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Abstract—Marble specimens were tested in bending to determine the amount of energy recovered
in catastrophic (snap-back) failure. Such energy is released in the time period immediately following
the achievement of the peak load and it is measured statically in the case of slow and controlled
failure modes or dynamlcally in the case of instantaneous failure modes. An evident increase in
recovered energy, W*, is observed by i mcreasmg specimen length, especlally if compared with the
ultimate elastic energy, W,, contained in the body at failure;

INTRODUCTION

IN SOME materials, such as.rocks and concrete, especially when they possess very high strength,
catastrophical (snap-back) failure gives rise to the release of a remarkable amount of energy[1, 2].
In the event of a potentially unstable fracture process, such energy can be measured statically, for
instance, by controlling crack mouth opening displacement in specimens tested in bending[3-5]. If
failure becomes instantaneous when increasing the brittleness of the specimen, however, the static
method will no longer be applicable. ‘

This paper demonstrates that the amount of energy recovered can be measured dynamically[6]
through a negative impulse produced by the specimen in the time interval immediately following
the achievement of peak load.

. The tests were performed on marble specimens in bendlng First, the brittleriess of the
specimen is shown to vary by varying specimen slenderness from a theoretical standpoint; then the
amount of energy recovered is measured, statically in the case of less slender specimens, and with
a dynamic detector for the slenderer ones undergoing instantaneous failure.

THEORETICAL APPROACH TO THE PROBLEM

Let us consider a specimen with slenderness A =1/, where / =beam span and b = beam

depth.
The linear elastlc behaviour of a three point bending initially uncracked beam may be

represented by the following dimensionless equatlon.

P= Fé N
where the dimensionless load and central deflection are respectively given by:
................... S ST LN S
o, tb¥ T g,b?

being ¢ = beam thickness, o, = ultimate tensile strength, ¢, = ultimate tensile strain.

Once the ultimate tensile strength ¢, is achieved at the lower beam edge, a fracturing process
in the central cross-section is supposed to start. Such a process admits a limit-situation like that
in Fig. 1. The limit stage of the fracturing and deformation process may be considered as that of
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Fig. 1. Limit-situation of complete fracture with cohesive forces.

two rigid parts connected by the hinge A in the upper beam edge. The equilibrium of each part
is ensured by the external load, the support reaction and the closing cohesive forces. The last
depend on the distance between the two interacting surfaces: increasing the d1stance w, the cohesive

forces decrease linearly until they vanish for w >w,.
The geometrical similitude of the triangles ABC and AB’C’ in Fig. 1 provides:

5 w2

—_— ¢ . 2

l /2 x @
where x is the extension of the tnangular distribution of cohesive forces. Equation (2) can be

rearranged as:

w.l .
x—ﬁ o 3)

The rotational equilibrium round point A is possible for each beam part only if the moments
of support reaction and cohesive forces, respectively, are equal:

Pl oyxtx
2277 % | - @
Recalling eq. (3), the relation between load and defiection may be obtained:
' o thw? 1 . ‘ .
P | 2

'EQuation (5 can be put into dimensionless form:
~ 1 [sgA? '
P=5 6 <e 5 > - ©®

where s; = w,/2b is the brittleness number of the specimen[1].
While the linear equation (1) describes the elastic behaviour of the beam, initially uncracked,

the hyperbolic equation (6) represents. the asymptotical behaviour of the same beam, totally
cracked. Equation (1) is valid only for load values lower than that producing the ultimate tensile

strength o, at the lower beam edge:

P<i ' (7
On the other hand, eq. (6) is valid only for deflection values higher than that producing a cohesive
zone of extenswn x equal to the beam depth b:

x <b. o ®)
From egs (3) and (8) it follows: ' '

o SpAl
0= 5 ©®)
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Fig. 2. Load—deflection diagrams: (a) ductile and (b) brittle condition. §, = 13/6; &, = sz A2 /3¢,.

The bounds (7) and (9), upper for load and lower for deflection respectively, can be transformed
into two equivalent bounds, both upper for deflection and load. Equations (1) and (7) provide:

3
_ 5 s% , | - (10)
whereas eqs (6) and (9): _
P<i (11)

Conditions (7) and (11) are coincident. Therefore, a stability criterion for elastic-softening
beams may be obtained comparing egs (9) and (10). When the two domains are separated, it is
presumable that the two P—6 branches—linear and hyperbolic—are connected by a regular curve
(Fig. 2a). On the other hand, when the two domains are partially overlapped, it is well-founded
to suppose them as connected by a curve with highly negative or even positive slope (Fig. 2b).

Unstable behaviour and catastrophical events are then expected for: '

sgd? A3 .
< 12
‘ 2, ~ 6 S (12)
and the brittleness condition for the threie_' point geometry becbmes:
SE 4 »
— <. 13

Thus brittleness increases with increasing slenderness, for the same values of brittleness number

sg and ultimate deformation e,. ‘
_ From eq. (13) it can be seen that the structure behaviour shifts from ductile (case D in

Fig. 3) to catastrophic (case C in Fig. 3) as the slenderness, 4, is increased.
By analysing the curve in Fig. 4 it appears evident that from point 1 to point 2 we
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. Fig. 4. Load-deflection diagram corresponding to a
Fig. 3. Load—deflection diagrams corresponding to: catastrophic failure. W* =recovered energy; W, = total
D =ductile failure, F = brittle failure, C = catastrophic fracture energy.

failure.
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get a derivative dP/dé with positive sign, corresponding to an inversion in the loading point
displacement.

The energy stored in the specimen in the stage 01, W, is partially recovered in the stage 1—2
and the area W*, defined by the boundary 123, therefore represents the total energy recovered by
the specimen during failure. The greater the specimen slenderness is, the greater the percentage of
energy W* compared with W,, results to be on the basis of eq. (13). W* is determined statically

by controlling the crack mouth opening displacement(3, 4, 6, 7, 8]. '

On the other hand, for high slenderness values involving instantaneous specimen failure, these
methods prove inadequate. In such cases, W* can be measured dynamically through a negative
impulse of the specimen against the testing machine, in the time interval immediately following the

achievement of the peak load.

NEGATIVE IMPULSE METHOD

The negative impulse method can be briefly summarized as follows.

(1) Measure of the impulse transmitted by the specimen to the testing machine at failure in
the time interval #,—t; (see Fig. 4).

(2) Analysis of the impulse and of the corresponding momentum.

(3) Calculation of the energy W* during the failure process.

The following assumptions are also made.

(i) Specimen failure is instantaneous, that is, the time interval between ¢, and t; is infinitesimal

and equal to dz. .
(ii) The variation in the displacement, dd; of the loading point over the time interval dt, tends

to zero and hence can be neglected. - : :
If specimen failure occurs in bending according to Fig. 5, with the rotation.of two rigid parts’

around their centre of instantaneous rotation C, the angular momentum theorem can be applied

as follows:

&
ng Fdi=I.0 (14)

!
where I is twice the moment of inertia of the single part valuated ‘with respect to the centre C
and can be written as: :
Ie=1Is+m-CG* (15)

I; being the baricentric moment of inertia, m the specimen mass, CG the distance between poi‘nt
C (centre of instantaneous rotation) and the barycentre of the single part, § the angular velocity.
From eq. (14) we deduce: o .o - :
| o= ["ra - (16)
L =— | Fdt o

2 IC I ’

o

2 ‘ |
L/2 |

Fig. 5. Kinematics of the fracturing specimen in flexure.
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Fig. 6. Specimens with different slenderness.
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The variation in kinetic energy associated with the specimen is found to be:
=11.6% , (17)

The distance CG in eq. (15) 18 obtalnable from simple geomietrical considerations and it is a
function of the displacement ¢:

CG =./Gbjcos§ —LLOY + Gl —3L —b0)P if 5+#0 (18)
CG=./GbY+(GI—1L)y if 6=0. ‘ (19)
Moreover we have: .
2 2
Ig=m M'{'_b (20)
12
From egs (16) and (17) we get: /
t 2
( f 3th> N
T 3L, . | (21)

When friction and dissipative phenomena between specimen and testing machine can- be
neglected, the theorem of kinetic energy provides:- .
T =W*, ;o (22)

The work W* (Flg 4) of all the forces applied to the specimen is therefore equal to the variation

in kinetic energy 7.
" Thus, by measuring the impulse with an impact force transducer placed between specimen and

loading machine, the amount of energy W* can .be calculated through eqs (16) to (22).

TESTING PROCEDURE

The tests were carried out on specimens of Carrara marble (F1g 6) with the characteristics

shown in Table 1.
For low slenderness values, 4 =//b(4,,4,, 4;), the specimens were tested in three point

bending, making use of an MTS machine with maximum loading capacity of 5kN.
Load-deflection (P-6) diagrams were plotted by controlling the crack mouth opening

displacement. The latter was increased at a constant rate of 2.5 x 107" m/s.
On the other:hand, for higher slenderness values (4, ).4, As) the negative impulse was measured

by means of the following set-up (see Fig. 7):

—MTS machine (5kNmax. loading capacity) with constant displacement rate control

(5 x 10~*m/s). ‘
—Impact force transducer, type PCB, Pietronics 200 A03, with a maximum allowable dynamic
force of 5001b (Ib=4.44N) and a maximum allowable static force of 50001b, placed

between specimen and loading machine.

The transducer o‘utput sigﬁal supplied the input for a Fourier analyser. At the same time, from the
P-§ branch before failure the elastic energy W, stored in the specimen was computed (Table 2).

Table 1. Characteristics of the Carrara marble specimens and slenderness values

Sizes and notch depth

[m-10-%]
Slenderness Support span Density
............. Typeoftest . A=lb  ~ ml0? b L t a kg

Static tests A =26 - 16 6 20 2 01 2.46-10°

Ay=4 16 4 20 2 0l 2.46:10°

Ay=8 - 16 2 20 2 0l 2.46-10°

Dynamic tests Ay =38 16 2.20 2 o0l 2.46-10°

4=195 19 2 20 4 01 2.46-10°

As=12 24 2 30 6 01 2.46-10°
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Table 2. Values of #W* and W*/W, measured through static tests and negative impulse method
(Carrara marble specimens tested in bending)

Type of test Static tests Dynamic tests
Slenderness A ="7/b A =26 =4 Ay =8 =8 A4=95 A;=12
JF ds [N-sec] — — — 0.023 -0.052 0.083
W* [N-m-107%) 13.2 7.5 4.9 4.5 20 28.2
W, [N'm-1073] 328.0 183.0 60.9 71.8 150.6 216.1
W*|W, 4.03% 4.09%  8.04% 6.26% 13.28% 13.04%

INTERPRETATION AND DISCUSSION OF THE RESULTS

Figure 8 shows the load vs deflection diagrams obtained statically for the less slender

specimens (slenderness values 4;, 4,, 4;). The W* energy, represented by the shadowed area, and
the elastic energy W., i.e. the area under the curve before failure, are given in Table 2.

Figure 9 (a, b,c) shows the force vs time diagrams obtained by means of the dynamic

transducer during the failure process of the slenderer specimens (slenderness values A, 44, As).

The negative impulse [F d¢ (compression) is represented by the shadowed area. From the

impulse (see Table 2), the value ‘of W* can be determined by means of eqs (16)—(22):

The values of W* and W, obtained through dynamic measurements are also'given in Table 2.

It should be observed that the value of the ratio W*/W, given in the last line of the same table
tends to increase by increasing specimen slenderness and reaches a value equal to about 13%, which
was measured dynamically.

CONCLUSIONS

(1) The failure of Carrara marble specimens tested in bending, with slenderness 4 = //b varying

between 3 and 12, takes place catastrophically with a remarkable release of energy W*.

2000,
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Fig. 7. Testing apparatus: (1) impulse transducer; 3 {mm)
(2) specimen; (3) MTS machine; (4) Fourier Fig. 8. Experimental load—deflection diagrams

analyser. obtained statically for low slenderness specimens.
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Fig. 9(a). Impulsive force F vs time (slenderness 4; = 8).
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Fig. 9(b). Impulsive force F vs time (slenderness 4, =9.5).
100
2
b

o l i
0 . 0.005 o0l
t(s)

Fig. 9(c). Impulsive force F vs time (slenderness 1;= 12).

(2) The ratio W*/W,, i.e. the ratio between the recovered energy and the elastic energy stored
at failure, tends to increase by increasing specimen length in agreement with. the theoretical
prediction of eq. (13).

(3) For the higher slenderness values, failure becomes uncontrollable and instantaneous. In
this case the ratio W*/W,, measured through the negative impulse, reaches a value of about 13%.
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