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Fracture behavior of beam cracked across reinforcement

Crescentino Bosco and Alberto Carpinteri
Department of Structural Engineering, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Torino, Italy

Compliance change and crack tip stress intensity factor are applied to study the failure behavior of a reinforced beam with
an edge crack in the matrix. Equal and opposite forces are applied to the crack surfaces to simulate the constraint of the
reinforcement. Defined is a brittleness number that reflects the relative influence of the critical moment to trigger fracture
and that to yield the reinforcement and hence the stability of crack propagation. Minimum reinforcement for stable failure
corresponds to the condition when these two threshold moments are nearly equal. Numerical results are displayed
graphically so that specific values of the loading and geometric parameters for a given failure behavior can be determined.

1. Introduction

The basic concept of fracture mechanics as applied to determine the failure behavior of columns and
beams has received increasing attention with the realization that it could be applied to real situations [1].
The early studies on cracked columns [2,3] were followed by those on the cracking of reinforced concrete
beams subjected to bending and tensile loads [4,5]. Repeated loadings [6] were also considered in
examining the geometric scale effects of reinforced beams. This led to the determination of minimum
reinforcement of high strength concrete beams [7,8]. It is, therefore, logical to develop the idea of
cracking in reinforced structures where the matrix might behave linear elastically but the reinforcement
could adopt a linear / elastic-perfect / plastic behavior.

The model adopted in this work again incorporates compliance with crack tip stress intensity.
Included will be effect of matrix cracking across the reinforcement such that crack opening would be
constrained. Results are discussed in connection with the ductile and brittle fracture behavior of the
system.

2. Problem formulation

Consider the problem of a reinforced beam bent by moment M in Fig. 1 that contains an edge crack
of length a. A pair of forces P on the crack simulates the constraint exerted by the reinforcement. Let
Ad,p and Adpp represent, respectively, the change in angle and crack opening displacement by the
forces P at the points on the crack where they are applied, then the same quantities due to the bending
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Fig. 1. Cracked element.
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moments at M would be denoted by A¢,,,and Adp,,, respectively. Within the framework of linear
analysis, superposition yields

A =Ab8pp + ABpp=ApyyM — App P, Ad = Ay + Adpp = Ay M — Ayyp P (H)
where A;; (i, j =M, P) are the compliances of the system.

If G denotes the strain energy release rate of the system, then the variation of the total potential
energy is given by
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where b is the width of the beam. K,, and K, are the stress intensity factors due to bending moment
M and forces P, respectively.
The Clapeyron’s Theorem yields

AW = 3MAG 0 + 5PASpp + 5(PASpp + MAG,p) (3)
Making use of the Betti’s Theorem that gives
PAbpy =MAdyp (4)

egs. (2) and (3) can be reduced to the forms

1 aKIZM 1 aKIZP
_Z'MA(ﬁMM:‘/;) Tb dx, 5PA5PP=/; Tb dx (5)
such that
KK
PAB pyy = MAyp = 2[“%19 dx (6)
c

Let the Mode 1 stress-intensity factor be expressed as [2,3]

M
KIM=YM(§)W (7)

in which Y},(£) = 6(1.99¢1/% — 2.47£3/2 4+ 12.97¢5/% — 23.17¢7/2 + 24.80£°/?), for & = a/h<0.7. Here, h
is the height of the beam. Similarly, the Mode I stress intensity factor for the forces P applied at a
distance ¢ takes the form [9]

p
KIP=YP(C/h’§)W (8)
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such that ¢ =a/h and

' 2 |352(1—c/a) 435-528c/a
Yp(c/h, §) = ‘/'— (1- a/h)3/2 - (1—a/h)3/2

0 32 :
[1 30-03 (c/a) +0.83~1.76 ¢ /a [1-(1=c/a)a/h]

(1= (e/a)?)”

for a/h <1 and c/a <1
Now, substitute eq. (7) into the first of egs. (5) and divide the result by M 2 glves the comphance

Maane = bh—zE/o Yi(€) d¢ , _ 9)
with M = 1. In the same way, eq. (8) may be inserted into the second of egs. (5) to yield the compliance
Aep= 75 f RACZIOLH | o (10)

for P = 1. Finally, egs. (7) and (8) can be both put into eq. (6) rendermg the mlxed comphance
Apy =Ayp= bhE-[ Yp(c/h, €)Yy (&) d€ o o (11)

with M=1and P=1.

Numerical values of Yp(c/k, &) for c/h 0.05, 0.10 and 0.15 and £ =a/h =0.1,0.2,...,0.7 can be
found in Fig. 2. For each ¢/ ratio, it is possible to show that Y, tends to infinity for f —c¢/h* and
f — 17, As a consequence, the K, factor gives a minimum for ¢ between c/i and 1. The curve for
Y;,(¢) with £=a/h is also given. Functions Yp(c/h, £)Y,,(¢) and Y;2(¢£) with the related integrals are
plotted in Figs. 3 and 4, respectively.

3. Crack surface constraint

The reinforcement exerts certain constraint on the crack by the closing forces

P=g A, (12)
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Fig. 2. Shape functions depending on relative crack depth.
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Fig. 3. Products of shape functions. Fig. 4. Compliance functions.

with o, being the equivalent stress over the area A,. Prior to yielding or slippage of the reinforcement,
there is no local rotation of the cracked cross-section, i.e.,

Ad = Ay + Adbpp = ApppeM = AppP =0 (13)
This condition together with egs. (9) and (11) determines P as
3
f Yy (€)Yp(c/h, &) d¢

_A{_.__,.*(C/h £) = c/h (14)
o IRFGEY

If P,=0,,A denotes the yield force and o, the yield stress of an elastic-perfectly plastic reinforce-
ment, then the plastic moment can be obtained from eq. (14) as

M, =P, hr*(c/h, £) (15)
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Fig. 5. Reinforcement constraint force versus crack depth. Fig. 6. Normalized stress intensity factor versus crack depth

for varying M and ¢ /h = 0.05.
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The force P, can also be regarded as the pull-out force of the reinforcement if such an action takes place

before yielding.
Plotted in Fig. 5 are the force P in eq. (14) against £ = a/h for ¢/h = 0.05, 0.10 and 0.15. The values
of M,/P,h in eq. (15) are also shown.

4. Combined crack tip stress intensification

The stress intensity factors K,, in eq. (7) and K, in eq. (8) can be added to yield
Ky(M, P) =K;;(M) +Kp(P) for M <M, (16)
and hence for P=PF,, eqﬁation (16) applies to M > M, or
" K{(M,P)—->K(M,P,) for M>M, (17)

The force P and P, in eqgs. (16) and (17) may be eliminated by applying egs. (14) and (15), respectively. It
would therefore be understood that the combined stress intensity factor is

K((M, P) for M<M,

= 18
'\ Ky(M, P) for M>M, 18)

Plotted in Figs. 6, 7 and 8 are, respectively, the values of K; for ¢/h = 0.05, 0.10 and 0.15 as £ =a/h
and M/P,h are varied. Two regions can be identified: one shaded corresponding to reinforcement not
yielded and other unshaded. The shaded region in Fig. 6 terminates where horizontal line intersects at
& = 0.075 the curves for M /P,h <2.11 and at & = 0.63 the curves for M/P,h < 0.71. These two values of
¢ are obtained by setting K; =0 in eq. (18) which is equivalent to letting

YP(c/h’ §) —
r*(c/h; )

Obviously, eq. (19) holds regardless of M. For M /P,h £0.71 and £ <0.075 or £>0.63, K; could
become negative. This means that crack would tend to close. A closer examination shows that for a
relatively small moment M /P h < 0.71, thé reinforcement could yield only for very small or very large &
or crack depth. .

Note that within the shaded region in Fig. 7, the K; versus ¢ curves for M /P,h £0.95 possess a
maximum, say Ky, at &= 0.324. This implies that crack would propagate with increasing K; (unstable)

Ky +Kp=0 or Y, (&) - 0 (19)
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Fig. 7. Normalized stress intensity factor versus crack depth Fig. 8. Normalized stress intensity factor versus crack depth

for varying M and ¢/h = 0.10. for varying M and c/h = 0.15.
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or decreasing K, (stable). In the unshaded region where the reinforcement has yielded, the maxima of
the two curves for M/P,h = 0.8 and 1.0 no longer occur at the same values of ¢ and the curves for
M/P,h > 1.1 have no maxima.

Since the results in Fig. 7 for ¢/h =0.10 and Fig. 8 for ¢/h =0.15 are similar to those in Fig. 6,
additional discussions are not necessary except to note that the size of the shaded region decreases with
increasing c/h ratio.

5. Onset of matrix cracking

Let K. denote the fracture toughness of the matrix material such that the onset of fracture
corresponds to K; in eq. (16) reaching K. Then the critical moment My can be found from the
application of egs. (7), (8) and (16)

Mg P '
K1c=WYM(§) _WYP(C/h, £) (20)
The above expression may be rearranged to read as
M 1 Yo(c/h,
M 1 Xe/m ) o
bh*?Ky.  Yyu(€) 7 Yy(é)

in which N, is defined as the brittleness number:

\/E(P) withP:{O'spAs for Mg >M,

A oA, for Mp<M, ' (22)

P K

Ic

where A4 =bh is the cross sectional area of the beam. Remember that o, is the yield stress of the
reinforcement. Alternatively, eq. (14) for M = My at fracture may be used in eq. (20) to give

Mg Yp(c/h, £) -
Ky [YM“"W @

The critical moment is seen to depend on the crack depth £ for a given geometry and not on the
brittleness number N,

Displayed graphically in Fig. 9 are the variations of normalized My in eq. (23) with £ for ¢/h = 0.05
as N, is varied. For N, < 0.46, the condition Mg > M, prevails such that crack propagation occurs when
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Fig. 9. Normalized critical moment versus crack depth for Fig. 10. Variations of threshold moment ratio M,/My with

varying N, and c¢/h = 0.05. . N
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the reinforcement is in the yielded state. Those N, = constant curves that do not intersect with the
envelop My=M, tend to decrease with increasing ¢. The fracture moment of beams with low
reinforcement and /or large cross sections would tend to decrease as the crack extends. This corresponds
to unstable crack growth. Hence, cracking becomes stable if N, is sufficiently high or when the beam
cross section is relatively small and/or the reinforcement is relatively high.

6. Effect of reinforcement on fracture behavior

As discussed earlier, crack propagation can occur regardless of whether My is greater or smaller than
M,,. That is, crack growth can take place with reinforcement yielding or without. The ratio M,/ Mg
would be indicative of the effect of reinforcement on fracture behavior. To this end, eq. (20) can be
arranged solving for 1 /M - Then, multiply one side of the resulting expression by M, and the other side
by P hr*(c/h, £) as given by eq. (15). With aid of the definition of N; in eq. (22), 1t follows that

M, e/, )Yy (£)
Mg

> (24)
Ny HY,(e/h, £) 5 "

p

where P=o,, A, or ,A; depending on whether My is larger or smaller than Mp as defined in eq. (22).
A graphical representation of eq. (24) is given in Fig. 10 for different ¢ and ¢ /A = 0.05. Variations of

M, /My with N, show that for N, < 0.46, most of the results fall in the region M, > My except for large

values of § where the curves fall below the line M, =M. Two conditions of failure could occur:

e Fracture before yield of reinforcement. This occurs for 0.08 < ¢ < 0.63 and N, > 0.46 such that the beam
fractures without local rotation of the cross section, i.e., A¢ =0. '

o Fracture after yield of reinforcement. This corresponds to low values of N, or large beam cross section
and/or low strength reinforcement.

It is of interest in general to determine when My is nearly equal to M,,. This would correspond to the

condition of minimum reinforcement [7,8] for stable failure upon reaching the critical moment.

7. Concluding remarks

Examined in this work is the influence of reinforcement on a crack in the matrix. A pair of closing
forces is used to simulate the reinforcement constraint. Yielding of the reinforcement tends to alter this
constraint and hence the onset of crack growth. Results are expressed in terms of the moments My and
M, corresponding to fracture initiation in the matrix and yield initiation in the reinforcement. Change in
the failure behavior could also be reflected through a brittleness number N, that weighs the relative
magnitude of Mg and M|, through the reinforcement constraint stress in the elastic state ¢, and plastic
state oy,

For a rigid-plastic material with linear hardening, it is possible to obtain from eq. (13) the notation:

Ad =y (M —M,) for M>M, (25)

Unstable fracture coincides with the termination of hardening and is represented by the sudden drop on
a plot of M versus A¢. The ligament of the specimen breaks off. Stable fracture would correspond to
continuous hardening of the material [4,5] on the M versus A¢ curve. A transitional value of N, say N,
can be defined from eq. (21) by letting Mg = P,h and knowing from eq. (22) that P, /b\/_ K= N This
yields immediately the relation

Ny = Y3 (&) = Yp(c/h, £)] 7 (26)
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Stable fracture (N, >N,.) and unstable fracture (N, <N,.) can thus be identified simply with the
geometric configuration of the specimen. These findings represent an improvement over the previous
works [4,5] and could possibly provide better correlation of the data in [7,8].
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