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ABSTRACT

We propose a new approach to study the fragmentation of heterogeneous materials. It
extends the fragmentation laws, deduced for homogeneous materials, to mixtures. As a
practical application, we focus our attention onto artificial fragmentation by drilling of
reinforced concrete in different re-bar configurations.
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1 INTRODUCTION

Fragmentation and comminution theories have been
extensively used to describe a variety of phenomena in
different scientific areas [1-4]. The complexity involved in
the process, due to multi-cracking interaction and
propagation at different length scales, forces us to follow
the process from a statistical point of view. The main
parameter describing fragmentation from a global point of
view can be considered the epergy dissipated in the
process. This statistical and energy approach has permitted
to obtain universal laws for the evaluation of energy
dissipation in multi-scale fragmentation due to impact or
explosion [1]. The present paper extends the mentioned
approach to heterogeneous materials.
Fragmentation and comminution [5] play an important role
both in natural and man-made processes. Star explosion
and meteor impact are examples of natural phenomena
producing fragmented ejecta. Although fragmentation is of
considerable importance and many experimental, numerical
and theoretical studies have been camried out, relatively
little progress has been made till now in developing related
comprehensive theories. Fragmentation involves the
interaction between fractures over a wide range of scales
and a fractal fragment size distribution is expected [6].
Fractals are hierarchical, self-similar and in some cases
highly wrregular objects [7, 8]. As a result, no matter how
complex a particular spatial patiern might be, the statistical
properties of this pattern can be reproduced at different
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length scales. Such scale-invariant systems offer new
opportunities for modelling the propagation of multiple
fractures at different length scales.

Because of their complexity at any given scale, they are
applicable to multiscale heterogeneous materials.
Fragmentation can occur as a result of dynamic crack
propagation during compressive/tensile loading (dynamic
fragmentation) or due to stress waves and their reflections
during impact loading (ballistic fragmentation). These
processes have been reviewed in [9-12]. Many models have
been proposed to link fractals to fracture and fragmentation
[13-39].

In the present paper, we propose a new approach to study
the fragmentation of heterogeneous materials. It extends the
fragmentation laws [1, 2], deduced for homogeneous
materials and unifying the three well-known comminution
theories [40-42], to mixtures. As a practical application, we
have focused our attention onto artificial fragmentation by
drilling of reinforced concrete. Substantially, the paper

represents the conclusion of the drilling analysis proposed
n [2].

2 FRACTAL FRAGMENTATION OF
HETEROGENEOUS MATERIALS

multi-scale

V. for a

The power dissipation #, during the

fragmentation of a volume per unit time
homogeneous material can be described as [1-4]:

W=TV?, e}
where T" is the so-called fractal fragmentation strength (a

size-independent parameter) and y the fractal exponent,
comprised between 2/3 and 1.



For a heterogeneous material, the power dissipation for
each phase 7 can be obtained from eq. (1):

W, =TF,

Since y; should be only slightly depending on the phase 7,

we can assume y; =7y, Vi, so that:

W, =TV,
The last hypothesis is necessary to homogenise the mixture.

3 CLASSICAL RULES OF MIXTURE

A classical fragmentation process is described by eq. (3) for
y=1. In this case, the energy dissipation occurs in a

volume. The fractal drilling strength I' becomes the usual
drilling strength S Ef(yzl), that assumes the physical

meaning of power dissipated per unit fragmented volume.

Heterogeneous structures are characterized by volume
fractions, properties of the different phases, type of
microstructure and load acting on their boundaries. For the
derivation of their behaviour, a sequential (in series) or a
simultaneous (in parallel) arrangement of microstructural
components at the interface between the body inducing the
fragmentation and the base materials are assumed. These
are represented by the cases shown in Figures 1, 2.

Figure 1 Two-phase heterogeneous material loaded with a
punch smaller than the characteristic aggregate size.

Figure 2 Two-phase heterogeneous material loaded with a
punch larger than the characteristic aggregate size.

In the case of Figure 1, fragmentation occurs simply by the
sequential removal of the individual components of
volumetric fraction v, and partial fragmentation strength
S;. The inverse of the macroscopic fragmentation strength
S, should satisfy the following relation [43]:

W
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N
St=>"5M,. )
i=|

Eq. (4) represents the inverse rule of mixture.

* On the other hand, assuming that the fragmentation strength

I3

may be determined by the direct rule of mixture, the
following relation may be written [43]:

N
S:ZS,. v, . (5)
=1

This relation has been found for several heterogeneous
materials, e.g., abrasion of fine dispersion of hard phase in
soft matrix. Prerequisites are a width of the abrasive groove
much larger than the particle size and spacing and a perfect
bonding between the phases (Figure 2).

A third classical rule of mixture, intermediate between egs.
(4) and (5), was introduced to obtain, in some cases, a
better description of the experimental data [44]:

N
SZZS,J/[Z.

i=l

(6)

The three rules of mixture of eqgs. (4), (5) and (6) are shown
in the diagram of Figure 3.

A

S

v

Figure 3 Rules of mixture for a two-phase material.
Fragmentation strength S vs. volumetric fraction
v=y =1-v,.

4 FRACTAL RULES OF MIXTURE

To determine the fractal rules of mixture for multi-scale
fragmentation of heterogeneous materials, we should
assume that all the phases are simultaneously fragmented.
The power balance permits to obtain the power dissipation



W as the sum of the powers dissipated to crush each of the
N phases:

W:imzimﬂ. (7

i=l i=l

The homogenisation of the mixture can be obtained as:

. N . .
W= TV TV, (®)

i=]

where I, is the equivalent fractal fragmentation strength:

N
L,=>.Tv", )
i=l

4

i

. J . o
and the volume fractions v, =7 satisfy the normalization

rule:

N
Zv, =1.
i=l

(10)

Eq. (9) represents the fractal rule of mixture and, with eq.

(8), describes the volume removed per unit time, ¥, during
the fragmentation of an heterogeneous material, as a

function of the power IV dissipated in the process:

. W\
V=] —

(11)

oq

For the fragmentation of two- (1/2<vy<1) or one-
dimensional (0<y<1) heterogeneous bodies, eq. (1)
becomes respectively [1]:
W=T,Qr, (12)
W =FEqLY , (13)

where Q and L are respectively the area or length
removed per unit time. The fractal rule of mixture (9) is still

L . . . Q,
valid if v, is considered respectively the area v, =—L or.

L .
the length v, :f fraction.

Note that due to the non-linearity of eq. (9), the case of an
homogeneous material is recovered only for the limit case
of y=1.

ISSN 1590-8844
International Journal of Mechanics and Control, Vel. 06, No. 02, 2005

5 DRILLING COMMINUTION

We focus our attention on drilling comminution [2]. In this
case, the homogenisation of the mixture is depending on
the process (power consumption W or drilling velocity &
controlled) and on the distribution of the aggregates
(vertical or horizontal layers). Obviously, the first
distribution in Figure 4, is the more realistic, since all the
phases are distributed in vertical layers (parallel) and are
simultaneously fragmented. The power consumption or
drilling velocity controls coincide in this steady state
process and we obtain exactly the rule of mixture of eq. (9).

TOOL TOOL
W and § controlled ﬁ IWaor & controlled
BASE BASE
MATERIAL MATERIAL
PARALLEL SERIES

Figure 4 In paralle] and in series drilling fragmentation.

On the other hand, if we assume a phase distribution in
horizontal layers (in series arrangement) and a drilling

velocity control (S =const ), we have:

7, =T,(45] (14)

A being the cross-section area of the hole and, via the
energy balance:

w=3,=3 T (48], (15)
1

i=] i=|

h . . .
where ¢, =—8'— is the time spent to drill the layer i of

thickness /4. The rule of mixture can be obtained

comparing eq. (15) with the homogenised one:

W=T, (48], (16)
a .4 h kT
where 7= Zr,. and being Lo N7' =0 L =y,
i=] ’ 2 Z I h 14
i=i '
]\V
T,=2Tw . amn
Ti=l



If we assume a power control (W =const) and a phase
distribution in horizontal layers, we have:

i =T, (48,) =T, (8], (1s)
where & is the mean value of the drilling velocities.
In addition, we have:
N N .
Ch=3 k=354 (19)
i=t i=l
Noting that:
h=5¢, (20)
and being
_h wy A 5
tl —8_1‘—]71' i H‘/l/y > (.._.]ﬂ)
h e A
f:—g: hr,)’ T (21b)
the rule of mixture can be obtained as:
N
L =>T", . (22)

i=]

To verify the obtained fractal rules of mixture, we can
consider the classical (nonfractal) approach as their limit
case. In this hypothesis, we have y=1 and I'= S, so that

eq. (11) and the rules of mixture of egs. (9), (17) and (22
become:

; (23)

N
S,=D Sv,. (24)
i=|

It is worth noting that eq. (23) represents the basic
assumption to study the drilling process [45], and eq. (24)
represents a direct rule of mixture [43].

Recently, Carpinteri and Pugno {2] have shown that a
fractal approach for drilling comminution is more
predictive than the traditional one. A multifractal extension
has been also proposed by the same authors [46]. The
developed fractal rules of mixture can be applied to
fragmentation and comminution of heterogeneous
materials. A practical application will be given in section 7.
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6 GRINDABILITY

The grindability index [47] is defined as the ratio between
the energy consumption in a material chosen as reference
standard and the energy consumption in the tested material,
when grinding the same volume to the same degree of
fineness: :

w. TV T.
ref _ — ref (25)
WLy T,

oq

ref

O =
=]

Since the grindability index g is inversely proportional to
the (fractal) drilling strength, the inverse of the last one can
be defined as the grindability of the mixture:

G,=T, (26)

eq 3

and depends on the rules of mixture of eqs. (9), (17) and
(22).

Supposing N =2 (binary mixtures) with v, =v (v, =1-v)
the rules of mixtures of egs. (9), (17) and (22) can be
plotted as reported in Figures 5. Eqs. (17) and (22) are
substantially coincident and, by varying y , always predict
a worse grindability of the mixture than that of its separate
phases. On the other hand, varying y (around the unity),
the more realistic rule of mixture of eq. (9) can be
successfully used to model the grindability of a mixture
grounds better (y>1) or worse (y<1) than that of its
separate phases (Figures 5).

1.2
104+ B
08 Eqs. (17) and (22)
0.6
0.4 4 Eq. (9)
0.2 *
0.0 : -
0.0 02 0.4 06 0.8 1.0

Figure 5a Grindability from the rules of mixture of eqgs.
(9), (17) and (22). Egs. (17) and (22) are substantially
coincident (Il =11, =2,y=2/3).
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Figure 5b Grindability from the rules of mixture of eqgs.
(9), (17) and (22). Eqgs. (17) and (22) are substantially
coincident (I} =1,T, =2,y=4/3 (virtual)).
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Figure 5¢ Grindability from the rule of mixture of eq. (9)
(I; =L I, =2,y=2/3,1,4/3 (virtual)).
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Figure 5d Fractal drilling strength (inverse of grindability)
from the rule of mixture of eq. (9)

(), =L,T, =2,y=2/3,1,4/3 (virtual)).

Experiments show y <1, so that the values of y>1 can be
considered only as virtual cases.

7 PRACTICAL EXAMPLE: DRILLING OF
REINFORCED CONCRETE

We can focus our attention on the proposed fractal rule of
mixture of eq. (9). For a two-phase material, it becomes:

T, =Tvl+Tv. 27).

2/3 being the fractal exponent for drilling comuminution
[2].

Some experiments are presented to validate the theoretical
fractal rule of mixture of eq. (27). We have considered a
special two-phase concrete, i.e., a mixture of mortar and
limestone. Surprisingly, the fractal drilling strength of the
two phases, mortar and limestone, is approximately the
same and, therefore, of the same order of magnitude as that
of  the corresponding two-phase composite

(Iizl, = 15MNm™'s™ ). Eq. (27) results trivially verified.
On the other hand, the fractal drilling strength of steel is
about two orders of magnitude larger than that of concrete
and can be easily measured (I, = 105MNm s~ ). We can
verify eq. (27) for reinforced concrete in different
configurations, like the so-called cenfral cut and banana
cut, as represented in Figure 6. The aim of this section is to
predict, via the proposed rule of mixture (9), the fractal
drilling strength of the corresponding mixture (reinforced
concrete = concrete + re-bar).

35
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If we consider a reinforced concrete with fractal drilling
I, (F=14MNm™s™"* is the fractal drilling
strength for plain concrete), the power being
experimentally constant before, during and after cutting the

re-bar (power controlled tests), we have:

strength

= (a8)” (45, ] =

L \3
(_6_]
81’(‘
e.\(p

~ 3T = 45MNm™'s

T

s

~5P =3 =
r

(28)

rl‘C

the ratio of the drilling velocity in concrete (before and
after cutting the re-bar) to that in reinforced concrete

(during cutting the re-bar), 6/ 5 an experimentally

re ?
measured quantity.

The experimental value of I’ appears in agreement with

the prediction of the rule of mixture (27). In fact, if v
represents the volumetric fraction of steel in concrete (see
Figure 6), the fractal drilling strength of the mixture can be
evaluated as:

T

L =T-vyP 4T v, (29)

For the central cut, the volumetric fraction of steel can be
estimated as (Figure 6):

2d

D

v 0.17, 0)

Figure 6 Central cut and banana cut configurations
for reinforced concrete drilling.

where d is the diameter of the re-bar and D is the diameter
of the tool.

Being T, = 105MNm™'s™*, from the rule of mixture (29),
we obtain:

T

rc

= F(l —v)z/3 +1“S\/2/3 ~ 44MNm™'s™"*, 1)
in agreement with the experimental result of eq. (28).

The same agreement can be found for the more critical
banana cut configuration. In this case, the ratio between the
drilling velocities, out of and in the re-bar zone,



experimentally results to be twice than in the case of
central cut:

War(asf ~r (45, ] =
21

~[_8_j’
8]‘[_‘
exp

~4.5T ~ 63MNm™'s™

r

c

r

~10" ~45 = (32)

rl c

It means that the fractal drilling strength for the banana cut
configuration experimentally results to be around 1.5 times
larger than the fractal drilling strength for the central cut
configuration.

For the banana cut configuration, if ¢ is the angular

overlapping between re-bar and tool (Figure 6), we have:

2d
cosd)zl—j)—, (33)
so that:
vedos, (34)
b
From the rule of mixture of eq. (29), we have:
I, =T1-v)" +T,v" ~ 62MNm™s "3, (35)

in good agreement with the experimental result of eq. (32).
The experimental and theoretical results presented in this
section are summarized in Table 1.

Table I - Experimental and theoretical values of fractal
drilling strength [ MNm™'s™*].

Conerete Steel RC (Exp.) RC (Exp.) RC (Theor.) RC (Theor.)
(Exp.) (Exp.) Central-cut Banana-cut Central-cut Banana-cut
14 105 45 44 63 02

8 CONCLUSIONS

In this paper we have proposed a new approach to study the
fragmentation of mixtures. It extends the fragmentation
universal laws [1] for energy dissipation in homogeneous
materials to heterogeneous ones. As a practical application,
we have focused our attention on artificial fragmentation by
drilling of reinforced concrete (mixture of concrete and re-
bar) in different configurations, like the so called cenfral
and  banana cut. Theory and experiments  agree
satisfactorily.

36
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