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Fracture mechanics and complexity sciences
— Part II. Complex behaviour emerging from
simple nonlinear rules: Catastrophes and
chaos !
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Abstraet, The so-called Complexity Sciences are a topic of fast growing interest inside the scientific community. Aim of this
paper is to provide an insight into the role of complexity in the field of Materials Science and Fracture Mechanics. The paper
is divided into two parts, which deal with the two opposite natural trends of composite systems: order and structure emerging
from large, complicated systems and the route towards randomness and chaos arising from simple nonlinear rules. The former
trend has been illustrated in the companion paper {Pari [}: on the other hand, this part will focus on the latter trend. The first
example concerns the snap-back instabilities in the structural behaviour of composite structures, which are illustrated in the
framework of Catastrophe Theory; the second application deals with the transition towards chaos in the dynamics of cracked
beams.

1. The nonlinear cohesive crack model: Snap-back instability as a cusp catastrophe

The first example dates back to the 1980°s, when the senior author [1-3] approached the snap-back
instability of cracked bodies with a Cohesive Crack model. As will be shown, this instability can be
interpreted in the general framework of Catastrophe Theory (Thom [4]).

This first section is thus devoted to a brief review of the ductile-to-brittle transition in the mechanical
behaviour of cracked solids, described by means of the Cohesive Crack model, along with some ex-
amples for structures in bending and numerical implementations for Mode I cracking. It will be shown
how this approach succeeds in capturing the ductile-to-brittle transition by increasing the structural size
owing to the difference in the physical dimensions of two materials parameters: the tensile strength o,
and the fracture energy Gr.

The Cohesive Crack Model was initially proposed by Barenblatt [5,6] and Dugdale [7]. Subsequently,
Dugdale’s model was reconsidered by Bilby et al. [8], Rice [9] and Willis [10]. Hillerborg et al. [11]
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Fig. 1. Constitutive laws of the cohesive crack model: (a) undamaged material; (b) process zone.

proposed the Fictitious Crack Model in order to study crack propagation in concrete. The cohesive crack
model is based on the following assumptions [1,11,12]:

L. "The cohesive fracture zone (plastic or process zone) begins to develop when the maximum principal
stress achieves the ultimate tensile strength o, (Fig, 1a).

2. The material in the process zone is partially damaged but still able to transfer stress. Such a stress
is dependent on the crack opening displacement w (Fig. 1b). The energy G necessary to produce
a unit crack surface is given by the area under the o—w diagram in Fig. 1b.

The real crack tip is defined as the point where the distance between the crack surfaces is equal to
the critical value of crack opening displacement w, and the normal stress vanishes. On the other hand,
the fictitious crack tip is defined as the point where the normal stress attains the maximum value and the
crack opening vanishes (Fig. 1). With some modifications, the cohesive crack model has been applied
to model a wide range of materials and fracture mechanisms, most prominently concrete. Regarding
this material, there is a very large literature; for a review, the reader is referred to the review papers by
Carpinteri and co-workers [13,14].

Before reviewing the numerical results, let us propose a simple analytical interpretation, which eas-
ily allows to capture the fracture instability propagation. The linear elastic behaviour of a three point
bending, initially uncracked, beam may be represented by the following dimensionless equation:

P=—4¢ (1)

in which P and § are the nondimensional load and midspan deflection, respectively, whilst A is the beam
slenderness (span to depth ratio) [15]. Once the ultimate tensile strength &, is achieved at the lower beam
edge, a fracturing process in the central cross-section is supposed to start. Such a process admits a limit-
situation like that in Fig. 2. The limit stage of the fracturing and deformation process may be considered
as that of two rigid parts connected by the hinge A in the upper beam edge. The equilibrium of each
part is ensured by the external load, the support reaction and the closing cohesive forces. The latter
depend on the distance between the two interacting surfaces: increasing the distance w, the cohesive
forces decrease till they vanish for w = 1w,. Without entering into details, the load-displacement relation
may be obtained as [15]:
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Fig. 2. Limit-situation of complete fracture with cohesive forces,

P oA P
- & <b by > 6
33 fm o e 23 |y it
@ | N @
| | | \}\
| | . - R :
| | 8 [ o] T |
TR R
(a) (b)

Fig. 3. Load-deflection diagrams: (a) ductile and (b) brittle condition,

where the Brittleness Number s = Gp /oyl is the fundamental quantity ruling the system behaviour [2,
15-17]. Both Eqgs (1) and (2) have the same upper validity limit: P < 2/3. Therefore, a stability criterion
for elastic-softening beams may be obtained transforming the load bounds into deflection bounds. When
the two domains are separated, it is presumable that the two P-4 branches — linear and hyperbolic
— are connected by a regular curve (Fig. 3a). On the other hand, when the two domains are partially
overlapped, it is well-founded to suppose them as connected by a curve with highly negative or even
positive slope (Fig. 3b). Unstable behaviours and catastrophical events (snap-back) may be possible, in
the case of the three point bending geometry, for:
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< (3)
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The system is brittle for low brittleness numbers s, high ultimate strains and large slendernesses.
It is therefore evident that the relative brittleness for a structure is dependent on loading condition and
external constraints, in addition to material properties, size-scale and slenderness. For instance, uniax-
ial tension is more unstable than three point bending: B < 1/2 (Carpinteri [18]), whilst in bending
B 1

Now, let us quantify the ductile-to-brittle transition by showing synthetically the numerical results
for concrete elements in Mode I conditions (Three Point Bending Test — TPBT), based on the cohesive

model, obtained using the Finite Element Code FR.ANA. (FRacture ANAlysis, Carpinteri [2,15,18],
Carpinteri et al. [12,19,20]).
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Fig. 4. Dimensionless load vs. deflection diagrams by varying the brittleness number s, ap/h = 0.0 (a) and ag /h = 0.5 (h).

Extensive series of analyses were carried out from 1984 to 1989 by A. Carpinteri and co-workers. The
experimental results can be found in the RILEM report [21]. The cases described in the reference papers
regard three [/h ratios (4, 8 and 16), and four ay/h ratios (0.00, 0.10, 0.30, 0.50), and a concrete-like
material. Figure 4a refers to the case of an initially uncracked beam (ag/h = 0.0), whilst Fig. 4b reports
results for the case of an initially cracked beam with ag/h = 0.5.

For each ratio, the response was analyzed for different values of the brittleness number, sp, ranging
from 2 x 1072 to 2 x 1075, As can be seen from the diagrams, the brittleness number sg has a de-
cisive effect on the structural response of the element: by increasing sz, the behaviour of the element
changes from brittle to ductile, as already stated. Generally speaking, the specimen behaviour is brittle
(snap-back) for low sg numbers, i.e., for low fracture toughnesses G, high tensile strengths, o,,, and/or
large sizes, h. In particular, in the case of uncracked beam, for s < 10.45 x 1073, the P-4 curve
presents positive slope in the softening branch and a catastrophical event occurs if the loading process
is deflection-controlled. Such indenting branch is not virtual only if the loading process is controlled by
a monotonically increasing function of time (Fairhurst et al. [22], Rokugo et al. [23]) like, for example,
the displacement discontinuity across the crack (Biolzi et al. [24]).

In the case of the cracked beam, on the contrary, the initial crack makes the specimen behaviour
more ductile; for the set of s numbers considered in Fig. 4b, the snap-back does not occur. By varying
the initial crack depth, it is possible to describe the gradual transition from simple fold catastrophe
(softening) to bifurcation or cusp catastrophe (snap-back instability), generating an entire equilibrium
surface, or the catastrophe manifold.

Eventually, it is interesting to plot the ratios of the maximum loading capacity Peopes according to
the cohesive crack model (obtained from Figs 4) to the maximum load P, gy of brittle fracture as
a function of the inverse of sg. This ratio may also be regarded as the ratio of the fictitious fracture
toughness (given by the maximum load Ppgpes) to the true fracture toughness (considered as a material
constant). It is evident that for low sg numbers the results of the cohesive crack model tend to those
of linear elastic fracture mechanics (see Fig. 5a), and therefore, the maximum loading capacity can be
predicted if the condition K} = K¢ is applied. It appears that the true fracture toughness Kic of the
material can be obtained only with very large specimens.

A similar conclusion may be drawn for the tensile strength, by considering the ratio of the maximum
load Frghes of the cohesive crack model to the maximum load Hyg = E,H'E{crua‘.hg,f'ij of ultimate strength.
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Fig. 5. Increase of fictitious toughness (a) and decrease of fictitious strength (b} with increasing specimen size (A = 4,
£y = 0.87 x 1074,

The values of the ratio FPoohes/ Pu.s. may also be regarded as the ratio of the apparent tensile strength
oy to the true tensile strength (considered as a material constant). Again, it appears that the true tensile
strength o, of the material can be obtained only with very large specimens (see Fig. 5b).

2. Route towards chaos in the dynamics of cracked beams

The second and last topic is concerned with the dynamical behaviour of cracked beams (Carpinteri
and Pugno [25-27]). The damage assessment problem in cracked structures has been extensively studied
in the last decade, highlighting that the vibration based inspection is a valid method to detect, localize,
and quantify cracks especially in beam structures. Dealing with the presence of a crack in the structure,
previous studies have demonstrated that a transverse crack can change its state (from open to closed and
vice versa) when the structure, subjected to an external load, vibrates. As a consequence, a nonlinear
dynamic behavior is introduced.

In the past many studies have illustrated that a crack in a structure such as a beam, may exhibit
nonlinear behavior if it is open during part of the response and closed in the remaining intervals. This
phenomenon has been detected during experimental testing performed by Gudmundson [28], in which
the influence of a transverse breathing crack upon the natural frequencies of a cantilever beam was
investigated. The main result obtained was that the experimentally observed decrease in the natural
frequencies of the beam due to the presence of the crack could not be described by a model of crack
which is always open. Therefore, it must be concluded that the crack alternately opened and closed
giving rise to natural frequencies falling between those corresponding to the always-open and always-
closed cases. In fact, if an always-open crack is assumed in the analysis of a beam with a so-called
breathing crack, which experimentally both opens and closes during the time interval considered, the
reduced decrease in the experimental natural frequencies will lead to an underestimate of the crack
depth if determined via a test-model correlation approach.

Several models have been proposed in the past for dealing with cracked vibrating beams [29-33], but,
in all these models, the main assumption has been that the crack can be either fully open or fully closed
during the vibration. Carpinteri and Pugno [26] recently developed a coupled theoretical and numerical
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approach to evaluate the nonlinear complex oscillatory behaviour in damaged structures under excitation.
In their approach, they have focused their attention on a cantilever beam with several breathing transverse
cracks and subjected to harmonic excitation perpendicular to its axis. The method, that is an extension
of the super-harmonic analysis carried out by Pugno et al. [34] to subharmonic and zero frequency
components, has allowed to capture the complex behavior of the nonlinear system, e.g., the occurrence
of period doubling, as experimentally observed by Brandon and Sudraud [35] in cracked beams.

A pioneer work on period doubling was written in 1978, when Mitchell Feigenbaum [36] developed a
theory to treat the route from ordered to chaotic states. Even if oscillators showing the period doubling
can be of different nature, as in mechanical, electrical, or chemical systems, they all share the charac-
teristic of recursiveness. He provided a relationship in which the details of the recursiveness become
irrelevant, through a kind of universal parameter, measuring the ratio of the distances between succes-
sive period doublings, the so-called Feigenbaum’s delta [37]. His understanding of the phenomenon
was later experimentally confirmed [38], so that today we refer to the so-called Feigenbaum’s period
doubling cascade. However, even if the period doubling has a long history, only recently it has been
experimentally observed in the dynamics of cracked structures [35].

The presented method discretizes the differential nonlinear equations governing the oscillations of
the continuum structure by the finite element method. Let us consider a multicracked cantilever beam,
clamped at one end and subjected to a dynamic distributed force p (with rotating frequency w). Modeling
the breathing cracks as concentrated nonlinear springs, the equation of the motion of each integer beam
segment is the classical equation of the beam dynamics. Furthermore, the boundary conditions between
two adjacent segments are represented by the continuity of the transversal displacement and of its second
and third spatial derivatives (proportional to the bending moment and to the shearing force, respectively),
as well as by the compatibility with the crack. This implies that the difference in the rotations between
the two adjacent sections must be equal to the rotation of the connecting springs. The problem can be
formally written as:

9q(z, t] 9q(z, t
pA° gtz L B qa(i } =p(z,t) forz <z < ziq, i
whereas, for z = z;:

Elq"(z))

oz = 9z ") = "N 4"z = "N, d @) - ¢ = T

: (5)
where p is the density, A the cross-section area, g the transversal displacement, F the Young's modulus,
and I the moment of inertia of the beam. k; is the nonlinear concentrated rotational stiffness (a function
of the rotations q’(:f‘j} of the crack placed at z; (the symbol prime denotes the derivation with respect
to z).

Equation (4) can be formally solved by applying the Fourier trigonometric series, searching a solution
in the form [26]:

S
ql.t) = —= 3 )™, (6)

nr\:T—l)O

where ¢(z) are unknown functions and P = O27/w = OP is the period of the response, assumed
a priori to be different from the period P of the excitation (describing a so-called complex behavior,
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Fig. 6. Cracked element.

thus © is a complexity index). On the other hand, if the period of the response tends to infinity, i.e.,
© — oo (nonperiodic response, i.e., chaotic deterministic behaviour), it is well known that Eq. (6)
formally becomes a Fourier transform.

By discretizing the structure with the finite element method [26], Eq. (4) can be rewritten as:

IMI{g} + [D){q} + [K1{q} + > _[AK™] ™ ({g}){q} = {F), (7)

m

where [M] is the mass matrix, [D] the damping matrix, [K] + 3, [AK"™] the stiffness matrix of the
undamaged beam, and [AK™] is half of the variation in stiffness introduced when the m-th crack is
fully open. A sketch of the cracked finite element is reported in Fig. 6; details about the calculus of
the variation in stiffness due to the presence of the crack can be found in [34]). {F} is the vector of
the applied forces (with angular frequency w) and {g} is the vector containing the generalized displace-
ments of the nodes (translations and rotations). According to this notation, f™({q}) is between —1 and
+1 and models the transition between the conditions of m-th crack fully open and fully closed. The
method described assumes, according to [35], that the cracks open and close continuously instead of in-
stantaneously, as suggested by the experiments. Thus, the stiffness varies continuously between the two
extremes of undamaged or totally damaged beam (fully open cracks), rather than stepwise. The solution
for the elements of the {g} vector € L? (i.e., g7l can be integrated according to Lebesgue) can be found
by the approximation of Eq. (6), that for the discrete system can be rewritten as:

Jra,.r

i L L
g = Z(Aiﬂ' sinj gt + By cﬂs;l@t) (8)
7=0

in which the complexity index @ must be a positive integer, to take into account not only the super-
harmonics (and offset) but also the subharmonic components of the dynamic response, and theoretically
N = oo. The period of the response is not assumed a priori equal to the period of the harmonic ex-
citation, as classically supposed (absence of subharmonic components). This is the key to capture the
complex behavior of the highly nonlinear structure, e.g., the occurrence of period doubling. Coupling the
above formulation with the harmonic balance approach, allows to obtain a nonlinear system of algebraic
equations, easy to be solved numerically.

Two different numerical examples will be considered: a weakly nonlinear structure and a strongly non-
linear one. Only in the latter case, the so-called period doubling phenomenon clearly appears. The beam
here considered is the same as that described in the mentioned experimental analysis. It is 270 mm long
and has a transversal rectangular cross section with base and height, respectively, of 13 and 5 mm. The
material is (UHMW)-ethylene, with a Young’s modulus of 8.61 x 10® N/m? and a density of 935 kg/m’.
The assumed modal damping is 0.002; the beam is discretized with 20 finite elements. Values of the
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Fig. 7. Damaged structures: weakly nonlinear (a) and strongly nonlinear (b).
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Fig. 8. Time history of the free end displacement and of the applied force: weakly (a) and strongly (b) nonlinear structure.

complexity index are © = 4 and N = 16, respectively. The first natural frequency of the undamaged
structure is f,, = 10.6 Hz.

For each of the two considered structures (Figs 7a and 7b) it is shown the time history of the applied
force and of the free-end displacement (Figs 8a and 8b) and the trajectory in the phase space (Figs 9a
and 9b).

In a hypothetical linear structure, the structural response is linear by definition with obviously only one
harmonic component at the same frequency of the excitation. In the weakly nonlinear structure of Fig. 7a,
the response converges and it appears only weakly nonlinear, as depicted in Fig. 8a. No subharmonic
components can be observed. The corresponding phase diagram of the response is shown in Fig. 9a;
due to the weak nonlinearity, the trajectory in the phase diagram is close to an ellipse. The diagram is
nonsymmetric as the spatial positions of the cracks (placed in the upper part of the beam). The trajectory
is an unique closed curve since here the period of the response is equal to the period of the excitation.

In the strongly nonlinear structure of Fig. 7b the nonlinearity increases, as depicted in Fig. 8b. The
harmonic components in the structural response are the zero one, the superharmonics as well as the
subharmonic ones (see Fig. 10). It should be emphasized that a strong nonlinearity causes the period
doubling of the response, i.e., the w/2 component. The free-end vibrates practically with a period dou-
bled with respect to the excitation. A nonnegligible component at w/4 is observed too, representing
a route to chaos through a period doubling cascade. The corresponding phase diagram of the response is
shown in Fig. 9b. The trajectory is again a unique closed curve, since the response is still periodic; it is
composed by multiple cycles since here the period of the response is not equal to the period of the exci-
tation. The distortions in the trajectory are consequences of the presence of the super- or subharmonics,
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Fig. 10. Zero-, sub-, and super-harmonic components for the free-end displacement of the strongly nonlinear structure.

as well as the multiple cycles emphasize the presence of the subharmonics (four cycles are due to the
component w/4), i.e., the presence of a complexity with associated route to chaos. Also in this case, the
diagram is nonsymmetric as the spatial positions of the cracks.

This method is able to catch the transition toward deterministic chaos, like the occurrence of a period
doubling, as shown in the numerical examples and experimentally observed in the context of cracked
beam by Brandon and Sudraud [35]. In this analysis, of crucial importance appears the complexity
index ©. In fact, as the nonlinearity becomes stronger, offset, and super-harmonic components, as well as
subharmonic ones, can be observed in the structural response. As a consequence, in this case, the system
dynamics can be caught using a complex index @ larger than 1. Theoretically, values of © tending to
infinity (Fourier series become Fourier transforms, with N theoretically tending to infinity too) allow to

catch a route to chaos through a period doubling cascade, that here would imply a nonperiodic dynamic
response.

3. Conclusions

The so-called “Complexity Sciences™ represent a subject of fast-growing interest in the Scientific
Community. They have entered also our more circumscribed Communities of Material Science and Ma-
terial Strength, as the proposed examples may confirm. Under the label of “Complexity Sciences™ we
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usually comprehend a large variety of phenomena, theories, approaches and techniques: nonlinear dy-
namics, deterministic chaos, nonequilibrium thermodynamics, fractal geometry, intermediate asymptot-
ics, renormalization group theory, catastrophe theory, self-organised criticality, neural networks, cellular
automata, fuzzy logic, ete.

Complex systems lie somehow in between order and randomness and exhibit some common char-
acteristics, such as: sensitivity to initial conditions, pattern formation, spontaneous self-organisation,
emergence of cooperation and collective properties, hierarchical or multiscale meso-structures, scaling
and size effects. We could try to summarize by saying that the nonlinearity in the constitutive laws may
produce complex structures and scale-dependent behaviours.

Aim of this paper is that of providing insight into the role of complexity in the fields of Material
Strength and Fracture Mechanics. The presented topics are concerned with catastrophes and chaos or,
in more general terms, with complex behaviour emerging from simple nonlinear rules; the proposed
examples deal with the structural behaviour of composite structures undergoing snap-back instabilities
(an example of cusp catastrophe) and the route towards chaos in the dynamics of cracked structures.
As shown in these examples, the most interesting behaviours and phenomena can be synthetically in-

terpreted only through the use of new and refined conceptual tools in the framework of “Complexity
Sciences”.
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