IS MODE II FRACTURE ENERGY A REAL MATERIAL PROPERTY?

A. CARPINTERI,† S. VALENTE,† G. FERRARA† and G. MELCHIORRI†
†Department of Structural Engineering, Politecnico di Torino, 10129 Torino, Italy
‡ENEL-CRIS, 20162 Milano, Italy

(Received 6 May 1992)

Abstract—An experimental and numerical investigation is carried out for a particular testing geometry: a single-edge notched specimen subjected to four-point shear, where a mixed-mode crack propagation is activated in concrete, if the specimen is not too small and the aggregates are not too large. When both conditions are verified each crack growth step is governed locally by a mode I strain field and the energy dissipation is tendentially provided by the fracture energy \mathcal{G}_f, whereas permanent deformation in the bulk material and interlocking on the crack surface are negligible.

1. INTRODUCTION

A single-edge notched specimen subjected to four-point shear first proposed in [1] for concrete was reconsidered in [2–5] with two symmetrical initial cracks—the so-called double-edge notched specimen subjected to four-point shear. The purpose of this study was to analyse the different failure mechanisms involved by varying geometrical ratios and scale size of the specimen. The mixed mode crack propagation is thus in competition with two other failure mechanisms: (1) the bending failure at the supports and (2) the splitting failure at the specimen centre.

With large sizes, mixed mode crack propagation is favoured and prevails over the two strength overcoming mechanisms. Even with small aggregates, mixed mode crack propagation prevails and the energy dissipation is confined to the crack surface. In both cases, mixed mode fracture energy and mode I fracture energy \mathcal{G}_I result in being very close, since the additional energy dissipation by permanent deformation in the bulk material, as well as by friction and interlocking, tends to be negligible.

2. EXPERIMENTAL INVESTIGATION

Two different concretes, with a maximum aggregate size D_{max} of 10 or 20 mm, were selected [6, 7]. Three-point bending tests were carried out to obtain the fracture energy \mathcal{G}_f according to the RILEM recommendation [8]. The same fracture toughness parameter was also determined by stable direct tension tests on prenotched cylindrical specimens with a diameter $D = 10$ cm and a height $H = 20$ cm. The related experimental results averaged over four identical specimens are reported in Table 1.

Four identical single-edge notched shear specimens (Fig. 1) were tested for each case as shown in Table 2. The specimens were kept in a controlled environment at 20°C and 95% relative humidity up to 4 hr before testing. The notches were made with a circular saw. Each specimen was given four steel supports of $2 \times 2 \times 10$ cm, glued at the four intended loading points, and with displacement transducers (LVDT) to measure the following quantities: two transducers to measure the deflections b_1 and b_2 of the two upper loading points, two transducers (one per each side of the beam) to measure the crack mouth sliding displacement (CMSD) and one central transducer to measure the crack mouth opening displacement (CMOD).

The tests were carried out using a servocontrolled machine (maximum load of 60 t) and the deflection δ_2 as the feedback signal. The imposed deflection rate was approximately $0.025 \mu m/sec$.

The following diagrams were recorded: (i) P vs δ_1 and P vs δ_2, P being the total load, from which it is possible to obtain the curves F_1 vs δ_1 and F_2 vs δ_2, for the evaluation of the mixed mode fracture energy (Fig. 2); (ii) P vs CMSD, where CMSD is the average between the two transducers on the two beam sides, in order to take into account torsional effects (Fig. 3) and (iii) P vs CMOD (Fig. 4).

The results are summarized in Table 3. The mixed mode fracture energy \mathcal{G}_f is defined as the ratio of total dissipated energy $W_0 = W_1 + W_2$ to the total fracture area.

In Table 3(a), mixed mode fracture energy results are higher than mode I fracture energy, approximately 16% with small aggregates (case 1B) and approximately 33% with large aggregates (case 2B), where the specimen depth is equal to 20 cm. This is probably due to additional energy dissipation by friction and interlocking at the crack surfaces, which is higher with larger aggregates. On the other hand, the increase is about 16% with the large specimen size (case 1B), and about 23% with the small specimen size (case 1A), for concrete 1. The interlocking effect appears to increase with decreasing specimen size.
Table 1. Mode I fracture energy γ_f

<table>
<thead>
<tr>
<th>Testing procedure</th>
<th>Specimen sizes</th>
<th>Concrete</th>
<th>Fracture energy γ_f (N/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) First series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable three-point</td>
<td>$10 \times 10 \times 84$ cm</td>
<td>1</td>
<td>122.4 ± 12.5</td>
</tr>
<tr>
<td>bending test</td>
<td></td>
<td>2</td>
<td>144.9 ± 18.1</td>
</tr>
<tr>
<td>Stable tension test</td>
<td>$\varnothing = 10$, $H = 20$ cm</td>
<td>1</td>
<td>103.8 ± 13.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>106.4 ± 14.6</td>
</tr>
<tr>
<td>(b) Second series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable three-point</td>
<td>$10 \times 10 \times 84$ cm</td>
<td>1</td>
<td>116.7 ± 12.4</td>
</tr>
<tr>
<td>bending test</td>
<td></td>
<td>2</td>
<td>117.8 ± 19.9</td>
</tr>
<tr>
<td>Stable tension test</td>
<td>$\varnothing = 10$, $H = 20$ cm</td>
<td>1</td>
<td>125.7 ± 7.3</td>
</tr>
</tbody>
</table>

Table 2. Testing geometries

<table>
<thead>
<tr>
<th>Concrete</th>
<th>D_{max} (mm)</th>
<th>Specimen</th>
<th>Thickness, t (cm)</th>
<th>Depth, b (cm)</th>
<th>Length, L (cm)</th>
<th>Span, l (cm)</th>
<th>Crack length, a (cm)</th>
<th>Support distance, c (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) First series</td>
<td></td>
<td>1</td>
<td>1A</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1B</td>
<td>10</td>
<td>20</td>
<td>84</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2B</td>
<td>10</td>
<td>20</td>
<td>84</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>(b) Second series</td>
<td></td>
<td>1</td>
<td>1B</td>
<td>10</td>
<td>20</td>
<td>84</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1C</td>
<td>10</td>
<td>30</td>
<td>125</td>
<td>120</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2C</td>
<td>10</td>
<td>30</td>
<td>125</td>
<td>120</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 3. Comparison between mixed mode fracture energy and mode I fracture energy

<table>
<thead>
<tr>
<th>D_{max} (mm)</th>
<th>Specimen</th>
<th>Maximum load, P (kN)</th>
<th>Total dissipated energy, γ_f (N/m)</th>
<th>Total fracture area (m²)</th>
<th>Mixed mode fracture energy, γ_m (N/m)</th>
<th>Mode I fracture energy, γ_f (N/m)</th>
<th>$\frac{\gamma_m - \gamma_f}{\gamma_f} \times 100$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) First series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1A</td>
<td>35.68</td>
<td>2.761</td>
<td>0.01921</td>
<td>143.73</td>
<td>150.9</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>1B</td>
<td>39.24</td>
<td>3.162</td>
<td>0.02000</td>
<td>158.07</td>
<td>151.02</td>
<td>±7.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.21</td>
<td>3.021</td>
<td>0.02000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2B</td>
<td>64.06</td>
<td>2.383</td>
<td>0.01914</td>
<td>124.50</td>
<td>128.23</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57.29</td>
<td>3.130</td>
<td>0.01910</td>
<td>163.79</td>
<td>161.73</td>
<td>±19.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61.80</td>
<td>3.055</td>
<td>0.01993</td>
<td>153.32</td>
<td>151.32</td>
<td>±19.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>69.06</td>
<td>2.553</td>
<td>0.01991</td>
<td>128.23</td>
<td>126.23</td>
<td>±10.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67.89</td>
<td>3.682</td>
<td>0.01903</td>
<td>193.53</td>
<td>191.53</td>
<td>±10.8</td>
</tr>
<tr>
<td>10</td>
<td>2B</td>
<td>69.16</td>
<td>5.148</td>
<td>0.01961</td>
<td>262.59</td>
<td>258.01</td>
<td>±17.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65.92</td>
<td>3.011</td>
<td>0.01891</td>
<td>159.23</td>
<td>159.23</td>
<td>±0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>62.00</td>
<td>3.054</td>
<td>0.01918</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>63.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Second series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1B</td>
<td>56.16</td>
<td>2.182</td>
<td>0.01939</td>
<td>112.53</td>
<td>115.0</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>69.16</td>
<td>3.899</td>
<td>0.01967</td>
<td>198.22</td>
<td>199.15</td>
<td>±4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>59.11</td>
<td>3.287</td>
<td>0.01958</td>
<td>167.88</td>
<td>167.88</td>
<td>±0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68.18</td>
<td>2.826</td>
<td>0.02001</td>
<td>141.23</td>
<td>141.23</td>
<td>±0.0</td>
</tr>
<tr>
<td>20</td>
<td>2B</td>
<td>85.35</td>
<td>4.769</td>
<td>0.02965</td>
<td>160.84</td>
<td>158.22</td>
<td>±16.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82.89</td>
<td>4.727</td>
<td>0.03003</td>
<td>157.41</td>
<td>156.29</td>
<td>±0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>83.39</td>
<td>4.512</td>
<td>0.02893</td>
<td>155.96</td>
<td>155.16</td>
<td>±5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>79.95</td>
<td>3.568</td>
<td>0.02835</td>
<td>125.86</td>
<td>124.86</td>
<td>±8.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98.10</td>
<td>5.390</td>
<td>0.02830</td>
<td>190.46</td>
<td>188.89</td>
<td>±8.0</td>
</tr>
<tr>
<td>20</td>
<td>2B</td>
<td>83.39</td>
<td>4.048</td>
<td>0.02847</td>
<td>142.18</td>
<td>140.08</td>
<td>±16.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93.69</td>
<td>5.651</td>
<td>0.03040</td>
<td>185.89</td>
<td>184.86</td>
<td>±5.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80.93</td>
<td>4.169</td>
<td>0.02929</td>
<td>142.34</td>
<td>142.34</td>
<td>±0.0</td>
</tr>
</tbody>
</table>
In Table 3(b), mixed mode fracture energy results are higher than mode I fracture energy, approximately 19% with small aggregates (specimen 1C) and about 33% with large aggregates (specimen 2C), the specimen depth being equal to 30 cm. On the other hand, the increase is about 19% with large specimens (1C) and about 23% with small specimens (1B), for concrete 1. The same trends were found as for the first series (Table 3a).

3. NUMERICAL COHESIVE CRACK MODEL

The principle of virtual work can be used as the integral statement to formulate the elastic-softening
Specimens 1 A (10x10x40 cm)

- experimental (average 4 specimens)
- numerical simulation

Specimens 1 B (10x20x80 cm)

- experimental (average 4 specimens)
- numerical simulation

Specimens 2 B (10x20x80 cm)

- experimental (average 4 specimens)
- numerical simulation

Fig. 2a-c.
Is mode II fracture energy a real material property?

Specimens 1 B (10×20×80 cm)

Specimens 1 C (10×30×120 cm)

Specimens 2 C (10×30×120 cm)

Fig. 2. Load-deflection diagrams: (a–c) first series; (d–f) second series.
A. Carpinteri et al.

Specimens 1 A (10×10×40 cm)

--- experimental (average 4 specimens)

**** numerical simulation

(a)

Specimens 1 B (10×20×80 cm)

--- experimental (average 4 specimens)

**** numerical simulation

(b)

Specimens 2 B (10×20×80 cm)

--- experimental (average 4 specimens)

**** numerical simulation

(c)

Fig. 3a-c.
Is mode II fracture energy a real material property?

Specimens 1 B (10*20*80 cm)

--- experimental (average 4 specimens)
**** numerical simulation

Fig. 3. Load vs CMSD diagrams: (a–c) first series; (d–f) second series.
Specimens 1 A (10x10x10 cm)

- experimental (average 4 specimens)
- numerical simulation

Specimens 1 B (10x20x80 cm)

- experimental (average 4 specimens)
- numerical simulation

Specimens 2 B (10x20x80 cm)

- experimental (average 4 specimens)
- numerical simulation

Fig. 4a-c.
Is mode II fracture energy a real material property?

Specimens 1 B (10*20*80 cm)

Specimens 1 C (10*30*120 cm)

Specimens 2 C (10*30*120 cm)

Fig. 4. Load vs CMOD diagrams: (a-c) first series; (d-f) second series.
problem in terms of the finite element approximation
\[\int_V d\epsilon^T \sigma \ dV = \int_V du^T F \ dV + \int_S du^T p \ dS, \] (1)
where \(\sigma = [\sigma_x, \sigma_y, \sigma_z, \tau_{xy}, \tau_{yz}, \tau_{zx}] \) is the stress vector, \(d\epsilon \) is the vector of incremental virtual strain, \(F^T = [F_x, F_y, F_z] \) is the vector of body forces acting per unit volume, \(du^T = [du, dv, dw] \) is the vector of incremental virtual displacement and \(p^T = [p_x, p_y, p_z] \) is the vector of tractions acting per unit area of external surface \(S \). Equation (1) is the weak form of the equilibrium equations and is valid for linear as well as for non-linear stress-strain constitutive laws.

According to the cohesive crack model, the process zone near the crack tip can be represented by means of closing tractions \(p_c \) acting on both the crack faces. Therefore, the last term in eqn (1) can be decomposed as follows (Fig. 5):
\[\int_S du^T p_c \ dS = \int_{S_c} du^T p_c \ dS + \int_{S - S_c} du^T p_c \ dS, \] (2)
where \(S_c \) is the process zone, i.e. the crack surface where the cohesive forces are active. A local reference system, with \(Z \)-axes oriented as the outward normal to the positive side of the crack surface, is assumed. \(N \) is the transformation matrix from the global to the local reference system, varying point-by-point on the crack surface. Assuming a linear softening constitutive law, the traction versus displacement relationship can therefore be written (Fig. 5)
\[p_c = p_u + N^T LN(u^+ - u^-), \] (3)
where \(p_u \) is the ultimate tensile strength in vectorial form, \(N \) is the transformation matrix from the global to the local reference system, varying point-by-point on the crack surface, \(L \) is the cohesive constitutive matrix in a local Cartesian system, the plus sign refers to the positive side of the crack, while the minus refers to the negative.

From equilibrium considerations across the crack surface, it is possible to write
\[p_c^+ = -p_c^-, \quad p_u^+ = -p_u^-, \quad S_c^+ = S_c^- = S_c/2. \] (4)
The first term on the right-hand side of eqn (2) can be written
\[\int_{S_c} du^T p_c \ dS = \int_{S_c} du^T p_c^+ \ dS + \int_{S_c} du^T p_c^- \ dS \]
\[+ \int_{S_c} du^T N^T LN(u^+ - u^-) \ dS \]
\[- \int_{S_c} du^T N^T LN(u^- - u^+) \ dS. \] (5)
The last two terms in eqn (5) can be represented as follows:
\[\int_{S_c/2} \left\{ \begin{array}{c} du^+ \\ du^- \end{array} \right\} \begin{bmatrix} N^T & 0 \\ 0 & N^T \end{bmatrix} \begin{bmatrix} L & -L \\ -L & L \end{bmatrix} \times \begin{bmatrix} N & 0 \\ 0 & N \end{bmatrix} \left\{ \begin{array}{c} u^+ \\ u^- \end{array} \right\} \ dS. \] (6)
The principle of virtual work, eqn (1), can be developed according to eqns (2), (5) and (6)
\[\int_V d\epsilon^T \sigma \ dV = \int_V du^T F \ dV + \int_{S - S_c} du^T p \ dS \]
\[+ \int_{S_c} du^T p_c^+ \ dS + \int_{S_c} du^T p_c^- \ dS \]
\[+ \int_{S_c/2} \left\{ \begin{array}{c} du^+ \\ du^- \end{array} \right\} \begin{bmatrix} N^T & 0 \\ 0 & N^T \end{bmatrix} \begin{bmatrix} L & -L \\ -L & L \end{bmatrix} \times \begin{bmatrix} N & 0 \\ 0 & N \end{bmatrix} \left\{ \begin{array}{c} u^+ \\ u^- \end{array} \right\} \ dS. \] (7)
Is mode II fracture energy a real material property?

Subdividing the domain in a finite number of elements and expressing the internal displacements by means of locally based shape functions H, it is possible to write

\[u(x, y, z) = H(x, y, z)u. \]

(8)

From the derivation of eqn (8), the strain-displacement relationship can be obtained as

\[\epsilon = Bu. \]

(9)

Selecting an appropriate constitutive law for the uncracked zone, the stress-strain relationship appears as follows:

\[\sigma = D(\epsilon - \epsilon_u) + \sigma_0. \]

(10)

Substituting eqns (8)–(10) into (7), and indicating by "e" the generic element, it is possible to write

\[du^T \left(\sum_e \int_V B^T DB \, dV \right) u \]

\[- \left(\frac{du^-}{du^+} \right) \left(\sum_e \int_{S_e} \begin{bmatrix} H^T N^T & 0 \\ 0 & H^T N^T \end{bmatrix} \right) \times \left[\begin{array}{cc} L & -L \\ -L & L \end{array} \right] \begin{bmatrix} NH & 0 \\ 0 & NH \end{bmatrix} \, ds \right) \begin{bmatrix} u^+ \\ u^- \end{bmatrix} \]

\[= du^T \left(\sum_e \int_V (H^T F - B^T \sigma_0 + B^T D \epsilon_0) \, dV \right) \]

\[+ du^T \left(\sum_e \int_{S_e} H^T p \, ds \right) \]

\[+ du^+ T \left(\sum_e \int_{S_e} H^T P^+ \, ds \right) \]

\[+ du^- T \left(\sum_e \int_{S_e} H^T P^- \, ds \right). \]

(11)

Since

\[\{ u^+ \} \subset \{ u \}, \quad \{ u^- \} \subset \{ u \}, \]

\[\{ du^+ \} \subset \{ du \}, \quad \{ du^- \} \subset \{ du \} \]

(12)

an assemblage procedure can be carried out

\[(K - C)u = F_e + F_s + F^+ + F^-. \]

(13)

where K is the stiffness matrix, C is the softening matrix, \(F_e, F_s, F^+, F^- \) are loading vectors and \((K - C) \) is the effective stiffness matrix.

Neglecting the tangential cohesive tractions, the constitutive matrix L becomes

\[L = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & l_{33} \end{bmatrix}. \]

(14)

Only the component of the mutual displacement normal to the crack surface, w (crack opening displacement), is taken into account. The remaining components are disregarded. The scalar quantity \(l_{33} \) is assumed as follows:

\[l_{33} = \frac{\sigma_u}{w_c}, \quad \text{for } 0 < w < w_c \]

(15a)

\[l_{33} = 0, \quad \text{for } w \geq w_c, \]

(15b)

where \(\sigma_u \) is the ultimate tensile strength of the material and \(w_c \) is the critical value of the crack opening displacement w. For crack opening displacements greater than the critical value \(w_c \), the interaction forces disappear, and both the crack surfaces are stress-free. During the irreversible fracture process, the crack opening displacement w is found to be monotonic increasing function of time.

At the first step the cohesive zone is absent, matrix C vanishes and matrix K is positive definite. A linear elastic solution can be found, giving the position and orientation of the growing crack. The crack surface \(S_c \) starts propagating by a predefined length \(\Delta S_c \). Such an incremental length is chosen so small that matrix \((K - C) \) remains positive definite, and the maximum cohesive crack opening displacement is less than \(w_c \). Equation (13) can be solved for two right-hand side vectors

\[(K - C)u_1 = F_e + F_s, \]

\[(K - C)u_2 = F^+ + F^-. \]

(16a)

(16b)

At the fictitious crack tip, the stress vector can be written as

\[[\sigma_x, \sigma_y, \tau]^T = \lambda [\sigma_x, \sigma_y, \tau]^T + [\sigma_x, \sigma_y, \tau]^T, \]

(17)

where \(\lambda \) is the external load multiplier.

In order to allow the crack propagation, the maximum principal stress, corresponding to the stress vector (17), has to be equal to the tensile strength of the material

\[\frac{\sigma_x + \sigma_y}{2} + \frac{1}{2} \sqrt{(\sigma_x - \sigma_y)^2 + 4\tau^2} = \sigma_u. \]

(18)

Substituting eqn (17) into (18), it is possible to compute the external load multiplier \(\lambda \). The angle between the x-axes and the normal to the principal plane, related to the principal stress (18), is given by

\[\alpha = \frac{1}{2} \tan^{-1} \left(\frac{2\tau}{\sigma_x - \sigma_y} \right). \]

(19)

The subsequent crack branch will occur in the principal plane denoted by eqn (19).
Specimens 1 A (10*10*40 cm)

Specimens 1 B (10*20*80 cm)

**** numerical simulation
--- experimental trajectory (average)

(a)

(b)

Fig. 6a and b.
Is mode II fracture energy a real material property?

Fig. 6c and d.
Fig. 6. Fracture trajectories: (a–c) first series; (d–f) second series.
At the following steps the same procedure is repeated, without moving the real crack tip, until one of the following conditions is verified:

1. The crack opening displacement at the real crack tip reaches its critical value w_c. In this case, the real crack tip moves and the cohesive crack surface S_c shrinks until the crack opening displacement at the real crack tip is less than w_c.

2. Matrix $(K - C)$ in eqn (16) becomes positive semi-definite. In this case, the stress vector at the fictitious crack tip can be written as

$$[\sigma_x, \sigma_y, \tau]^T = DBu - D\epsilon_0 + \sigma_0.$$ \hfill (20)

Equation (16) becomes

$$(K - C)u = \lambda(F_x + F_y) + F_u^+ + F_u^-.$$ \hfill (21)

Substituting eqn (20) into (18), a non-linear equation in u is obtained. The n equations (21) and eqn (18) represent a system of $n + 1$ equations in $n + 1$ unknowns (u, λ). Since eqn (18) is non-linear, the solution is computed using the Newton–Raphson method.

4. DISCUSSION

It is possible to verify, as shown in Fig. 6(a), that cracking due to flexural strength overload at the upper central support was concurrent with mixed mode cracking starting from the single notch tip in the case of small specimens 1A. Once again an interaction between tensile strength failure and mixed mode crack propagation becomes evident for small sizes [9].

In the case of the larger specimens, the crack trajectory is unique with a very low statistical dispersion (Fig. 6b–f). Such a dispersion tends to appear of the same order of magnitude of the aggregates.

The experimental tests were simulated by the finite element procedure, presented in the previous section, where the controlling parameter is the crack length [10–12]. For mixed mode non-collinear crack propagation, a continuous modification of the mesh is required. A finite element rosette is roto-translated at each crack growth step.

Figure 7 shows three different steps of the crack propagation process in specimen 2C. The presence of cohesive strain-softening forces is indicated by the connections. At the first step the cohesive zone is missing and the load P producing the ultimate tensile stress at the crack tip is computed. Such a value, P, together with the related loading point displacement, δ, gives the first point of the P vs δ diagram. The fictitious crack tip propagates by a predefined length Δa in a direction orthogonal to the maximum circumferential stress [13]. Then, the load P producing the ultimate tensile stress at the up-dated fictitious crack tip and the related deflection δ are computed at each step in order to obtain the subsequent points of the diagram.

The substructures used in the numerical simulation are shown in Fig. 9, whereas the deformed configurations at the computation steps 6, 14 and 26 are represented in Fig. 8, with a magnification factor of...
300. The material properties used in the numerical analysis are as below.

First series
- Young's modulus, $E = 28,000$ MPa
- Poisson ratio, $v = 0.1$
- Ultimate tensile stress, $\sigma_u = 2.4$ MPa
- Fracture energy, $\mathcal{G}_f = 122$ N/m (material 1)
 \[= 145\text{ N/m (material 2)} \]

Second series
- $E = 40,000$ MPa
- $v = 0.1$
- $\sigma_u = 2$ MPa
- $\mathcal{G}_f = 125$ N/m.

It is worth remarking that the propagation of the real crack tip begins only at step 29, when the uncracked ligament is less than $1/5$ of the beam depth.

Some numerical load–deflection diagrams, F_1 vs δ_1 and F_2 vs δ_2, are reported in Fig. 2, together with the experimental ones, averaged over four specimens. The loading point 1 (Fig. 1) undergoes a quasi-elastic unloading with small permanent deformation, while the loading point 2 undergoes a softening unloading with ever-increasing deformation. The corresponding numerical load vs CMSD and load vs CMOD diagrams are reported in Figs 3 and 4, respectively. The structural response as well as the fracture trajectories are captured satisfactorily by the numerical model.

5. **CONCLUSIONS**

1. Energy dissipation due to friction and interlocking tends to disappear by increasing specimen size as well as decreasing aggregate size.
2. If energy dissipation due to friction and interlocking is excluded, the remaining part of dissipation can be ascribed only to mode I fracture energy, even for mixed mode crack propagation.
3. Mode II fracture energy does not appear to be a material property, depending on specimen shape and size, loading configuration, testing conditions, etc.
4. A cohesive crack model, dissipating energy only on mode I, is able to reproduce the experimental results with a very good approximation.
REFERENCES

