SOFTENING AND SNAP-THROUGH BEHAVIOR OF
REINFORCED ELEMENTS

By C. Bosco' and A. Carpinteri,” Member, ASCE

ABsTRACT: The writers present a fracture mechanics model for reinforced con-
crete collapse, which is a refinement .of that proposed :previously, -based on com-
pliance and stress-intensification concepts. In this case, a crack-opening displace-
ment congruence condition replaces the rotational congruence condition, while the
reinforcement reactions are applied directly‘to the crack surfaces and not as closing
forces at infinity. The theoretical results confirm-a transition from ductile to brittle
collapse by varying a nondimensional brittleness number defined in previous
contributions. In addition, with the present model, yielding or slippage of rein-
forcement can precede or follow crack propagation in concrete..The moment-
versus-rotation response presents softening and snap-through behaviors and is sub-
stantially in agreement with the experimental results. Such a theoretical approach
appears to be very useful in estimating the minimu/m reinforcement for members

in flexure. /

INTRODUCTION

The application of fracture mechanics'to reinforced concrete elements
and, more generally, to fiber-reinforced materials, shows different failure
modes in connection with different size scales. Recently, it has been proven
experimentally that even the minimum content of reinforcement, which

~ enables the element to prevent brittle failure, depends on the size scale
(Bosco et al. 1990a). With a classical approach these results cannot be found
and they are not predictable. e

The compliance approach, proposed previously (Okamura et al. 1973,
1975; Carpinteri 1984), allows the calculation of the deformations (rotation
and/or elongation) in a cracked element (without reinforcement) under

" bending;moment and/or axial force. When a crackedreinforced element is
considered, the same concepts can be applied;-and:the statically undeter-
mined. reaction of reinforcement is obtained, imposing a:local congruence

condition at the cracked section.

While the. transition frombrittle to ductile failure.of'the: cracked reinforced
element is not significantly influenced by the assumption of a rotational or
a displacement congruence condition:of ‘the-cracked section; some -other -
aspects, such as the deformation of the element, seem more affected.

In fact, when a rotational congruence;condition is imposed, the model
does not predict local rotation due to the presence of the ‘cracked section

until yielding of reinforcement is reached (Catpinteri 1984). However, though

slippage of reinforcement from tests carried out on initially uncracked ele-
i ments with low reinforcement (Bosco et al. 1990b), generally, it appears
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‘ the actual phenomenon is, in effect, more complex due to debonding and - . |




that, after the first cracking, crack propagation occurs before the yielding
limit of reinforcement is reached. _
The last aspects seem to have small importance compared with those
concerning the failure characteristics (ductile or brittle), but the determi-
nation of more accurate relations representing the actual structural response
is not of negligible interest. :
In this paper, the writers apply a compliance model of fracture mechanics
to a cracked element using a crack-opening displacement congruence con-
dition that allows good agreement with the experimental results, without
losing any other positive characteristic already obtained by similar methods.

DisPLACEMENT CONGRUENCE CONDITION AND STATICALLY
UNDETERMINED REACTION OF REINFORCEMENT

The relationship between load and defofmation of a cracked member
that undergoes multiple loads simultaneously and behaves elastically is ob-
tained by a superimposed effect on the deformation (Okamura et al. 1973,
1975; Carpinteri 1981, 1984). :

Let us consider the cracked member shown in Fig. 1, simultaneously
subjected to bending moment M and closing forces P applied on the crack
surfaces. The evaluation of the crack opening displacement A3,,,, produced
by the moment M, together with the crack opening displacement Adpp,
produced by the forces P, both measured at the points where the forces P
are applied, provides, by linear superposition, the total displacement

AB = ABPM + ASPP = APMM - XPPP .......................... (1)

where Apy and App = the compliances of the element, due to the crack’s
existence.

The factors Apy, and A 5 can be derived from energy methods, considering
the moment M acting simultaneously with the forces P.

If G and E are, respectively, the strain energy release rate and the Young’s
modulus of the material (the Poisson ratio v is considered negligible), it
follows that the variation AW of the total potential energy is given by

AW =f0 Gub dx + f Gy + pb dx = fo %bdx

“ (Kim_+ Kip) _ch_:le_d faK_ill
+[C E bdx—oEbdx+chdx

“ K%P f” KIMKIP _ f” K%M
+LEbdx+zc I bdx—OEbdx
.HK;P fa KIMKIP
+fc Ebdx+2c—_E bde ..., (2)

where K, and K,, = the stress-intensity factors due to bending moment

M and forces P, respectively.
Using Clapeyron’s theorem, we also have

1 1
AW = %MA(,,MM + 5 PASpp + 5 (PASpy + MBgps) ... 3)
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FIG. 1. Cracked Element

Recalling that Betti’s theorem provides PASpy = MAQume, from (2) and
(3) it descends

a 2 '
%PABPP - f -Kzif B Y oo (4a)
5 '
PABPM=Zf&h%&Ebdx ................... ;....‘... ........ (4b)

However, the stress-intensity factor produced at the craCk tip by moment

M can be expressed as (Okamura et al. 1973, 1975)
- (50)

KIM = -};ﬁb— YM(g) ........................................ R

while the stress-intensity factor produced by the eccentric forces P acting
at the level of reinforcement, i.e., at a distance ¢ from the lower edge of

the beam, is equal to

P C
K’P=h1’2bYP(Z’§) e e e e P (5b)
where | '
y(s g)_F(s‘g)_A | - .
P\ =Fl \/TT—’E ....................... e ... (6)

AT R TICTERT I R 1eee. « 4 s L

Function Y, (£) in (5a) for &€ = a/h < 0.7, is given by (Tada et al. 1963)
Yo (E) = 6 (1.996V2 — 2.4787 + 12.97¢7 — 23.17¢72 + 24.806%2) .. (7)

while function F(c/a, £) in (6) is expressed as

C
' 3.52 (1 - ;) 435 — 5285
c . a
F (;’ E) = 7 32
L4 L
(-3 (-3
r, c 3/2 \
1.30 - 030 | -
+0.83 - 176} {1 - (1 - -"3)
a a

\ [1 _(?Cz)z]m | ,
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forah <1, cla < 1.
Substituting (5b) into (4a) and dividing by P2, the compliance App (dis-
placement produced by P = 1), can be expressed as

hee = = | ¥R (k) de ©)

PP - bE C/h P h, -----------------------------------
while substituting (5¢) and (5b) in (4b) and dividing by the product PM,
the compliance \p,, (displacement produced by M = 1), can be expressed
in the form

h’

Function Y, (c/h, £) is plotted in Fig. 2, for ¢/h = 0.05, 0.10, 0.15, together
with function Y,, (£). For each value of the ratio c/h, it is possible to observe
that function Y, tends to infinity for §— c¢/h* and §— 1~. As a consequence,

Aoy = A ——2—§Y<£§>Y(§)d§ 10
o= ur = 7= | Y ( E)dE (10)

the stress-intensity factor K,p, given by (5b), presents a minimum for an

intermediate value of the crack depth £ between c/h and 1.
Now let the forces P transmitted by reinforcement to the adjacent matrix

surfaces be equal to

P=0A, \oveenrenen.. R (11)

where A, = the area of reinforcement; and o, = the related stress.

If the displacement discontinuity in the cracked cross section at the level
of reinforcement is assumed to be zero up to the moment of yielding or
slippage of the reinforcement

A8 = ABPM + Aapp = 0 ..................................... (12)

we obtain the displacement congruence condition that allows us to obtain
the unknown force P as a function of the applied moment M. In fact, from
(9), (10), and (12), and considering (1), it follows

25 _
Yoecm=00 /Y,
20}
Yp (¢/h = 0.10)
T Yp (¢/n = 0.15)
10}
5t
L i AT ——
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RELATIVE CRACK DEPTH é=a/h
FIG. 2. Shape Functions Depending on Relative Crack Depth
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Ph 1
—M— - _'C"——" ............................................ (13)
r’ (719 g)
where
3
Y3(§) dE
,[c Lh F _ App
r (Z’ g) = N T (14)

Lh YM(&)YP (E, g) d§

Considering a rigid, perfectly plastic behavior of the reinforcement, the
moment of plastic flow or slippage is obtained from (13)

(\\

M, = Pohr" (% g) ........... e, ... (15)

where P, = f,A, = the yielding (or pulling-out) force, achieved when o,
= f, (yielding stress of reinforcement).

ﬁié?s’tétically undetermined reaction of the reinforcement is represented
in Fig. 3, against the relative crack depth, for c/h = 0.05, 0.10, 0.15. The
force transmitted by the reinforcement is always ‘increasing in the whole
range of validity of function Y,(§), i.e., for c¢/h = §:=0.7.

CoMBINED STRESS-INTENSITY FACTOR

By superposition, the stress intensity factor at the crack tip is [see (5a)
and (5b)]

K, My - E};_b Ys (% g) ........................... (16)

= h3/2 b

4.0

3.0r.
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RELATVE CRACK DEPTH ¢=a/h

FIG. 3. Statically Undetermined Reaction of Reinforcement versus Relative Crack
Depth, Varying Position of Reinforcement
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If M < M,, it is P < Ppand, from (13) and (16), in nondimensional form
it follows:

Kb _ M, (e 1 M
5 = Y ui(£) P Yr (h’ g) —————” CNPR - (17)
"\ &)
while, when M > M, we have P = Pp and (16) becomes
K% _ oo My (€
= Yul® 5~ Yr (h, g) ............................ (18)

If the reinforcement is yielded, we use (18), otherwise (17) must be applied

when stress o, is lower than f,. The first case occurs when M/Pph = r"(c/
h, €) [see (15)]. ‘

In Figs. 4 and 5, the stress intensity factor K, is reported for c/h = 1/20
and c¢/h = 1/10, respectively, against the crack depth § and varying the
loading parameter M/Pph. Each diagram is divided into two regions, char-
acterized by different conditions of deformation for reinforcement. The
loading conditions and crack depths for which the assumed model predicts
nonyielded reinforcement are lying to the left of the separation line.

All the curves M/P,h = constant belong, partially or totally, to the
domain where the reinforcement is in the elastic condition. No yielding of
reinforcement is shown for M/Pph < 0.8, when ¢/h = 0.05, or M/Pph =<
0.7, when ¢/h = 0.10 (Figs. 4 and 5).

The ascending part of the curves corresponds to an unstable crack prop-
agation process. In Fig. 4, it appears that, beyond the value M/Pph = 1.0,
the curves are always increasing and the crack propagation (which occurs
when factor K, reaches its critical value K;c) is always unstable.

CRACK PROPAGATION

Assuming that K is equal to the matrix fracture toughness K¢ from (16),
we have ' '

C
. YP (;1-7 g)
My 1 P

If the force P transmitted by the reinforcement is equal to P, = f, A, or,
in other words, if the reinforcement yielding limit has been reached M =

Mg = Mp), (19) becomes

‘ c
YP <Z7 g)

Me o _ L Nt (20)
chh3/2b YM(g) P YM(g) ............................
where the brittleness number

B2 A ' |
Np = fL—" e e e, et e e s e e e e e ( 21)
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FIG. 4. Dimensionless Stress Intensity Factor versus Relative Crack Depth &,
Varying Applied Bending Moment (c/h = 0.05)
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FIG. 5. Dimensionless Stress Intensity Factor versus Relative Crack Depth ¢ Vary-
ing Applied Bending Moment (c/» = 0.10)

is introduced, and A = bh = the total cross-section area. ~
In the case M = My < M,, i.e., when the reinforcement is in the elastic

condition, we can consider the relatlon

» "
M;z = 1 + Np M
K, Yu(§) Mp  Yp(E)

since, in that case, it is o,/f, = M7/Mp, and, therefore, P = o, A = f,(Mgl
Mp)A; in (19).
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Eq. (22) may be modified considering (15) and (21)

M, 1
o e e 23
K,ch¥?b | c (23)

Ypll) — ———

Therefore, according to the model when M, < Mp, the moment of crack
propagation M depends only on the relative crack depth § and is not affected
by the brittleness number N,. It does not depend on the content of rein-
forcement, but only on its relative position c/h.

The dimensionless fracture moment versus crack depth &, is reported in
Fig. 6 for c/h = 0.05 and by varying N. Thecurves N < 0.2 are descending
over the whole range £. This means that for low reinforced beams and/or
for large cross sections, the fracture bending moment decreases while the
crack extends. An unstable fracture phenomenon occurs.

For higher N, values, the model predicts a stable fracture process with
deep cracks. In particular, this occurs for Np = 0.3.

MoOMENT VERSUS ROTATION RESPONSE

The local rotation due to the applied loads is given by a superimposed
effect in the following way:

A(P = AMMM - )\MPP ....................................... (24)

=
= 15
< . :

27 Me/koh™? o= oss
& 1.4
= 1.0 1.2
= 1.0
= |
(' 0.8
(@]

— 0.5} 0.6
= 0.4
= L

&) 0.2
= 0.0
2 0707 03 05 07

= . 305 .

& RELATIVE CRACK DEPTH ¢= a/h

FIG. 6. Dimensionless Bending Moment of Crack Propagation versus Relative
Crack Depth £, Varying Brittleness Number N, (c/h = 0.05)
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=

where \,, is obtained from (10) and A, from (Carpinteri 1984)

2 (.
Mase = g o YO E oo (25)

For the relative crack depth &, let Ag, be the local rotation due to the

presence of a crack when the applied bending moment reaches the value

M,. However, it is possible to define the local rotation A¢g, for the initial

relative crack depth &, at the moment of crack propagation. ‘
For M = M, (24) can be written as

A‘Pl" = KMMMF - KMPPPCX ................................... (26)

with o = Mp/Mp = PIPp < 1if Mg < Mp;and a = 1if Mp = M.
Eq. (26) can be expressed as a function of the relevant geometrical pa-
rameters of the cracked element. To this purpose, assuming K, = K,c in

(16), it is

M P c .
chzh—j/-i]ibYM(g)_mYP<z,§> “ s s a s e e s s s e w e e e e e e (27)

and considering that P = Ppa, it follows

"
_ K,ch¥?b N F \h
D ¥ (3] Yu(€)

Taking into account (28), (26) is rewritten as

c
Koty (ﬁ’ g) |
A¢r = Aym Y& + Y. ~ Ppha| — ApypPpt oo (29)

which, with the position

£ fc
[} v, (;, g) d
c/h )\

C MP
(i) - e
h & | vace ac Aaaneh

and considering (21), becomes

Aor = Aant KY;”(’;) {1 + [y,, (% g) —y (ﬁ g) ’YM(g)]Npa} .. (1)

In (31), we should always consider that a < 1if Mz < Mpora = 1if Mg
> M,. In fact, we cannot explicitly obtain M or M. However, to obtain
the coefficient o, only the knowledge of their ratio is needed. To this pur-

pose, from (28) and (15), we obtain
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Y, (5, g)
Mg K, cbh?? h M,

= = + —_—— 32
« =3 - AR 32
PphY p (E)r" E’ 3 Yu(E)r E, 3
Then, considering (21), it follows:
p— C - ‘
YP <;;a g) 1
Mel, o1 - (33)
MP " C YM(&) ” c
(e | N {ze) Yu®
and finally a
a = MF_ 1 fOI' MF<MP ..(34)

M, ’
[YM(g)r” (icl's g) - Yp (% §>:| Np

while a« = 1 when M, = Mp.

From (31) and (34), it should then be possible to obtain the normalized
rotation Agy/K,-bh*? varying the brittleness number N, for a given relative
crack depth £&. However, it is possible to consider the ratio A /A¢x between
the values given by (31) for £ > §, and £ = §,, respectively, and to plot a
diagram where M,/K,-bh*?, given by (20) or (23), is considered the vertical
axis. In this case, in fact, if crack propagation is seen as an evolutive phe-
nomenon, ¢ giving the subsequent positions of the crack tip, the normalized
bending moment-versus-rotation diagram is obtained until the cracking phe-
nomenon develops up to the complete disconnection of the cross section.

Then, for defined geometry and toughness characteristics, the constitutive
behavior of a cracked section is well-described by the brittleness number
Np.
In Figs. 7(a)-7(e), the moment-rotation diagrams are reported for Np =
0 (no reinforcement), 0.1, 0.26, 0.53, and0:87, correspondingto-the values
planned for an experimental campaign on reinforced concrete beams (Bosco
et al. 1990a). The same figures also show the ultimate carrying capacity and
the asymptotical behavior (dotted horizontal lines) when the cross section
is completely cracked and the reinforcement is yielded. Since the resultant
tensile force is located at (h — c¢) from the upper edge of the cross section,
the ultimate bending moment results to be M, = Pp(h — ¢).

Considering that N, = Pph/(K,-bh*?), it is possible to obtain M, /(K,c
bh*?) = Ny(h — c)/h, that is, the limit value to which the normalized
moment-rotation curves tend, for every defined value of Np. It is worth
noting that for sufficiently high concrete strength and sufficiently low per-
centage of steel, this type of failure precedes crushing of the matrix.

Figs. 7(a)-7(e) illustrate the failure mechanisms given by the model,
varying the brittleness number Np. The following remarks can be made.

1. In Figs. 7(b) and 7(c) (where N, = 0.1 and 0.26 both represent a very

+low percentage-of reinforcement or a deep cross section), the contributions of

the reinforcement do not involve any appreciable increase in the load-bearing
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FIG. 7. Normalized Moment-Rotation Curves, Varying Brittleness Number N,

capacity with regard to the plain cross section. Then 'the phenomenon of crack
propagation is markedly unstable. The first cuspidal point represents the first
cracking, whereas, the second represents steel yielding.

2. In Figs. 7(d) and (e) (where.N,-.=..0.53, at
reinforcement is manifested, and the resistant bending. moment increases, be-
coming greater than M. The phenomenon changes from.unstable to stable, and
the failure mode does not result in brittleness if it is strain-controlled. However,
a snap-through instability is predicted if the process is load-controlled.

COMPARISON WITH EXPERIMENTAL RESULTS

The experimental behavior of concrete elements with a low steel per-
centage is influenced by a number of aspects that are usually neglected, yet
play a significant role. Namely, the experimental results are influenced by
nonlinear effects. In particular, the value My is affected by the nonlinearity
of tensile stress-strain relationship of concrete at the onset of first cracking,
while the:‘bending moment M is influenced by the stress-versus-crack open-
ing displacements relationship.

However, though the influence of the aforementioned nonlinearities ex-
ists, the experimental results on a series of 30 high-strength concrete beams
(Bosco et al. 1990b) revealed that keeping the scale constant and varying
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the steel content, the phenomenon of crack propagation changes from stable
to unstable, and the transition occurs at an order of magnitude of Np as
that predicted by LEFM.

The dimensionless bending moment-versus-rotation curves obtained from
the tests are grouped in brittleness classes in Figs. 8(a) to 8(e), the brittleness
number varying from zero to 0.87.

The local rotation is normalized with respect to the value Agq recorded
at the first cracking and is related to the central beam element of length
equal to the beam depth 4. The bending moment, however, is nondimen-
sionalized with respect to the critical value of the stress intensity factor of
concrete, K., and the beam depth A.

The diagrams are significant only for A¢r/A¢r > 1, the strain softening
and curvature localization occurring only after the first cracking. The di-
mensionless peak moment does not appear to be the same when the brit-
tleness class is the same and the beam depth is varied. This occurs because
reference is made to typical fracture mechanics parameters, whereas, the
cross“section is initially unnotched. However, the postpeak branches are
very close to each other and present the same shape for each selected
brittleness class. The size-scale similarity seems, then, to govern the post-
peak behavior, especially for low brittleness numbers Np.

The same brittleness transition theoretically predicted in Fig. 7, is repro-

posed by the experimental diagrams in Fig. 8 approximately for Np = Npc

= (.26.

* CONCLUSIONS

1. From the results obtained, it appears clear that even by using different

"~ congruence conditions (Carpinteri 1984), the compliance model always allows

the description of ductile as well as brittle failure behavior in structural elements
with low content of reinforcement or deep cross section. The brittleness number
N, is the parameter able to represent the transition between the two failure
modes.
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2. Important results arise when the global response is investigated. By using
the crack opening displacement congruence condition, a global response in terms
of the moment-rotation curve is obtained, which is very similar to the experi-
mental one, at least when low reinforced concrete beams are considered.

3. This theoretical model seems to represent the actual behavior of reinforced
concrete elements satisfactorily, both with low content of reinforcement and
deep cross section. Softening and snap-through instabilities are revealed by the
model as well as they are observed experimentally.

4. Although LEFM represents a simplification of reality, the model provides
useful information and, substantially, consistent prediction, especially for high-
strength concrete, which is a very brittle material.

5. If a minimum reinforcement amount is related to the condition when the
first peak moment is equal to the plastic limit ‘moment, its theoretical value
results of the same order of magnitude as that required by the most important
standard codes. However, the minimum reinforcement, -according to the model,

decreases with the beam depth (Bosco et al. 1990b).
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ApPENDIX Il. NOTATION |
The following symbols are used in this paper:

cross-sectional area of beam;

total cross-sectional area of reinforcement;

crack length;

total width of cross section;

vertical distance between reinforcement and lower edge of beam;

Young’s modulus for concrete;

mﬂv&«bl
[ | T
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yield strength of reinforcement;

total depth of cross section;

stress-intensity factor;

critical value of stress-intensity factor;

stress-intensity factor provoked by bending moment;
stress-intensity factor provoked by applied forces;

applied bending moment;

bending moment of crack propagation;

bending moment of reinforcement plastic flow;

ultimate resistant bending moment;

brittleness number, (21);

applied force (on crack surface);

yielding force of reinforcement;

Mg/Mp;

total crack opening displacement (at points where forces P are
applied); _
crack opening displacement (at points where forces P are applied)
due to bending moment;

crack opening displacement (at points where forces P are applied)
due to applied forces P;

local rotation at cracked cross section;

local rotation at cracked cross section when crack propagation
occurs for relative crack depth &;

local rotation at cracked cross section when first crack propagation
occurs (relative crack depth &);

local rotation of cracked cross section due to applied forces P,
rotational compliance due to bending moment;

rotational compliance due to applied forces;

opening compliance due to bending moment;

opening compliance due to applied forces;

relative crack depth a/h;

initial relative crack depth ay/h; and

stress in reinforcement.
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