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ABSTRACT:

A nonlinear fracture mechanics model is proposed for analysis of the flexural behavior of brittle-

matrix composites with uniformly distributed secondary phases. In accordance with the Barenblatt-Dugdale
model the bridging or cohesive zone of the material is replaced by a fictitious crack along which a closing
traction distribution is applied. The dimensionless formulation brings out the parameters synthetically controlling
the structural behavior and the size-scale effects. Different scaling transitions are predicted in the flexural be-
havior of the composite depending on different modeling of the toughening mechanisms. When a homogenized
toughening mechanism for the whole composite is considered along with closing tractions as a linearly decreasing
function of the crack opening displacement, a ductile to brittle transition is found as the beam depth increases.
On the other hand, when the matrix toughness and the toughening mechanism of the reinforcements are sepa-
rately modeled, and the closing tractions have a constant value until a critical crack opening displacement, a
double brittle-ductile-brittle transition is found. Experimental tests on fiber-reinforced mortar beams in bending

are successfully simulated.

INTRODUCTION

In laboratory tests, strain-softening materials, such as ce-
mentitious composites, usually show a variation in the kind of
flexural response, which changes from strain-hardening to
strain-softening when the size of the samples is increased
(Bosco et al. 1990). On the other hand, brittle-matrix fiber-
reinforced composites, such as typical fiber-reinforced cemen-
titious materials, show an opposite transition from strain-soft-
ening to strain-hardening when a characteristic dimension of
the sample is increased (Jamet et al., in press, 1996).

The previously mentioned materials are characterized by an
internal crack controlling mechanism exerted by the secondary
phases (aggregates, fibers, particles). The secondary phases
bridge the macrocracks along their wake and the microcracks
in the process zone ahead of the macrocracks, thus preventing
their coalescence, opening, and propagation.

Two analytical approaches, based on fracture mechanics
concepts, are used to analyze the composite failure process:
the bridged-crack model, which assumes a nonvanishing
crack-tip stress intensity factor, and the cohesive-crack model,
which assumes a vanishing stress intensity factor. Numerous
theoretical models, derived from the models of Barenblatt
(1959, 1962) and Dugdale (1960), have been proposed (Cox
and Marshall 1994). Many of these are concerned with the
flexural behavior of composites used in civil engineering ap-
plications, such as concrete and mortar (Hillerborg et al. 1976;
Jenq and Shah 1985; Shah 1988; Carpinteri 1989; Cotterel et
al. 1992), fiber-reinforced cementitious materials (Wecharatana
and Shah 1983; Visalvanich and Naaman 1983; Ballarini et al.
1984; Mai 1985; Jenq and Shah 1986; Foote et al. 1986; Li

“and Liang 1986; Hillerborg 1989; Carpinteri and Massab6
1995), and reinforced concrete (Romualdi and Batson 1963;
Carpinteri 1984; Desayi and Ganesan 1986; Bosco and Car-
pinteri 1992, 1995).

In this paper a nondimensional fracture mechanics model is
proposed for analysis of the flexural behavior of brittle-matrix
composites with.uniformly distributed secondary phases. The
potential crises due to brittle crack propagation in the matrix
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and due to yielding, debonding, or pulling-out of the reinforce-
ments are considered. The mechanical behavior of the member
in flexure is deduced from these elementary events. The the-
oretical formulation is derived from the discontinuous model
proposed by Bosco and Carpinteri (1995) for the analysis of
composites with a discrete number of localized reinforcements.
The nonlinear problem has been solved using the stress inten-
sity factor superposition principle and the localized compli-
ances due to the crack in the evaluation of the displacements
for the verification of kinematic compatibility.

The dimensionless parameters that control the nonlinear be-
havior of the composite are defined, and the size-scale effect
in a generic brittle-matrix composite is predicted. The theo-
retical model provides an explanation of, and renders repro-
ducible, the scaling transitions in the shape of the flexural con-

stitutive relationship shown by cementitious materials and
-fibrous composites in laboratory tests. Finally, the theoretical

model is applied to simulate some experimental tests carried
out on fiber-reinforced.mortar-beams in bending.

THEORETICAL MODEL

The proposed theoretical model analyzes the evolutive pro-
cess of crack propagation in a brittle-matrix composite cross
section in bending to define the constitutive flexural relation-
ship that characterizes the mechanical response of the member.
Fig. 1, representing the cracked cross section of a beam of
depth A and thickness b, is considered. In accordance with the

. models of Barenblatt (1959, 1962) and Dugdale (1960), the

crack of depth a consists of a traction-free part of depth a, and

‘a fictitious part of depth a,, acted upon by the closing tractions

oo. The fictitious crack can represent either a microcracked
process zone ahead of a macrocrack or a macrocrack wake
bridged by reinforcing elements. The normalized crack depths
&€ = alh; & = a,/h; and & = a;/h are defined together with the
normalized value { = x/k of the generic coordinate x related
to the bottom of the cross section.

The uniformly distributed reinforcements are taken into ac-
count in the postcracking loading phase through the closing
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FIG. 1. Cracked Cross Section in Bending
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tractions o, which are linked to the crack profile w(x), ac-
cording to an assigned relationship oo(w) (Fig. 1). If the re-
inforcements are present in a low volume ratio, the precracking
response of the composite coincides with that of the matrix,
which is assumed to be linear-elastic. The failure mechanism
for compressive crushing is not considered.

The problem at hand is a nonlinear statically indeterminate
one, the indeterminate closing tractions depend on the un-
known crack opening displacements. The model has been for-
mulated with two options. The first, called bridging option, is
based on assumptions that fit the analytical formulation in the
general framework of the bridged-crack model, for which a
singular stress field is assumed at the crack tip. The second,
or cohesive option, follows the assumptions of the general
cohesive-crack model, which supposes a finite stress field in
the crack tip vicinity. A unitary dimensionless formulation can
be developed, provided the parameters appearing in the ana-
Iytical relationships take on appropriate meanings in accor-
dance to the option adopted.

Crack Propagation Condition

The bridging option represents the brittle-matrix composite
as a multiphase material, and the parameters of the model re-
late to the different phases. The closing tractions o, represent
the bridging mechanism of the secondary phases, and the
bridging relation oo(w) is given by oo(w) = pa(w), p being the
secondary-phase volume ratio and o(w) a function describing
the bridging mechanism of the reinforcements. An approxi-
mate definition of the bridging relation can be obtained by
simply extrapolating to all of the reinforcements the bridging
relation g(w) deduced from experimental pull-out tests on a
single reinforcement, or from analytical simulations of that
test. It depends on the dimension and shape of the reinforce-
ment, and on the properties at the interface.

Also the toughening mechanisms of the different phases are
separately taken into account: the brittle-matrix fracture tough-
ness, through a critical stress intensity factor K., and the
toughening mechanism of the secondary phases, through the
shielding effect that the closing tractions develop on the crack
tip stress intensification. At the tip of the crack a global stress
intensity factor K; can be evaluated through the superposition
principle

K=Ky — KIU (1)

where Ky, and K}, = stress intensity factors due to the applied
bending moment M and to a distribution of opening tractions
0o, respectively. The crack propagation condition sets the
global crack tip stress intensity factor K equal to the critical
value K- ’

Km - chr = ch (2)

The cohesive option represents the brittle-matrix composite
as a monophase material, and the parameters of the model
relate to the homogenized properties. The closing fractions
oo(w) describe the combined restraining action of the matrix
and the secondary phases on the crack propagation. The co-
hesive relation oy(w) is equal to the cohesive law o(w) de-
duced from direct tensile tests on the composite material. It
depends on the mechanical properties of the matrix and the
secondary phase, and on the dimension and shape of the latter.
In this case only the global toughening mechanism of the com-
posite is taken into account through the shielding effect of the
closing tractions. The global crack tip stress intensity factor is
given by (1), and it vanishes when the crack advances, as the
matrix toughness has been included in K,

Ky — K =0 3
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In accordance with the two-dimensional single-edge notched-
strip solutions (Tada et al. 1985), the stress intensity factors in
(2) and (3) are given in the following forms:

Kp =57 %, m(E) @

€ €
K= f 00 [WIbh dl = f oW (LIYa(E, Lbh dL,
& i &

(5).
where K, = stress intensity factor due to two opening forces
P,, directly applied on the crack faces at the normalized co-
ordinate {; and Yy (&) and Y»(§, {;) = polynominal functions

related to the shape of the specimen.
The simplest bridging or cohesive relationships are the fol-

lowing power laws
T=1- <ﬁ> (6a)
o, w,

o (l) 6b)
o, \W.
These are characterized by the maximum traction a,, by the
critical crack opening displacement w,, beyond which the clos-
ing tractions vanish, and by the exponent n. For different val-

ues of the exponent n, the two laws can be used to simulate
various bridging mechanisms.

Crack Propagation Moment

By means of (2)—(6), the crack-propagation moment for the
two options can be evaluated as a function of the applied loads
and the global crack depth. In dimensionless form it is given

by
3
M __1 olw(®)]

Kch™b ~ Yul® {B fe ., &L +K} @)

Bridging option:

. 0.5
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The parameters K and B, of (8) and (9), characterize the crack
tip stress field and the brittleness of the cross section, respec-
tively. :

Under the bridging option, K} represents the matrix fracture
toughness; K = 1 highlights the existence of a singular stress
field at the crack tip; o, represents the ultimate strength of the
reinforcements, or the maximum value of the bridging relation
o(w); and B = N; is the brittleness number, formerly proposed
by Carpinteri (1984) for the description of the failure mecha-
nisms in reinforced concrete.

Under the cohesive option, K;¢ represents the homogenized
toughness of the composite; K = 0 highlights a finite stress
field at the crack tip; o, is the homogenized ultimate strength
of the composite, or the maximum value of the cohesive re-
lation o(w); and B = 1/s is the reciprocal of the brittleness
number originally defined by Carpinteri (1981) for the descrip-
tion of the failure mechanisms in brittle homogeneous mate-
rials.

Flexural Constitutive Relationship

The localized rotation ¢ can be evaluated using the super-
position principle and the localized compliances due to the
crack
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where &,, and ¢, = localized rotations due to the applied bend-
ing moment M and to the opening tractions o(w), respec-
tively; and the localized compliances Ay and A,y = rotations
due to the crack produced, respectively, by a unit bending
moment and by two unit opening forces, directly applied on
the crack faces at the coordinate {;.

The localized compliances can be deduced through an en-
ergy balance between the total potential energy W, released
during the virtual formation of a unit increment of the crack
surface area, and the crack driving force ¢

1dw
=P da an

If 6 is defined as a function of the local stress intensity factor
K, (Irwin’s relation), and the total potential energy as a func-
tion of the applied loads and the corresponding displacements
(Clapeyron’s theorem), (11) leads to the following expressions
(Bosco and Carpinteri 1992)'
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The localized rotation at the onset of propagation is obtained
by substituting (7), (12), and (13) into (10)
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Once the bridging or cohesive relation o,(w) has been as-
signed, and the mechanical and geometrical properties of the
cross section have been fixed by means of the dimensionless
numbers N; or s, the constitutive flexural relationship, which
is given by (7) and (14) by varying the crack depth, depends
on the unknown closing tractions &, which are functions of
the crack profile w(x), and on the normalized depth of the
traction-free crack &, at the lower limit of the integrals in (7)
and (14). The crack opening displacement w({y), at the generic
normalized coordinate {,, is

WL = wadle) — wolld) = N (€, LOM

$ = J’ Yi(§) dg

3
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where wy,({:) and w,({) = crack opening displacements pro-
duced by the bending moment M and by the opening tractions
oy, respectively. The compliances Au, and Ay = crack opening
displacements at the coordinate {, produced by a unit bending
moment M = 1, (13), and by two unit concentrated forces
applied at the generic coordinate {;, respectively. The localized
compliance Ay can be given the form

_@fe _____K"‘K"'dg_l
E max{zeg] PP, Eb

The normalized value of the crack opening disp]acemenf for
the crack at the onset of propagation W, = w,/h is given by
(7) and (15)
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In the case of discontinuous reinforcements, (7), (14), and
(17) can be consistently applied provided the closing tractions
are substituted by localized forces and the integrals by sum-
mations over the discrete number of the reinforcements.

The solution of the nonlinear integral problem is based on
a discretization and an iterative procedure. By assuming a ten-
tative crack face profile, the equilibrated cross-sectional con-
figuration, for the crack at the onset of propagation, is calcu-
lated by the crack-propagation moment of (7) and the
corresponding crack opening displacements of (17). If the
equilibrated crack opening displacements are different from
the assumed ones (according to a fixed tolerance) compatibil-
ity is not satisfied and the evaluated crack profile is assumed
as the new tentative value. When the convergence is achieved,
the crack-propagation moment of (7) and the localized rotation
of (14) characterize the compatible and equilibrated solution
(Carpinteri and Massabé, in press, 1996).

DIMENSIONLESS PARAMETERS

The analytical formulation proposed in the previous section
has been developed in a dimensionless form to define, accord-
ing to Buckingham’s (1915) Theorem, the dimensionless pa-
rameters that synthetically control the behavior of the cross
section in bending. A fundamental set of dimensionally inde-
pendent variables, i.e. K¢ [F (L]~ ** and A [L], has been chosen
and the dimensionless products appearing in (7), (14), and
(17), obtained by multiplying the different variables involved
in the physical problem by a suitable combination of the fun-
damental set. In actual fact, the dimensionless crack-propa-
gation moment My/(K,ch'°b) contains the cross-sectional
thickness b, which can, however, be defined as a linear func-
tion of the cross-sectional depth A, if geometrical similarity is
assumed.

The number of dimensionless parameters controlling the
mechanical behavior depends at first on the assigned bridging
or cohesive relation a(w). If this relation is rigid-plastic, a(w)
= g,, the closing tractions are uniform and constant along the
fictitious crack faces, during the entire loading process. The
traction-free crack depth £, is equal to the depth of an initial
notch. The constitutive flexural relationship .can be evaluated
through the equilibrium condition (7) alone. If the geometrical
ratios are kept constant, the brittleness number B (i.e. Np or 5)
proves to be the single parameter controlling the kind of be-
havior of the cross section.

On the other hand, for a generic bridging or cohesive law,
with a critical crack opening displacement w,, the problem is
statically indeterminate and compatibility must be satisfied. To
define the dimensionless parameters controlling the behavior
for the above assumption, in addition to relations (7) and (17)
reference must be made to the propagation condition for the
traction-free crack, which controls the advancement of the
bridging or cohesive zone. The traction-free crack propagates
as soon as the crack opening displacement at its tip reaches
the critical value w,

w(g) = W, 18)

If £ is the dimensionless Young’s modulus £ = (Ek**)/Kc,
(17) and (18) yield '
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This condition is verified at each iteration of the procedure
described in the previous section. It points to the fact that, for
an assigned generic bridging or cohesive law, if geometrical
similarity is assumed, another dimensionless parameter,
namely Ew, = (Ew.)/(K;ch®®), controls the composite flexural
response. The functional constitutive relationship, linking the
crack-propagation moment to the localized rotation, can be
given the general form

Me s

f ( Kohb b, B, EWC) =0 (20
This relation has a general validity for both model options.
Nevertheless, for the cohesive option, the brittleness number
B = 1/s and the parameter £, are not independent variables.
This is due to the relationship that exists between the homog-
enized fracture toughness of the composite, given by K. in
the cohesive option and the fracture energy, %4

<§F=j o(w) dw @1
1]

KIC =V (QFE (22)

On applying the power law (6a) to the preceding equations
the relationship between the two dimensionless parameters be-
comes Ew, = s(n + 1)/n, while on applying the power law
(6b) it becomes Ew, = (n + 1)s.

In conclusion, if the theoretical problem is analyzed via the
bridging option of the proposed model, and the material is
modeled as a multiphase, two dimensionless parameters, Np
and Ew,, control the mechanical response of the cross section.
On the other hand, if the theoretical problem is analyzed via
the cohesive option, which homogenizes the composite ma-
terial, the sole dimensionless parameter s affects the kind of
structural response. Physical similitude in the structural re-
sponse is predicted when the mechanical and geometrical
properties vary, as long as the dimensionless parameters are
kept constant.

To verify these results, the cohesive option of the model has
been applied assuming a linear relation, (6a) with n = 1, to
analyze a beam with an initial notch of depth g, = 0.14. In
the dimensionless diagram Mz/(K,ch'*b) versus (bEH®®)/K;c of
Fig. 2, different curves related to the brittleness numbers s =
5.0, 1.0, and 0.5, are shown. The shape of the curves changes
from strain-hardening, for the greatest brittleness number s =
5.0, to strain-softening, for the lowest brittleness number s =
0.5. According to (9), an increase in the beam depth corre-
sponds to a decrease in the brittleness number, if the mechan-
ical properties are kept unchanged, and therefore the theoret-
ical model predicts a size-scale effect characterized by a

-M_Fs s =5.0 s =1.0

K h' b

1.20

0.08

0.04 ( = .

0.00LL o o . R T
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FIG. 2. Relationships between Dimensioniess Moment and
Normalized Rotation for Composite Characterized by Linear De-
creasing Cohesive Relation; s from (9)
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ductile-brittle transition. This kind of behavior, typical of
quasi-brittle materials, such as concrete, mortar, or rocks, have
been widely observed and theoretically reproduced (see, for
instance, Carpinteri 1989). :

LIMIT BEHAVIOR: SMALL-SCALE BRIDGING
CONDITION

The small-scale bridging condition for brittle-matrix com-
posites assumes the existence of a process or bridging zone at
the tip of the traction-free crack, which is small in relation to
the crack size and the body dimensions.

Under particular conditions of the mechanical and geomet-
rical properties of the composite cross section in bending (e.g.
large depth, low fracture toughness, or high ultimate strength)
the small-scale bridging condition is verified, the crack faces
can be assumed as stress-free, and linear elastic fracture me-
chanics (LEFM) is applicable for the analysis of the flexural
response. The composite material behaves like a homogeneous
and brittle material and its fracture behavior is controlled by
a single parameter, i.e. the homogenized composite fracture
energy or the corresponding critical stress intensity factor,
which are related through Young’s modulus. The analytic re-
lationships of the proposed theoretical model simplify in this
limit situation. '

Cohesive Option

According to the cohesive option, the crack starts propa-
gating when the global crack tip stress intensity factor (K, —
K;,) vanishes, (3). When the small-scale bridging condition
holds, the limit value of the stress intensity factor X;, due to
the closing tractions, given by (5), represents the critical stress
intensity factor of the homogenized material, which has been
called K¢ in the analytic formulation of the previous section.
K¢ is a constant related to the composite fracture energy via
(22). The dimensionless crack-propagation moment of (7)
takes on the form

M. 1
Kich'*b - Y (§) @3)
and the localized rotation at the onset of propagation is
§
2KIC 1 2
== _— |7
¢ B Y 6) fo (&) d§ 24)

The relations (23) and (24) are the LEFM relationships for a
perfectly brittle homogeneous material. In the dimensionless
diagram My/(K,ch°b) versus (bER*®)/K;c of Fig. 3, a com-
parison between the small-scale bridging flexural relationship,
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FIG. 3 Comparison between Small-Scale Bridging and Large-
Scale Bridging Constitutive Flexural Relationships (Cohesive
Option); s from (9)
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thick curve, and the large-scale bridging relationships, thin
curves, is shown. A cross section with an initial notch of depth
a, = 0. 1k has been considered. The thin curves relate to dif-
ferent brittleness numbers, s = 10.00, 5.00, 2.00, 1.00, 0.50,
and 0.25, and were obtained by the application of the cohesive
option, assuming a linear decreasing law.

Fig. 3 brings out the well-known result according to which
the ultimate loading capacity of the cross section and the entire
curve predicted by a cohesive-crack model tend to the limit
predicted by LEFM, when the brittleness number s decreases
(i.e. h increases for unchanged mechanical properties). For de-
creasing values of s, the thin curves tend to draw nearer the
LEFM curve after intersecting it. For brittleness numbers s <
2, the intersection points represent the beam configuration. for
which the traction-free crack starts propagating, and from that
point on the LEFM macrostructural responses are almost co-
incident with the responses predicted by the cohesive option.
On the other hand, the initial branches of the thin curves, as
well as the peak values, differ from the ones predicted by
LEFM, and are strongly dependent on both the brittleness
number value and the shape of the assigned cohesive law.
These branches reproduce the composite response during the
loading phase in which the process zone is increasing and the
shape of the crack faces is controlled by the cohesive tractions.

Fig. 3 brings out the fact that LEFM can be consistently
applied for the description of the flexural response of members
characterized by low brittleness numbers. On the other hand,
LEFM can also be used with generic values of the brittleness
" number, for an approximate and conservative description of
the constitutive branches beyond the intersection points. Ap-
plication of the LEFM to predict the tail of the constitutive
flexural relationship considerably simplifies the calculations
connected with the nonlinear integral problem of the cohesive
crack model, which involve iterative numerical processes that
encounter great difficulty in reaching convergence and require
considerable mesh refinements whether for low brittleness
numbers or for high crack depth values.

Bridging Option

For the bridging option of the proposed theoretical model,
arguments analogous to the preceding ones can be applied. In
small-scale bridging condition, the energy required for the
bridging mechanism to develop, during the formation of a unit
increment of the crack surface area, %, does not depend on
the crack profile and is equal to the area under the bridging
curve oo(w). It is given by %4, = apo,w,, where a is a constant
depending on the shape of the bridging law. If the power laws
(6a,b) are assumed, a is equal to #/(n + 1) or 1/(n + 1),
respectively. Through (2), the dimensionless moment of crack
propagation takes on the form

M 1 pow.E
¥ BSE v ey to—m—
Kich"b  Yy(® Kic

=7 (E) V1 + aN:Ew, (25)

The localized rotation at the onset of crack propagation is

o= LT onEw f ® & 26

ER*® Y0 (8) (§)

Note that the term under the square root sign on the right-hand
side of (25) and (26) is merely a function of the mechanical
properties of the composite

5 G,
P = —5—— 27
aNpEW, KZE" @7
Also in this case, as for the cohesive option, the constitutive
flexural relationship given by (25) and (26) defines a limit
curve in the dimensionless moment-versus-rotation diagram,

which envelopé the theoretical curves obtained in large-scale
bridging by means of a bridged-crack model.

SIZE-SCALE EFFECT IN A BRITTLE-MATRIX
COMPOSITE

In the flexural behavior of brittle-matrix composites, a size-
scale effect is found, consisting of variations in the shape of
the constitutive relationship when a characteristic dimension
of the body varies. To analyze this phenomenon, the bridging
option of the proposed theoretical model has been applied as-
suming a discontinuous bridging relation, c(w) = po, if w <
w,, and oy(w) = 0 if w > w,. This relation can represent the
bridging mechanism of steel fibers with low yield stress and
high aspect-ratio (see Burakiewicz 1978).

The flexural behavior of the cross section is controlled by
the previously defined parameters N and Ev.. If only the size-
scale effect is of interest, we can fix the bridging law and
assume constant mechanical properties (K¢, E, po,, w,). The
product of the two dimensionless parameters, NpEw, =
(p(r,,Ewc)/K,c, which does not depend on the depth of the cross
section, is then fixed.

The dimensionless moment-versus-localized rotation dia-
grams, Mz/(K;ch'°b) versus (GER**)/K)c, shown in Figs. 4, 5,
and 6, relate to three different values of the parameter N.Ew,,
namely 36, 256, and 900. Beams with an initial matrix crack
depth a, = 0.1h crossed by unbroken fibers have been consid-
ered. The constitutive relationships have been calculated by
following the evolution of the crack up to @ = 0.9A. In each
diagram a series of curves, for brittleness numbers N, varying
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FIG. 4. Dimensionless Moment versus Rotation Diagram for
Composite Characterized by Rectilinear Bridging Relation and
NPEW,,- =36
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FIG. 5. Dimensionless Moment versus Rotation Diagram for
Composite Characterized by Rectilinear Bridging Relation and
N-Ew_= 256
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from 0.1 to 2.1, is depicted. Since the mechanical properties
are kept unchanged, these curves represent the responses of
beams of different depths. In particular, an increase in Np
means an increase in the beam depth, according to (8).

All of the curves in the diagrams of Figs. 4, 5, and 6 are
characterized by three branches. The first is the linear-elastic
branch describing the flexural response until the crack starts
to propagate. The second branch depends on the brittleness
number N, and has been evaluated by applying the bridging
option. It describes the beam behavior in large-scale bridging,
namely when the bridging zone is invading the cross section
and the crack is fully crossed by the fibers. The third unstable
branch does not depend on the assumed brittleness number Np,
and has been evaluated using (25) and (26). It describes the
behavior in small-scale bridging, when the traction-free crack
propagates in the cross section. The small-scale bridging re-
gime is controlled by the sole parameter aNEw, of (27). As
this parameter has been fixed for each figure, a single curve
describes the third branch in all cases.

Let us first consider the diagrams shown in Fig. 5, which
depict all of the probable behaviors. In the inset some curves
are redrawn to highlight the variations in the structural re-
sponse. The beam with N, = 0.5 shows a hyperstrength phe-
nomenon, i.e. a peak loading capacity greater than the ultimate
loading capacity at total disconnection. The response of this
beam in the first postcracking phase is strongly affected by the
matrix fracture toughness, which prevails over the secondary
phase toughening action controlling the ultimate loading ca-
pacity. The beam with Np = 1.1 shows a snapthrough insta-
bility, which is an indication of an unstable crack advance-
ment, arrested by the toughening action of the reinforcements.
This instability would be represented by a jump at constant
load if the process were controlled by the applied moment.
After the discontinuity, the strain-hardening branch is con-
trolled by the toughening action of the reinforcements that
cross the crack up to total disconnection of the beam. The
beam with Np = 2.1 reaches the third unstable branch, which
results in a catastrophic crack propagation, before complete
disconnection.

The global responses of the beams with N, = 0.5, N = 1.1,
and N, = 2.1 are strain-softening, strain-hardening, and strain-
softening, respectively. This composite material is therefore
characterized by a size-scale effect represented by a double
transition in the flexural behavior, brittle to ductile, and then
the reversal, ductile to brittle.

To estimate the kind of effects the double transition can
have on the design of the structural components, consider a
steel fiber-reinforced cementitious material with K;c =50 N/
mm'®, E = 40,000 N/mm?, p = 0.02, o, = 200 N/mm?, and
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w, = 4 mm. This results in a value of NEW, equal to 256.
The curves in the inset characterize the constitutive flexural
behavior of three beams made of this composite, and of dif-
ferent depths, £ = 40 mm, & = 190 mm, and # = 690 mm,
respectively. The depths of the first two beams are in the range
normally covered by the laboratory specimens and in this
range a typical brittle-ductile transition is predicted when the
beam depth increases. Experimental results of this kind have

-been obtained by Jamet et al. (1996) on fiber-reinforced con-

crete beams. However, in the steel fiber reinforced composite
under consideration a new dangerous ductile-brittle transition
is predicted when the beam depth increases. The largest beam
considered, which could represent a real structural component,
shows a strain-softening behavior (see Fig. 5).

When the mechanical properties of the beam are varied, the
structural responses show substantial alterations. In the dia-
grams of Fig. 4, obtained for the lowest value of N,Ew,, strain-

- softening behavior is predicted for all brittleness numbers. The

low value of NoEw, may be due to a small critical crack open-
ing displacement, to a low fiber volume ratio, or to a high
matrix fracture toughness.

On the other hand, in the diagrams of Fig. 6, obtained for
a higher value of NyEw,, the structural responses vary from
strain-softening to strain-hardening when the brittleness num-
ber increases, so that a brittle-ductile scaling transition is pre-
dicted. The LEFM curve, shown in the diagram of Fig. 6, does
not intersect the different curves obtained in large-scale bridg-
ing; for this reason, the second ductile-brittle transition, shown
by the previously examined material, does not appear in the
range of the brittleness numbers considered. The thick curves
in Fig. 6 represent, for example, the behavior of a fiber-rein-
forced cementitious material with Ko = 25 N/mm'®, E =
40,000 N/mm?, p = 0.01, o, = 200 N/mm’, w, = 7 mm and
beam depths of & = 40 mm, # = 190 mm, and A == 690 mm,
respectively. The flexural responses in Fig. 6 coincide with the
ones of a composite reinforced with fibers characterized by a
rigid-perfectly plastic bridging relationship, for which the brit-
tleness number N, is the single governing parameter.

It is worth noticing that the reversal in the failure scaling
transition is predicted even if a bridging law different from
the rectilinear law is assumed. This is the case of (6a) with n
= 0.5, which can be used to describe the pull-out of short steel
fibers. The corresponding constitutive relationships are gen-
erally smoother and, as a consequence, the two elementary
crises, for brittle crack growth and fiber yielding or pull-out,
are not clearly differentiated in the overall responses. Note also
that results similar to the ones previously shown can be ob-
tained by the application of the cohesive option, provided the
cohesive law is characterized by two parts, the former repre-
senting the matrix toughening action and the latter the fiber
toughening action, such as a bilinear law (Carpinteri and Mas-
sab6, in press). For high-reinforced beams, the compressive
crushing, neglected by the proposed model, could play an im-
portant role. Further studies are needed.

In conclusion, the proposed theoretical model predicts that
for each brittle-matrix composite material of known mechan-
ical properties and bridging mechanism, there exists a critical
beam depth (or a critical Ny) beyond which the flexural re-
sponses change from being globally stable to globally unsta-
ble. The existence of this critical value in the range of depths
embracing the laboratory samples and the actual structural
components, depends on the properties of the composite ma-
terial and on the position assumed by the LEFM curve in the
dimensionless moment-versus-rotation diagram. It is therefore
evident that the composition of the composite (kind of matrix
and fibers and their volume ratio) can be suitably designed to
avoid the dangerous ductile to brittle transition.




APPLICATIONS

The proposed theoretical model has been checked by sim-
ulating some experimental tests carried out on fiber-reinforced
mortar beams by Jenq and Shah (1986). The beams, loaded in
a three-point bending scheme, have a depth X thickness X
span of 76 X 19 X 280 mm and a notch of depth g, = 25
mm. The unreinforced matrix fracture toughness is equal to
Kic = 27.5 N/'mm'®, and Young’s modulus has been evaluated
to be 22,000 N/mm?. Brass-coated smooth steel fibers, 25 mm
long and with a 0.4 mm diameter, were used in three different

volume ratios p = 0.005, 0.010, and 0.015. The pull-out re- -

sponse of the single aligned fiber shows the typical frictional
behavior. The power law o(w) = o,(1 — w/w_)* has been pro-
posed by Jenq and Shah to model the experimental results,
where o, = 169 N/mm? is the maximum pull-out strength and
w, is the critical crack opening displacement, equal to half the
fiber length.

To apply the bridging option of the theoretical model, the
dimensionless parameters N, and Ew,, and the bridging rela-
tion go(w) have to be defined. Egs. (20) and (8) give Ew, =
1,147 and N, = 0.27, 0.54, and 0.80, for p = 0.005, 0.010, and
0.015, respectively. As a first approximation, the bridging law
oo(w) for all the fibers has been defined as the product of the
fiber volume ratio p and o(w), given by the previously men-
tioned power law. To evaluate the load-deflection theoretical
curves, the constitutive moment-versus-localized rotation re-
lationship of (14) has been used to characterize a nonlinear
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FIG. 7. Load versus Deflection Curves for Fiber-Reinforced
Mortar Beams [Comparison between Experimental (Jenq and
Shah 1986) and Theoretical Results (Bridging Option)]

hinge placed in the middle free span of a three-point bending
linear-elastic beam.

Fig. 7 shows the relationship between the applied load P
and the middle-span deflection 3. The thin curves represent
the experimental results, while the thick curves the theoretical
ones. Fig. 7(a) refers to the underreinforced beam (p = 0.005).
It is observed that the global strain-softening behavior and the
hyper-strength phenomenon of the beam are faithfully repro-
duced by the model, and are accounted for by the low brittle-
ness number Ny = 0.27.

Fig. 7(b,c) refer to the beams with p = 0.010 and 0.015,
characterized by an elasto-plastic and a strain-hardening re-
sponse, respectively. The theoretical curves, with N, = 0.54
and 0.80, are represented by the dashed lines in the diagrams.
These curves do not reproduce the postcracking responses sat-
isfactorily and the predicted ultimate loads are lower than the
experimentally determined values. These discrepancies cannot
be due to an erroneous modeling of the mortar fracture tough-
ness, as it does not control the ultimate loading capacity.
Moreover, they cannot be due to an erroneous modeling of the
shape of the bridging law o(w), because it does not affect
the response when the crack mouth opening displacement
(CMOD) remains very small, as is the case in the previously
mentioned beams (see Fig. 8). Therefore, the differences be-
tween the experimental and the theoretical curves can be only
due to an erroneous assumption of the maximum value, POy,
of the bridging law oy(w).

The maximum pull-out value was obtained assuming that
all of the fibers were pulled out along their alignment. In actual
fiber-reinforced beams the fibers are usually pulled out off-
axes during crack propagation. In high-fiber volume ratio
beams, the preceding fact usually leads to an increase in the
maximum pull-out load (Ouyang et al. 1994). The higher pull-
out load can be accounted for by assuming a higher effective
fiber volume ratio p,. The discrepancies between the theoret-
ical and the experimental values in Fig. 7(b,c) disappear on
assuming p, = 0.014 and p, = 0.020, respectively. The corre-
sponding brittleness numbers become Ny = 0.75 and 1.08.

Fig. 8(a) shows the dimensionless moment-versus-rotation
diagram of an unreinforced mortar beam. The theoretical curve
has been obtained by means of the LEFM (23) and (24). Apart
from the prepeak loading phase, controlled by microcracking
phenomena neglected by LEFM, and the peak value, which is
greater than the real one, a good agreement is found between
the two curves.

In Fig. 8(b), the experimental and theoretical curves, relat-
ing the applied load to CMOD, are shown for the three beams.
The good fit obtained confirms the preceding results. Also note
that, for all the tested beams, the bridging zone extends over
the entire length of the crack even at total disconnection
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FIG. 8. Comparison between Experimental (Jenq and Shah
1986) and Theoretical Results of: (a) Dimensionless Moment
versus Rotation Curves for Mortar Beam in Bending (LEFM); (b)
Load versus Crack Mouth Opening Displacement Curves for
Fiber-Reinforced Mortar Beams (Bridging Option)
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(CMOD < w,). This fact explains the observed globally stable
structural responses (see Fig. 6).

It is worth noticing that the application of the cohesive op-
tion of the proposed model would have led to the same the-
oretical results, provided the cohesive law oo(w), describing
the homogenized composite toughening mechanism, were
propetly defined. This result has been proved by Carpinteri
and Massabé (in press, 1996), by assuming a b111near cohesive
law with a sharp drop and a long tail.

CONCLUSIONS

A nondimensional fracture mechanics model has been pro-
posed for analysis of the flexural behavior of brittle-matrix
composites with uniformly distributed secondary phases. It has
been shown that the flexural behavior of geometrically similar
structures is controlled by one dimensionless parameter, if the
composite is modeled as a monophase material, or by two
. dimensionless parameters, when modeled as a multiphase ma-
terial.

In the first case the toughening mechanism of the homog-
enized composite is represented by a closing traction distri-
bution (cohesive tractions), acting along a fictitious crack, and
linked to the crack opening displacement by a cohesive rela-
tion. In the second case the toughening mechanisms related to
the different phases are separately modeled: a critical stress
intensity factor reproduces the matrix fracture toughness, and
a distribution of closing tractions (bridging tractions), repro-
duces the secondary-phase restraining action.

On modeling the composite as a monophase, with cohesive
tractions that are linearly decreasing functions of the crack
opening displacement, a ductile-brittle transition in the flexural
response of the beam is predicted, when the depth increases.
This behavior is typical of quasi-brittle materials.

On the other hand, on modeling the composite as a multi-
phase with bridging tractions characterized by a rigid-plastic
relation, a brittle-ductile transition is predicted in the flexural
behavior. Nevertheless, if the bridging law in the above case
has a critical crack opening displacement, beyond which the

tractions vanish, the composite undergoes a double brittle-duc-

tile-brittle transition. This behavior can take place in the flex-
ural response of fiber-reinforced cementitious materials. The
appearance of the transition reversal over the dimensional
range embracing the laboratory specimens and the actual struc-
tural components, depends on the composite mechanical prop-
erties and on the kind of law governing the toughening mech-
anisms. -
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