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Abstract. A nonlinear fracture mechanics model, which explains and reproduces the constitutive flexural behavior
of a brittle-matrix composite, is proposed. It embraces in a unified dimensionless formulation two peculiar
models, i.e., the cohesive-crack and the bridged-crack, which are used to analyze the composite failure process.
Dimensionless parameters, which depend on the mechanical and geometrical properties, characterize the structure
in flexure. It is shown that, based on the assumptions of the bridged-crack model, which simulates the composite
as a multiphase material, the flexural response is controlled by two dimensionless parameters, whereas, based
on the assumptions of the cohesive-crack model, which simulates the composite as a homogeneous material, the
parameters reduce to one. The influence of the dimensionless paranieters on the behavior is studied, along with the
size-scale effects on the structural ductility. It is also shown how the matrix toughness affects the response. The
two theoretical models are compared through the simulation of an experimental test on a fiber-reinforced beam,
and it is shown that both the models can predict approximately the same overall behavior.
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1. Introduction

In the last decades new composite materials have been designed for utilization in different
fields of engineering. Brittle ceramic matrices have been made tougher for high-technology
applications through the addition of continuous or discontinuous fibers and ductile particles,
and cementitious materials, used in civil engineering applications, have been reinforced with
continuous or discontinuous fibers.

In spite of the profoundly different structural utilizations and the very heterogeneous
mechanical and physical properties of the component materials, many similar features connect
the cementitious-matrix and the ceramic-matrix composites. In particular, in both of them the
fundamental role of the secondary phase is that of providing crack control and improving the
fracture toughness of the brittle matrices, by means of a bridging action affecting the matrix
macro- and microcracks. Debonding, sliding and frictional pulling-out of high-resistance
discontinuous fibers, particles, aggregates or grains, as well as yielding or debonding of
low resistance ductile particles or continuous fibers, are the local mechanisms controlling
the bridging action. In the microcracked process zone ahead of the matrix macrocrack, the
bridging action affects the coalescence and propagation of the microcracks, thus controlling
the macrocrack extension. In the wake of the macrocrack a real stitching action prevents the
crack face opening and controls the crack growth. These mechanisms increase the energy
demand for the crack advancement. The matrix linear-elastic behavior is not substantially
affected by low volume ratios of secondary phases, but, on the other hand, the post-cracking
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response can be substantially modified, so leading to improvements in the loading capacity,
ductility and durability of the structural components.

Two different nonlinear fracture mechanics models are used to analyze the composite failure
process: the bridged-crack model and the cohesive-crack model, which assume, respectively,
a singular and a finite stress field in the crack tip vicinity [1]. Different modeling of the
composite toughening mechanisms and different crack propagation criteria are consequently
assumed.

The first version of cohesive-crack model was proposed by Barenblatt [2,3], for the analysis
of brittle homogeneous materials, and then by Dugdale [4], for the analysis of ductile materials.
Different versions of these models were later formulated [5-15]. Many applications have
regarded cementitious composites, but also other materials have been studied (e.g., polymers,
metal-matrix composites).

Among the bridged-crack applications we can quote the models proposed in [16-32]. Most
of these models have been related to fiber- and particle-reinforced ceramic-matrix composites,
but also concrete, reinforced concrete, coarse-grained ceramics, polymers and alloys with
bonded patches have been studied.

In this paper a nonlinear fracture mechanics application, which embraces in a unified
dimensionless formulation the two above-mentioned peculiar models, is proposed. It analyzes
the constitutive flexural response of brittle-matrix composites with uniformly distributed rein-
forcements. The analytical formulation derives from a model formerly proposed by Carpinteri
[16] for composites with localized reinforcements. The nonlinear integral problem, describ-
ing the evolution of crack propagation in a composite section under monotonic bending, is
solved through the verification of both equilibrium and kinematic compatibility. It is shown
that, based on the assumptions of a nonvanishing stress intensity factor (bridged-crack) and
geometric self-similarity, two dimensionless parameters control the constitutive flexural rela-
tionship. The parameters depend on the mechanical and geometrical properties. On the other
hand, based on the assumption of a vanishing stress intensity factor (cohesive-crack), the
number of parameters reduces to one. The size-scale effects on the structural ductility are
studied, and the influence of a vanishing and a nonvanishing crack tip stress intensity factor on
the constitutive relationship is examined. Finally, a bending test on a fiber reinforced mortar
beam is reproduced, and it is shown that both the models can predict the same overall fiexural
response. A similar conclusion was reached in [33] for the tensile strength of a metal-matrix
composite.

2. Theoretical assumptions: bridging and cohesive options

The proposed model explains and reproduces the constitutive monotonic flexural response
of materials made with brittle matrices and continuously distributed inhomogeneities. Mul-
tiphase materials, such as ceramic or cementitious composites reinforced with continuous or
discontinuous fibers or particles, as well as self-reinforced materials (concrete, coarse-grained
alumina, etc.), may be considered.

The model presented here, in accordance with the ones proposed by Barenblatt {2] and
Dugdale [4], replaces the bridging zone by a fictitious crack and represents the bridging
actions by a closing traction distribution og(w), acting along the fictitious crack (Figure 1).
The cracked cross section of a composite beam in bending is considered together with its
constitutive flexural relationship evaluated by reproducing a loading process controlled by the
crack advancement. This model disregards the localized action of the single reinforcements
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Figure 1. Schematic of the cross section.

which are homogenized in the beam volume, and therefore it cannot be used for analyses at
the microscale level or for macrostructural analyses of composites with a discrete number of
localized reinforcements [32, 34]. Different assumptions regarding the crack tip stress field,
the consequent crack growth criterion, and the closing traction distribution are considered.
These lead to the two different options of the model, which will be called bridging option and
cohesive option.

In the bridging option the composite is theoretically simulated as a biphase material. A
singular stress field is assumed at the tip of the crack and the crack starts propagating when
the total crack tip stress intensity factor reaches the matrix toughness. Two distinct factors
contribute to the global toughness of the composite. The first is the toughness peculiar to
the matrix, which is assumed to be a material property represented by the critical stress
intensity factor. The second factor is the reinforcing phase toughening mechanism, which is
represented by the crack tip shielding effect that the bridging tractions develop on the crack
tip stress intensification. In the bridging option the crack growth is governed by the toughness
of the matrix, and the bridging tractions, which control crack opening, are governed by the
properties of the reinforcing phase and by its interaction with the matrix.

In the cohesive option, on the other hand, the composite material is theoretically simulated
as being homogeneous. A finite stress field is assumed in the crack tip vicinity, and conse-
quently the crack starts propagating when the total crack tip stress intensity factor becomes
equal to zero. This assumption is equivalent to assuming that the crack propagates when the
crack tip stresses reach the composite strength, which is the value defined by the cohesive law
oo(w) for a zero crack opening displacement. With this option, only the global toughening
mechanism of the whole composite is defined, and it is represented by the shielding effect
due to the cohesive tractions. The matrix toughening mechanism, explicitly represented in the
bridging option by the matrix toughness, in the cohesive option is merged with the toughening
mechanism produced by the secondary phases through the cohesive law, and therefore the
damage process producing the advancement of the crack is the same as that governing the
opening process along the process zone.

The closing tractions present the form oo(w) = po(w), where p and o(w) assume different
meanings and values in the bridging option and in the cohesive option. In the bridging option,
p is the secondary-phase volume ratio, while in the cohesive option, p = 1 characterizes
the whole composite. The bridging or cohesive law o(w) is a relationship connecting the
closing tractions with the crack opening displacements w along the crack faces, and it can be
derived from experimental tests or micromechanical models (Figure 1). The simplest bridging
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Figure 2. Analytical relationships for the description of the bridging and cohesive mechanism in brittle-matrix
composites.

relationship is a rigid-perfectly plastic law which represents the bridging mechanism of ductile
continuous elements, such as low-resistance fibers or wires.

More complex laws characterize the bridging mechanisms of discontinuous reinforce-
ments, such as fibers or aggregates, or the global toughening mechanism of the homogenized
composite. The relationships are in these cases characterized by a critical crack opening dis-
placement w,, beyond which the closing tractions vanish. The bridging law can be deduced
from the results of pull-out tests on single fibers, for a fiber-reinforced brittle matrix mater-
ial [35], whereas it is more difficult for a self-reinforced material. The cohesive law can be
obtained by means of direct tensile tests carried out on the composite material [10], or through
a theoretical simulation of these tests (see Section 6). It is usual for the cohesive law to depend
on the shape and dimensions of the tested specimens.

In Figure 2 various ¢ — w laws, typically used for the description of bridging and cohesive
mechanisms, are shown. The law shown in Figure 2a could represent, for n < 1, pulling-out
mechanisms against friction. The law shown in Figure 2b, could represent, for n < 1, bridging
mechanisms due to yielding or progressive debonding of continuous fibers. The bilinear
law shown in Figure 2¢ has been proposed by the CEB-FIP Model Code 1990 [36] for.the
description of the cohesive tractions in concrete. The same law, with extremely low values of
the parameter 3, could represent the cohesive relationship of a brittle-matrix composite with
a strong secondary-phase bridging mechanism, such as a steel fiber-reinforced cementitious
material [10]. The law shown in Figure 2d permits an easier numerical implementation than
does the law presented in Figure 2c, and it has been used in one of the analyses proposed in
the sequel.

3. Theoretical formulation

Let us examine the cracked cross section of a beam in bending shown in Figure 1. The
cross-sectional depth and thickness are h and b, respectively, and the total crack depth a is
given by the addition of two portions: the real or traction-free crack depth a,, along which
the crack faces have no interaction, and the fictitious crack depth a, upon which a closing
traction distribution oo(w) is active. The normalized crack depths ¢ = a/h,&, = a,/h and
&s = ay/h, and the normalized coordinate { = z/h, z being the generic coordinate with
respect to the bottom of the cross section, are defined. A two-dimensional deformation field
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is assumed. The matrix is linear-elastic, both in tension and in compression, and appropriate
crack propagation conditions will be assumed to describe the crack advancement.

The applied loads give rise to a singular stress field in the crack tip vicinity, which is
measured by a global stress intensity factor K. Through the superposition principle, K takes
on the form:

K1 =Ky — Kis (1)

where K and K, are the stress intensity factors due to the bending moment M and to
opening tractions og(w), respectively. In accordance with the solutions for the single-edge
notched-strip [37], the stress intensity factors in eq. (1) are given by eqgs. (A.1) and (A.4),

shown in Appendix A.
The mobile equilibrium conditions for the crack at the onset of propagation are:

Kic  bridging option, (nonvanishing SIF) @
"o cohesive option, (vanishing SIF).
Substituting eqs. (A.1) and (A.4) into eq. (2) yields:
M ¢ Kic
El_éibYM(g) - hO'S/E oo(w({))Yp(£,¢)d¢ = {O 3)

where Y37(€) and Yp(&,() are the polynomial functions shown in Appendix A. Equation
(3) defines the crack propagation moment Mp, for each fixed normalized crack depth. In
accordance with the dimensional analysis shown in Section 4, the dimensionless form of Mz

18:

Mp 1 /E o(w(())
= B | —=Yp(£()d(+k,, 4
Kich!Sb — Yu(€) { 6 y P(&:¢)d¢ “@)
Bridging option: k =1
pO’uho'S
B=Np=—7—— 5
P K _ (%)
Cohesive option: k =0
_ 1 B auhO.S
B=-= Ko (6)

The constant k in the previous equations is an indication of the crack tip stress field. The
parameter Kj¢ represents the matrix toughness if the crack tip stress field is singular (bridging
option, k = 1). On the other hand, Kj¢ cancels on the two sides of eq. (4) if the crack tip
stress field is finite (cohesive option, k = 0). In this case it can represent either the toughness
of the matrix or the homogenized toughness of the composite (see Section 4.2). The constant
B is an indication of the brittleness of the cross section and thus depends on the mechanical
and geometrical properties of the latter. Note that in the bridging option, B is equal to
the brittleness number Np previously defined by Carpinteri [16]. Np is the sole parameter
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controlling the flexural response of composite materials reinforced with a continuous or
discontinuous distribution of ductile reinforcements [34]. In the cohesive option, B is equal to
the reciprocal of the brittleness number s, previously defined by Carpinteri [38] to characterize
the rupture of brittle homogeneous materials. The maximum value of the bridging or cohesive
stresses, o(w), also appears in the equations as o,.

The localized rotation ¢ of the cracked cross section can be evaluated using Castigliano’s
Theorem:

_ OUp

= Bt g

where U is the strain energy of the body due to the introduction of the crack, while the loads
are kept constant. Ur is given as a function of the applied loads. The relationship between
Ur, the generalized crack propagation force G, the global stress intensity factor K, and the
composite Young’s modulus E is:

_ 3 _ €K12
Up = /0 GbhdE = /0 ~Lonae. ®)

The Poisson ratio has been assumed as negligible. Note that, for low reinforcement volume
ratios, £ can represent either the matrix or the composite linear-elastic behavior. Substituting
eq. (8) into eq. (7) yields

bhde. ©)

b= 9 /§ Ky + K& — 2Ky Ko
OM Jo E

If the crack is now assumed to be at the onset of propagation, egs. (A.1), (A.4) and (9)
give the constitutive relationship, which links the localized rotation to the dimensionless
crack-propagation moment:

2Kic Mp ¢ 2

_B /j ( / y@my,o dc) Yar(y) dy}.

r U

(10)

Equations (4) and (10) can be directly solved, and the constitutive flexural relationship
Mp — vs. — ¢ evaluated, if the actual closing traction distribution og(w) and the normalized
length of the traction-free crack &, at the lower limit of the integrals, are known. This happens
if the bridging law oo(w) is a rigid-perfectly plastic relationship, og = po,, (see Section 4).

For a generic relationship oo(w), the closing tractions are indeterminate reactions, depend-
ing on the unknown crack opening displacement function w(z). The crack profile can be
defined as a function of the cross section mechanical and geometrical properties and of the
applied loads by means of Castigliano’s Theorem:

Y ¢xf
w(Ck) = }linom{ A —E—bhdf} (11)
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where w(() is the crack opening dlsplacement at the generic coordinate (x, F' are two

fictitious opening forces applied at (;, and KI is the global stress intensity factor, K7 f =
Ky — Kis + Kir, Kip being the stress intensity factor due to the opening forces F', eq.
(A.3). Substituting the expressions of the stress intensity factors, the normalized crack opening
displacement takes on the form:

N w(C, 2Kic

=] 5 (/ yMYp(y, ) dc) Yo (y, ck)dy} .

max{C,ér] & Ou

(12)

Egs. (4) and (12) define a nonlinear statically indeterminate problem. The indeterminate
reactions og(w) are calculated using the iterative numerical procedure shown in Appendix B,
which is based on the verification of equilibrium and kinematic compatibility.

4. Dimensionless parameters

In accordance with Buckingham’s Theorem 7 of Dimensional Analysis [39], the theoretical
results can be synthesized by means of functional relationships between all the physical
variables involved in the flexural response of the composite material. These relationships
bring out the dimensionless parameters controlling the structural response, highlight the
differences between the bridging and the cohesive options of the model and define their

ranges of application.

4.1. BRIDGING OPTION

The bridging option considers both the toughening mechanism proper of the brittle matrix,
controlled by the single parameter Kic[F][L]~!-%, and the toughening mechanism due to the
secondary-phase bridging action. If we assume, for sake of simplicity, the bridging tractions as
a power law of the crack opening displacements (Figure 2), the ultimate stress po[F][L] 72,
the critical crack opening displacement w.[L] and the exponent n of the function are the
variables controlling the bridging mechanism. The crack propagation phenomenon within
the beam depth, as well as the constitutive flexural response, depend on the two toughening
mechanisms and on how they interact.

Equation (10), relating the cross-sectional bending moment to the localized rotation, can
be put into the following general form:

—<.n,—,— | = f(M,¢,Np, B, b, n;r;) =
KIChI.Sb Kic ,ch7h’n’h,h> f( >¢: P, ;wCa'nﬂr’L) 0 (13)

Mg poyh® ERYS w, b ag
f ( » &,

whose terms are the variables involved, namely the dimensionless crack-propagation moment
M, the localized rotation ¢, the dimensionless ultimate stress or brittleness number Np, the
dimensionless Young’s modulus E, the normalized critical crack opening displacement 1,
the exponent n of the power law and the geometrical ratios r;, describing the shape of the
cross section. The matrix toughness Kjc and the beam depth h have been assumed as the
fundamental set of dimensionally independent variables.
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The dimensionless parameters E and 1, are involved in the problem since the product
controls the length of the traction-free crack, and therefore the lower limit of the integrals in
egs. (4) and (10), according to the kinematic condition (B.4). Consequently, if we fix the beam
geometrical ratios and the exponent n of the bridging law, the structural behavior proves to be
controlled by two dimensionless parameters, namely Np and F,:

f(M,¢,Np, E,) =0. (14)

The theoretical model has been applied to analyze the constitutive flexural response of a
composite mater1a1 whose bridging mechanism is represented by the power law a¢/po, =
1 — (w/we)®3. This relation might describe the bridging action of short steel fibers pulling-out
from a cementitious matrix. Beams with an initial matrix crack depth ay = 0.15A, crossed
by unbroken fibers, have been considered, and the constitutive relationships calculated by
following the evolution of the crack up to ¢ = 0.95h. The dimensionless moment-vs.-localized
rotation diagrams, shown in Figs. 3a, b and c, relate to three different values of the parameter
Np, namely 0.5, 1.0 and 2.5. In each diagram a series of curves, for the parameter E, varying
from 1.0E01 to 5.0E03, is depicted.

The curve represented by dotted lines and the curve L, shown in the diagrams of Figure 3,
depict two limit solutions. The former describes the constitutive behavior of the brittle matrix,
and is given by the LEFM solution [37]. The latter describes the response of a composite
material characterized by a very high value of the dimensionless parameter E1b,. It has been
obtained based on the assumption of a rigid-plastic bridging law, oy = po, which could
represent the bridging action of long and ductile fibers. In this case, the reinforcing elements
cross the crack up to total disconnection. The nonlinear problem is simply solved by checking
the equilibrium condition (4), and the dimensionless parameter Np proves to be the single
governing parameter.

The curve L of Fig. 3a shows a hyper-strength phenomenon, which is an indication of a peak
loading capacity that is greater than the ultimate loading capacity at complete disconnection.
When the brittleness number increases, this effect turns into a snap-through instability, or a
jump at constant load in a load-controlled process, as displayed by the curve L of Figure 3b.
Subsequently, as the brittleness number further increases (curve L of Figure 3c), the local
discontinuity disappears. This results will be explained in Section 5. The local discontinuities
depend on the length of the initial matrix crack, and the snap-through instabilities would
disappear if this were increased up to a limit value depending on Np. Likewise, an initial
notch, without any restraining between the crack faces, would smooth the local discontinuities.

For each fixed value Np, the various curves in the diagrams of Figure 3 show different
behaviors which represent a ductile to brittle transition when the parameter F1j, decreases.
For Np = 2.5 strain-hardening responses are predicted for high values of E,, and strain-
softening responses for low values of E. The lower brittleness number, Np = 0.5, gives
rise to strain-softening responses for all the B, examined. On the other hand, whereas the
beams with high E, are characterized by a resistance moment at complete disconnection
which is greater than zero, the beams with low E1@, present a zero ultimate capacity.

The influence of the fiber volume ratio p on the structural behavior can be investigated by
varying the parameter Np, which increases for increasing p, the parameter E1b, being kept
unchanged. If p is increased, the beam loading capacity heightens the shape of the constitutive
flexural relationship changes, and different transitions in the behavior are predicted based on
different values of Ew@,. If B, presents a high value, the curves in Figure 3 represent a
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Figure 3. (a)-(c) Dimensionless crack-propagation moment versus localized rotation diagrams for a composite
cross section with Np = 0.5,1.0 and 2.5, as the dimensionless parameter B, varies (bridging option). (d)
Dimensionless crack-propagation moment versus localized rotation curves for V. p B, = 5.0E02 and Np =
0.5,1.0,1.5,2.5,and 5.0, .

considerable ductility of the structure (see curves L in the three diagrams). On the other hand,
for low values of E10,, the brittleness of the structure is high (see curves C' in the three
diagrams). _ :

The dimensionless parameter E, can be varied by varying w, (e.g., by varying the length
of short fibers). Behaviors similar to those theoretically predicted for E1, — oo have been
experimentally detected by Jenq and Shah [21]. They tested fiber-reinforced mortar beams in
flexure and observed a transition from strain-softening responses, for a very low fiber volume
ratio, p = 0.005, to strain-hardening responses, for a high fiber volume ratio, p = 0.015. The
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steel fibers used in the tests were 25 mm long. On the other hand, behaviors such as the ones
theoretically predicted for B, = 5.0E01 have been experimentally observed in [40]. They
tested a high-performance concrete reinforced with very short steel fibers, 6 mm long. Strain-
softening responses were observed for all the fiber volume ratios used (p = 0.03 — 0.12),
along with an embrittlement for increasing p.

The influence of the structural size on the constitutive relationship can be investigated
by keeping the mechanical properties unchanged and varying the beam depth A. In order to
do this, a constant value is assumed for the product of the two dimensionless parameters,
NpEw, = pouEw. /K3 ic» which does not depend on the beam depth. Different beam sizes
are then considered by varying the parameter Np.

The three curves L in Figure 3a, b, and ¢, obtained for a composite with long and ductile
fibers (Ed, — 00), show a transition from a strain-softening response to a strain- -hardening
response, when Np, and therefore the beam depth, is increased. A brittle to ductile scaling
transition is predicted.

On the other hand, different values of the parameter E, lead to different scaling transi-
tions. The diagram shown in Figure 3d has been obtained for Np B, = 5.0E02. The five
curves in the diagram correspond to beams of different depth. A double transition, brittle
to ductile to brittle, is predicted in the flexural behavior as the beam depth is increased.
The beam with Np = 0.5 shows a strain-softening response, the beam with Np = 1.0
shows an almost perfectly plastic response, and the beam with Np = 5.0 shows again
a strain-softening response. Let us consider a fiber-reinforced concrete characterized by
Kic = 60Nmm~!3, E = 50000 Nmm 2 ,p = 0.03,0, = 170Nmm~2, and w, = 10 mm.
The curves in Flgure 3d for Np = 0.5,1.0,1.5 and 2.5 describe the ﬂexural behavior of four
beams of depths h = 40, 140, 310, and 850 mm, respectively. This result indicates that the
behavior of a real-sized structure can be substantially different from the behavior of speci-
mens tested in the laboratory. The experimental results obtained on small specimens cannot
be extrapolated to describe larger structures.

4.2. COHESIVE OPTION

According to the cohesive option of the proposed theoretical model, the crack advancement
in the cross section is controlled by the combined matrix-secondary phase toughening mecha-
nism. This mechanism is represented by the shielding effect that the cohesive tractions develop
on the crack tip stress intensification. Let us assume the cohesive traction o (w) as a function
of the ultimate strength of the composite, oy, the critical crack opening displacement w,, and
the exponent n, according to the power laws shown in Figure 2. If geometrical similarity is
assumed and the exponent n of the power law is kept constant, the functional relationship
connecting the cross-sectional resistance moment with the localized rotation can be given the
following form:

7¢7

f Mp ouh® ERYS w,
Kich'5b Kic ' Kic h

> :f(M’¢’57E7Dc)=O (15)

in which s = Kic/(oy,h%) is the brittleness number of eq. (6).

As previously pointed out, K¢ in the eqs. (4), (6) and (15), can represent either the matrix
fracture toughness or the homogenized toughness of the composite. The second assumption
simplifies eq. (15). The composite fracture toughness is linked, through Irwin’s relationship,
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to the composite fracture energy, which is defined by the area beneath the cohesive curve
o(w). If the cohesive law o/oy, = 1 — (w/w)™ is assumed, the following relationship holds:

K?Z We n
_};_;Q = /0 o(w)dw = - T Tule- (16)

By means of eq. (16), the dimensionless parameter Ew, of eq. (15) can be expressed as a
function of the brittleness number s. For the assumed power law the relation is:

. n+1Gio n+1s K2
Te = — Ui_h= —% where gIC=TI' a7n

The dimensionless functional relationship (15) becomes:
f(M,¢,5)=0 (18)

and s is the single governing parameter. Analogous arguments can be produced for any shape
of the cohesive law. In the case of tpe power law shown in Figure 2b, for instance, the relation
connecting the two parameters is Eu, = (n + 1)s. It is worth noticing that s = (sg/ey)%°
and also s = (lep /2h)0'5 , where sg is Carpinteri’s energy brittleness number [13], and [,
is Hillerborg’s characteristic length [8], &, being the ultimate elastic tensile strain of the
composite.

In order to verify the theoretical results, a composite cross section in bending has been
analyzed by means of the proposed cohesive option. Unlike the bridged-crack model, the
cohesive-crack model has often been applied for the representation of the flexural behavior
of composite beams. The flexural response of a beam in three-point bending, with a linear
softening cohesive law, has been previously studied by Carpinteri [13, 41], and a ductile-brittle
transition has beén predicted in the behavior as the beam depth increases. Such modeling of
the cohesive law could be used also for the description of a self-reinforced material, e.g.,
concrete.

In this application, the cohesive law shown in Figure 2d has been assumed with o = 0.1
and B = 0.001. This law might represent the cohesive mechanism of a steel-fiber cementitious
material. The first part of the relationship describes the matrix toughness and the second part
the toughening mechanism of the secondary phases.

The moment versus localized rotation dimensionless diagrams in Figure 4 have been
obtained by analyzing a cross section with an initial crack depth of ag = 0.05h, for six
different brittleness numbers, i.e., s = 5.0,1.0,0.7,0.5,0.3 and 0.2. For s = 5.0 the cross
section is characterized by a strain-softening response, for s = 0.7 an almost strain-hardening
response is predicted and for brittleness numbers lower than s = 0.5 the behavior becomes
again globally strain-softening. The cohesive option, therefore, reproduces the same size-scale
effect previously observed in Figure 3d for the bridging option results, according to which a
double transition is predicted when the beam depth is increased.

Note that the double transition, the local discontinuities and the hyper-strength phenomena
shown by the curves in Figure 4 are due to the particular choice of the cohesive law, and
these phenomena would not be predicted if the cohesive relationship were characterized by a
generic power law.

H
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Figure 4. Dimensionless crack-propagation moment versus localized rotation diagrams for a composite cross
section as the brittleness number s varies (cohesive option).

5. Influence of matrix toughness on structural response

Under particular conditions, the influence of matrix toughness on structural response may
be neglected and therefore, provided the cohesive and the bridging laws coincide, the model
options both predict the same global results. Let us consider, for sake of simplicity, a composite
material whose secondary-phase bridging mechanism can be simulated through a rigid-plastic
bridging relationship, og(w) = po,,. The mechanical behavior of a cross section in bending,
with an initial matrix crack of depth ag = 0.1h, has been evaluated by means of the bridging
option of the proposed theoretical model (nonvanishing stress intensity factor). Three different
brittleness numbers have been assumed, namely Np = 0.5, 1.1 and 2.5. Then, the cohesive
option has been applied (vanishing stress intensity factor), with a cohesive law coincident
with the previously assumed bridging law. In this way, the flexural response of the composite
material can be studied disregarding the effects of the matrix toughness.

In order to make a direct comparison of the two model options, a new set of dimensionally
independent variables, po,[F][L]~2 and h[L], has been chosen, and eqs. (4) and (10) have
been worked out arriving at the dimensionless relationship connecting M/(po, h%b) with
¢/(poy E~"), in which the matrix toughness is absent.

In the diagram of Figure 5, the constitutive curves obtained by the application of the
bridging and cohesive options are represented by the thin and thick curves, respectively. The
thick curve is the same in all diagrams and define a strain-hardening response, whereas the
thin curves show the transition previously observed in the curves L of Figure 3.

The ultimate moments, for the totally disconnected sections, are the same for both the
model options, as they are not affected by the matrix toughness which, on the other hand,
strongly controls the remaining part of the curves. For high values of Np, the cohesive option
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Figure 5. Dimensionless crack-propagation moment versus localized rotation diagrams for a composite cross
section with Np = 0.5, 1.1 and 2.5, and a rigid-plastic bridging relationship. Comparison between the constitutive
curves predicted by considering or not the matrix fracture toughness.

and the bridging option predict almost the same global response, which is therefore merely
controlled by the toughening action of the reinforcing elements. This situation can be obtained
for large beams or when the material properties are characterized by a low ratio Kic/(pov,).
On the other hand, for the lower brittleness numbers the matrix toughness strongly affects the
structural performance during the entire loading phase. This situation characterizes shallow
beams or composites with a high ratio Ko /(poy,). A different choice of the bridging law
would modify the results shown in Figure 5, but the general considerations continue to hold

good.
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In conclusion, if disregarding the matrix toughness does not affect the quality of the
results in the theoretical simulation of the mechanical behavior of a composite element whose
brittleness number Np is high, the same assumption, in a composite with a low Np, will
induce an underestimation of the cross section loading capacity and an erroneous prediction
of the shape of the flexural constitutive curve. To overcome this problem, the toughening
mechanism peculiar to the matrix has to be merged with the toughening mechanism due to
the secondary phases, through the definition of a proper cohesive law (see next section).

6. Bridged versus cohesive crack

Willis [6] proved the equivalence between Barenblatt’s cohesive-crack model for brittle mate-
rials and Griffith’s criterion [42]. This result derives from Barenblatt’s assumption of a crack-
edge region, acted upon by the forces of cohesion, which is negligibly small compared to the
entire area of the crack surface, and proves the equivalence of the cohesive-crack model with
the bridged-crack model in the limit case of a brittle material, i.e., when secondary phases are
absent. In this section it will be shown that the same results can be obtained for a brittle-matrix
composite.

An experimental three point bending test, carried out by Jenq and Shah [21] on a fiber-
reinforced mortar beam, has been considered. The beam had a depth x thickness x span of
76 x 19 x 280 mm and a notch of depth ag ~ 25 mm. The unreinforced matrix toughness
has been evaluated by Jenq and Shah as equal to Ki¢ = 27.5 Nmm™~!-. Brass-coated smooth
steel fibers, 25 mm long and with a 0.4 mm diameter, were used in a volume ratio p = 0.005. A
pull-out test on a single, aligned fiber, had shown a typical response controlled by the frictional
pulling out of the fiber from the matrix with a maximum pull-out strength o, of 169 N mm™2.

The bridging option of the proposed theoretical model has been applied to simulate the
experimental test. The option entails the definition of the shape of the fiber bridging law oo (w),
and the parameters Np and Eb.. The bridging law has been deduced by simply extrapolating
to the whole of the fibers the pull-out relationship experimentally displayed by a single fiber,
oo(w) = po(w). The power law o/oy, = (1 — w/w,)%3 [21], with the critical crack opening
displacement equal to half the fiber length w, = 12.5 mm, has been assumed. The assumption
disregards the fiber volumetric distribution and orientation with respect to the crack faces. The
elastic modulus of the composite has been assumed equal to 22000 N mm ™2, from the analysis
of the linear-elastic branch of the experimental load-deflection curve, and the dimensionless
parameters turn out to be Np = 0.27 and F1, = 1148.

In order to evaluate the beam load-displacement curve, the flexural constitutive relationship,
defined by egs. (4) and (10), has been used to characterize a nonlinear hinge placed in the
middle free span of a three-point bending linear-elastic beam.

In Figure 6a a comparison between the experimental load versus displacement curve and the
theoretical one is shown. The theoretical model reproduces the actual response consistently,
both in the strain softening branch, during unstable crack propagation, and in the ultimate
loading capacity.

The application of the cohesive option entails the definition of the shape of the cohesive
law and the dimensionless parameter s. The cohesive law could be experimentally defined
through a direct tension test on the composite material. It can also be defined by applying
the bridging option of the proposed model in order to provide a theoretical simulation of
that test, provided the fiber-bridging law and the matrix toughness are known. By means
of this simulation, on a double-edge notched specimen, the relationship linking the applied
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Figure 6. (a) Comparison between the load-deflection experimental curve of a fiber-reinforced mortar beam, after
Jeng and Shah [21], and the theoretical results (bridging option). (b) Comparison between the load-deflection
experimental curve and the theoretical results (cohesive option).

stress to the relative displacements around the cracked cross section of the specimen has
been evaluated and assumed as the cohesive law of the composite material. As a rough
approximation of the resulting stress-displacement curve, characterized by a rapid drop and an
extended tail, the bilinear function shown in the diagram of Figure 3¢ has been used assuming
oy = 8.0Nmm 2, w, = 12.5mm, ao, = 0.84Nmm~2 and fw, = 1.0 x 1072 mm. The
brittleness number s, through eq. (6), is s = 4.9. Note that K¢ represents in this case the
homogenized toughness, given by the area under the cohesive curve.

In Figure 6b the theoretical load-displacement curve is compared with the experimental
results. A good agreement is found and it is shown that the cohesive option can better
reproduce the first microcracking phase preceding the maximum load, than can the bridging
option. Nevertheless, it is worth noting that the computational problems connected with the
cohesive-crack model, if a cohesive law of the kind assumed in this application is used, are
far more complicated than the ones connected with the bridged-crack model.
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The importance of a proper definition of the bridging and cohesive laws, sharp variations
and discontinuities included, is made evident by the dashed curve in the diagram of Figure
6b. The curve has been obtained by assuming a cohesive law which disregards the peak
of the previously assumed bilinear law of Figure 3c. This assumption implies disregarding
the effects of the matrix toughness on the structural behavior. The completely erroneous
prediction confirms the results of the previous section. For low brittleness numbers, in this
example Np = 0.27, the loading capacity of the beam is strongly affected by the matrix
toughness. This behavior depends on both the material properties and the structure geometry.
The influence of the matrix toughness on the peak-load would mitigate in larger beams (higher
Np).

The above application has shown that the parameters characterizing the cohesive option
of the theoretical model can be deduced from an application of the bridging option, once
the geometrical dimensions of the member are fixed and the matrix toughness and the fiber-
bridging mechanism are known. On the other hand, the parameter characterizing the bridging
option cannot be deduced from the cohesive option, as many different bridging mechanisms
and different combinations of the matrix toughness and the bridging tractions may exist which
lead to the same cohesive law.

7. Conclusions

A nonlinear fracture mechanics application has been proposed which fits in a unified dimen-
sionless formulation the two peculiar models used to analyze the failure processes in brittle-
matrix composites (i.e., bridging-crack and cohesive crack model). The bridged-crack model
assumes a singular stress field in the crack tip vicinity, represents the brittle-matrix toughness
by a critical stress intensity factor, and simulates the secondary-phase restraining of crack
propagation through a closing traction distribution directly applied along the faces of a fic-
titious crack. The cohesive-crack model, on the other hand, assumes a finite stress field in
the crack tip vicinity and the closing tractions represent in this case the combined matrix-
secondary phase resistance against crack propagation. An appropriate bridging law or cohesive
law, linking the closing tractions to the crack opening displacements, is assigned as a datum
of the problem.

The constitutive flexural relationship of a generic brittle-matrix composite can be evaluated
and, if geometrical similarity is assumed, the structural response proves to be controlled by
certain dimensionless parameters, which depend on the mechanical and geometrical properties.
Based on the assumptions of the bridged crack model, the number of governing dimensionless
parameters is two, whereas, based on the assumptions of the cohesive-crack model, this
number reduces to one. It has also been shown that the parameters of the cohesive model
(shape of the cohesive law and brittleness number s) can be deduced by a proper application
of a bridged-crack model. The different models of the composite material explain these results.
The bridging option, in fact, analyzes the composite as a real biphase material, whereas the
cohesive option renders homogeneous the different phases.

The influence of the beam depth on the constitutive relationship has been studied, and
different scaling transitions predicted according to different values of the dimensionless para-
meters. Finally, it has been shown, by a comparison with the results of an experimental test
on a fiber-reinforced mortar beam, that, if the dimensionless parameters and the bridging and
cohesive laws are properly defined, the proposed models converge approximately to the same
global result.
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B. Appendix

A discrete number n of points are defined along the faces of the crack shown in Figure 1

through the position vector {¢} = {¢1,...,(}F, G = z;/h being the generic normalized
coordinate with respect to the bottom of the cross section. The crack opening displacement

vector {w} = {w1(¢1),- - -, wn(¢n)}T andits normalized form {1} = {1y, ..., W, }T, whose
generic component is W; = w;/h, are defined. Moreover, the corresponding closing traction
vector {og} = {001 (w1), - - . ,00n(wn)}T, Whose components are the closing traction values

in the n points, is considered.

The nonlinear analysis is formulated in a matrix form, and the bridging law op(w) is
replaced by an interpolating function I ({oo}, ¢), which depends on the closing traction vector
{00} and on the normalized coordinate ¢ (Figure 1). This function is obtained by interpolating
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over the values of og(w) in the n points along the crack, according to the vector {o¢}. In
view of the sharp variations that og(w) can exhibit, a suitable interpolation is achieved using
cubic splines, and the function I ({op}, ¢) is thus represented by n — 1 third-order polynomials
I;({00},¢),7 =1,...,(n = 1), attached together in the n points along the crack without any
discontinuities [29]. The jth polynomial I;({oo}, (), spanning the coordinates {; and ¢;1,
takes on the form:

3
L{oo}, Q) =cjo+ Y cil¢ — &)y G << G (B.1)

=1

The n — 1 coefficients c;o equalize the components of the vector {oo}, cjo = oo;, according to
the interpolation condition. The remaining 3(n — 1) coefficients c;; are evaluated by means of
continuity conditions in the n points. The iterative procedure is constituted by the following
steps.

1. The total crack depth a and its normalized value ¢ = a/h are fixed and the closing
traction relationship oo(w) is assigned.

2. A tentative profile is assumed, through the definition of a starting displacement vector
{w'} = {wi(¢1), . .., wh(¢n)}T, i being the iteration index. A linear function of the coordinate
¢ can for example be established, this implying plane crack faces. The normalized real crack
depth &&= al /h, at the tip of which the crack opening displacement reaches the critical value
wy. = W, and the normalized fictitious crack depth £ = a f/ h, are consequently fixed.

3. The closing traction vector {o§} = {o§(wi),...,of(w’)}” is defined by means of
the assigned relationship oo(w). Moreover the interpolating function I*({c}}, ¢) is evaluated
through eq. (B.1).

4. Equilibrium condition. The applied moment of crack propagation M%, which cor-
responds, together with the assumed closing tractions, to the crack in a state of mobile
equilibrium, is evaluated through the crack propagation condition (2). By taking advantage of
eqs. (4) and (B.1), it is found

i n—1 i Tt )
M~ {BZ /C” Myp(a,oa<+k}, (B.2)
=176 Tu

Kich2b Yy (€)

in which B and k have been previously defined in egs. (5) and (6), and the summation is on
the n — 1 polynomials constituting the interpolating function.

5. The crack opening displacement vector {w®*!}, in the equilibrium state at the onset of
crack propagation, is evaluated. The generic kth component, normalized with respect to the
cross section depth h, takes the form:

~i wil 2K
! = ];l EhéC; {KIch”b/ Yur(y)Yp(y, () dy
wl e mols ) B0

in which ¢ = min[y, {;11].



Bridged versus cohesive crack in the flexural behavior of brittle-matrix composites 143

6. Compatibility verification. The solution of the problem, represented by Equations (B.2)
and (B.3), which meets the equilibrium condition, does not necessarily fulfill the kinematic
requirements, as the calculated crack opening displacement vector {w*t1}, eq. (B.3), can be
different from the assumed one {w'}. Two different checks are performed. The first check
concerns the evaluated normalized length of the traction free crack §1+1 which defines the
coordinates where the crack opening displacement has reached its critical value, wit! = ..
By taking advantage of eq. (B.3), at the tip of the traction-free crack the following condition

has to be satisfied:

chhl sb/ YM '.U Yp(y7£7‘)dy

min 7CJ+1] Iz O‘Z ~ )
/max[{-“ ¢1 / el 4L }C) Yp((,¢) d(Yp(y,&) dy = 3 Bd..  (B.4)

Oy

The calculated traction-free crack length £i+! is then compared with the assumed value §;
The second check is developed by comparing the norm of the difference vector {w'*!1} — {w'}
with the norm of the assumed vector {w’}. If the convergence is reached, the compatlblhty
is verified and the iterative procedure stops. Otherwise, a new iteration 7 + 1 is performed,
starting again from point (3), with the new shape of the crack faces defined by {w**!}.

7. Structural behavior. After reaching convergence, the structural behavior can be com-
pletely characterized by means of the relationships linking the crack-propagation moment to
the crack depth and to the localized rotation due to the crack. The final expression. of the
localized rotation due to the crack, is given by

_ ZKIC
?= Bpos {Kwhl 5b/ Yirly
n-l min[ ,Cj 1] . _

J U
in which ¢ = min[y, (;+1]. The constitutive flexural relationship can be defined by progres-
sively increasing the total crack depth at point (1), so as to cover the entire beam depth.
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