fractal dimension (Feder, 1988).
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Figure 5. Classical methods used to calculate the fractal dimension applied to Carpinteri's
model (1994) of self-affinity for microcrack network. The box-counting method equally
counts microcracks irrespective of their length (a) the multifractal analysis weights each box
by its total ‘crack length’. The darker the box, the greater the crack length found inside it (b).

However, as said above, the sole Dy does not characterize the geometry of
a crack network, which can be fractal even if its geometric support is not
(Figure 5(a)). In order to emphasize the fractal structure subtended by the
crack length-distribution-of self-affinity, a modified box-counting method is
proposed, alternatively to the multifractal analysis pictured in Figure 5(b).

In line with the box-counting method proposed, N(d) is taken to be the
minimum number of balls of radius d necessary for covering the microcrack
network. As previously stated, fundamental to definition of dimension
based on Equation (14) is the idea of ‘measurement at scale d’. For each d,
the set is measured in a way that ignores irregularities of size less than d
(Feder, 1988; Falconer, 1990; Carpinteri, 1994b). The number N(d) of balls
of radius d that cover the microcrack net is an indication of how spread out
or irregular the net is when examined at scale d.

The idea is that the number of balls necessary to cover at scale L a

microcrack network will be equal to the number N(=L) of sampled
microcracks (those having length > L), while irregularities, i.., the micro-
cracks, of size less than L are ignored. Balls are centered on microcrack
barycenters. In line with the approach followed by Bour and Davy (1999),
the ball radius is defined as the average distance d(L) between any crack of
length L and its nearest neighbor of length L'> L, so Equation (15) is
unchanged. ,

Applying the self-affinity relation Linax(s) xs® to a ball of radius d(L)
centerd on its largest crack L gives (Figure 6):

d(L) o< L'72, (25)
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Figure 6. Balls used to cover the crack network at scale L(a). Zoom of one ball centered
on its largest crack L, whose radius d(L} scales with L as L% the radius is determined by the

nearest neighbor of length L' = L(b).

Inserting Equation (25) into (7) gives:

N(>L) ox L7P1°, (26)

A comparison with Equation (19) gives:

D =1ys. 27)

Thus, we obtain again Equation (16) which now acquires a clear geometric
meaning. In fact, a fractal network implies a spatial correlation and
organization between cracks, which is independent of the distributions
of other crack features, such as crack, lengths. In other words, cracks may be
randomly distributed in space (i.¢., nonfractal) while crack lengths can follow
power law distributions. The link between the length distribution and the




and:
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(fractal) spatial distribution involves a relationship between the length of a
crack and the distance to its neighbors, according to Bour and Davy (1999).
In this light, the scaling law given by Equation (33) describes a distribution of
cracks hierarchically organized in space: the larger the cracks, the larger their
mutual distances. Physically, d(L) helps to define a sort of excluded volume
surrounding any crack with length L such that no further crack with the same
length (or greater) are admitted (Bour and Davy, 1999).

Let us note that a similar power-law scaling behavior has been observed
studying the earthquake distributions (Caneva and Smirnov, 2004): after
an earthquake had occurred in a certain region of space, there is a certain
rank of energy values such that no further earthquake with the same
energy can occur during a suitable interval time. The size R of this
prohibited region scales with the linear /y size of the earthquake rupture
according to a power law, R o [g.

Furthermore, it is interesting to compare Equations (16) and (20)
with analogous relationships recently proposed and based on the
fragmentation model (Aki, 1981; Turcotte, 1997; Carpinteri and Pugno,
2002; Carpinteri et al., 2004):

D=y=2b, (28)

W VPP, with 2<D<3. (29)

The dissipation of energy W on a fractal domain suggested by
Equation (29) found experimental validation in crushing tests on concrete
specimens (Carpinteri et al., 2004; Lacidogna and Carpinteri, 2006).

Equation (28) fails for high b-values (i.e., 5> 1.5) often characterizing the
early stages of the damage process (Rao and Lakshmi, 2005), since it gives
values greater than 3 whose interpretation in terms of fractal dimension D of
the_damage_domain is_problematic. Whereas, Equations (16) and (20) give

D =2b8, implying D <2b in light of the previous discussion see Equations
(22) and (23), which still permits a consistent geometric interpretation of D
for high b-values.

We briefly discuss b-values in the range 0.5<b<l, for which the
fractal dimension becomes between 1 and 2. In this case one can imagine
the microcracks trying to fill up a surface. Cracks propagate until they
meet another crack or a boundary of the specimen. With proper
boundary conditions fragments can be thus formed, which are defined as
closed parts surrounded by intersected cracks. Therefore, a fractal
dimension D=1 (corresponding to b-values near 0.5 or lower) may be
interpreted as describing the rupture propagation along a line given by
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two intersecting rupture surfaces during a fracture process which evolves
toward fragmentation.

Eventually, it is worth observing that in the present treatment we consider
cracks and micro-cracks as the only possible defect type. Thus, voids, micro-
voids, or other defects are not taken into consideration; at present, we made
no attempt to investigate other types of defects, for which a fractal
dimension could not be easily calculated with the proposed method, since it
relies upon the crack size only, determined through AE analysis. In the case
of damaged surfaces consisting primarily of voids or of a combination of
cracks and voids (Ju and Chen, 1992), the proposed method needs to be
further extended. '

EXPERIMENTAL ASSESSMENT: CONCRETE SPECIMEN
IN COMPRESSION

The behavior of a concrete specimen in compression during a laboratory
test has been investigated through AE monitoring. Six AE transducers (Sag)
have been applied to the surface of the specimen, a prism measuring
160 x 160 x 500 mm? (Figure 7). The test has been performed in displace-

" ment control by an electronic conitrolled Servo-hydraulic Material Testing

Systems machine (311,31 model) with a capacity of 1800kN, imposing a
constant rate of displacement equal to 1 x 10#mm/s to the upper loading
platen. This kind of machine is controlled by an electronic closed-loop
servo-hydraulic system. It is, therefore, possible to perform tests under load
or displacement control. The displacements are recorded by four strain
gauges (HBM 1-L'Y41-50/120 model) applied on the specimen surface. In
spite of the low value chosen for the displacement rate, the specimen has
failed in a brittle manner as it can be seen in the load versus time (strain)
diagram of Figure 8, where the linear branch extends over almost the entire
duration_of the_test

The characterization of the fracture process through analysis of AE
signals emerging from the growing cracks has been performed in a post
processing environment, using two different procedures. In fact, besides the
AE source location procedure already utilized in Carpinteri et al. (2005), the
damage process has been evaluated through the b-value analysis. Both
procedures make it possible to evaluate the dimension D of the damaged
domain, i.e., the fractal dimension of the crack network. The technique used
to obtain a fractal dimension D from the AE source location procedure is
the two-point correlation function, which describes the spatial distribution
of cracks, regarded as point-like, as often made in spatial characterization of
crack networks (Okubo and Aki, 1987). This idealization is also convenient
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Figure 7. Concrete specimen in compression. (a) Cross section of the specimen.
(b) Assonometric projection with the positioned AE sensors. (c) Overview of the four
specimen faces. (d) Photo of MTS machine and of the specimen during the test. Note on the
left the devices utilized for detection of AE signals.




276 A. CARPINTERI ET AL.
1600

1400 4

1200

1000 -

800

Load (kN)

600

400 -

200 4

0 T T T
0 10,000 20,000 30,000 40,000 50,000
Time (s)

Figure 8. Load-time diagram of the test performed in displacement control: in the first 10%s
the displacement rate was dé/dt= 10" mm/s, increased to 107*mm/s from t= 10%s up to

failure. The specimen failed. in a quasi-brittle manner, in_region I, where linear elasticity is
applicable, there Is little damage (i.e., low-amplitude AE events), while in regions Il and lll,

damage results in a deviation from linear elasticity and an increase of AE level.

for a comparison with data from AE localization of sources, in which events
of all different magnitudes are localized as if they were point-like.

In general the two-point correlation function C(d) gives the probability
that two points are less than d apart. To compute this probability for any
given value of the distance d, the number of pairs of cracks closer than
4 must be evaluated and then divided by the total number of crack couples.

Given_N cracks, the_total number of crack pairs is given by N(N—1)/2.
The number of pairs closer than d is computed as follows: given two cracks
i and k, the Heaviside step function ®(d— |xx -xj) (@(x)=1 if x>0,
and zero elsewhere) provides 1 if the cracks are closer than d and 0
otherwise. By performing a double sum of over the indexes i and k, we

obtain the number:
2SS o=
cd) = ——— O(d — |xe — xj])- (30)
NV - 1) k=t j=k+1 ’

Therefore, taking a crack in x;, C(d) gives thus the probability of finding
another crack in the sphere of radius d centered at X The correlation
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Figure 9. Correlation function—distance diagram illustrated in the last two stages of the
loading test, when the two-point correlation algorithm was applicable. The fractal dimension
D, calculated by the Equation (39), is the slope of the function on the log-log plot.

function can then be used to calculate the fractal dimension of the
population of cracks by using the scaling relation:

Note that the correlation dimension D is equivalent to the generalized
fractal dimension D, (Feder, 1988), but easier to calculate (Grassberger and
Procaccia, 1983). In fact, the probability sui of finding two points in a cell
with side d (being u; is the probability of finding one point in a ith specific
cell) is nearly the same as in a circle with radius d:

Z 12 = C(d). (32)

By varying the value for 4, a plot has been made to represent the changing
value of the correlation function vs. the distance d. The correlation
dimension D is then the slope of the function on the log-log plot. The graph
of C(d) at two different stages of the damage process is shown in Figure 9.
The curves show a linear behavior in a range of about one order of
magnitude on the space scale (i.e., from ~1cm to ~10cm). Deviations from
linear dependence in the range of wider scales are connected with the finite
size of the specimen. It turns out that at earlier stages of the damage process
D reaches the value of 2.20, which describes microcracks trying to fill up the

specimen volume ¥, consistently with the idea of diffused microcracking at-

the early stages of damage.
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Figure 10. b-values during the three stages of the loading test, obtained illustrating the
GR law: N(=A} «A™®, in which the b-value is the negative slope of the number of AE events
with signal amplitude greater than A as a function of A on the log-log plot.

Table 1. Parameters characterizing the crack network at .
different stages of damage evolution: b-value defining the
crack-length distribution, fractal dimension D of the crack

barycenters (obtained from two-point correlation algo-
rithm), and exponent § defining the excluded volume
surrounding any crack.

Damage stage. R R B LR |
b 1.75 1.39 1.26
D *) 2.20 1.91
5=D/(2b) 0.79 0.76

(*) Two-point correlation algorithm not applicable due to lack of localized points.

During the evolution of the process, D decreases reaching a value of 1.91
before the rupture, signifying that at the final stage microcracks tend to be
localized on the through-going fracture surface.

The same_temporal partition used for the correlation dimension has been

used for calculating the b-values, obtaining, respectively, 1.39 and 1.26
(Figure 10); as expected, both D and b share the same decreasing trend as the
damage develops. By resorting to Equation (16) we can compute the value of
the exponent &, obtaining 0.79 and 0.76 in phases II and III, respectively
Table 1. Such values of § have been compared with the related experimental
value, obtained by subjecting the AE data to a statistical analysis: exploiting
the scaling relation existing between the peak amplitude 4 of a recorded AE
signal and the length L of the crack source, L o A'? (Colombo et al., 2003;
Carpinteri et al., 2007), and inserting it into Equation (33), we obtain the
distance d between the localized cracks as a function of the related AE signal
amplitudes, d(4) o A4 125 Plotting d(A4) versus A according to a simple
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Figure 11. Plot of the average distance d(A) between a crack of length LA™ and its
nearest neighbor having a length >L vs A. d(A) is fitted by d(A) o A* with x=0.65.

power-law, we have found an exponent x=1/26=0.65 Figure 11
corresponding to an experimental value of 6=0.77, which is in good
agreement with the values previously calculated by Equation (16) (Table 1).

Furthermore, the b-value has been calculated also at the earliest stage of
the loading test, where linear elasticity was still applicable, obtaining a value
of 1.75, index of low damage level (Figure 10). Therefore, during the
evolution of damage process, the b-value progressively decreases as
expected.

In the linear regime, the recorded low-amplitude AE signals have not
allowed_the_location_of microcracks_(an_AE event must be detected by

at least two transducers for crack location), then neither the calculation
of the correlation dimension. It is worth noting the consistency of this
experimental evidence, since both the deviation from linear elasticity and
the AE are traced back to the phenomenon of damage. The localization
of both these aspects of damage in a narrow time window before the rupture
is a typical example of brittle behavior exhibited by the specimen. A final
overview of the localized AE crack sources overlapped to the
fracture surfaces is illustrated in Figure 12. It might be observed that in
the Figure 12 two different clusters of cracks are visible. All the data are
fitted with just one line and not separately, since the b-values of the two
clusters of AE events have a very similar evolution in time. As a matter of
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Figure 12. Concrete specimen in compression. (a) Final overview of the localized AE crack
sources overlapped to the fracture surfaces. (b) FACE B with the projections of the AE
sources and fracture surfaces identified during the loading test. (c) Broken specimen after

testing from FACE B.

fact, although clearly distinguishable, the two cracks proceed from the same
damage process and evolve in a similar way.

CONCLUSIONS

Assuming a relation of self-affinity for microcracks, Linax(s) o 8%, we show
that the fractal dimension D and the exponent y of the frequency length
distribution of a crack network are related through the relation D =34y,
where & is the governing exponent of the hierarchical organization of cracks
in-space. Likewise an analogous_scaling behavior for the spatial distribution

of hypocenters, is observed studying the seismic recurrence. The link with
the experiments is provided by another relation foreseen by the model,
y = 2b, which permits to study the geometry of a crack network through AE
tests. The proposed relation, D =8y, holds a physical significance in terms of
spatial distribution of damage even for high (i.e., >1.5) b-values.

Furthermore, besides the fractal features of a crack network, the model
provides a theoretical explanation for taking beiv=1 as a lower limit to the
b-values, as observed in most of AE monitoring tests on specimens loaded
up to failure. Interpretation in terms of fragmentation for b-values lower
than 1, intriguingly suggested by the outline of the Theory of Plate Tectonics
and the earthquake statistics, is worthy of further investigations.
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