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ABSTRACT

A coHESIVE crack model is applied to analyse slow crack growth in elastic-softening materials. The shape
of the structural load—displacement response is changed substantially by varying the size-scale while keeping
the geometrical shape of the structure unchanged. The softening branch becomes steeper when the size-
scale increases. A critical size-scale exists for which the softening slope is infinite. In such a case the load
carrying capacity drastically decreases for relatively small displacement increments. Then, for size-scales
larger than the critical one, the softening slope becomes positive and part of the load—displacement path
becomes virtual if the loading process is displacement-controlled. In such a case, the loading capacity will
present a discontinuity with a negative jump. The size-scale transition from ductile to brittle behaviour is
governed by a nondimensional brittleness number sz which is a function of material properties and structure
size-scale. A truly brittle failure occurs only with relatively low fracture toughnesses %, high tensile
strengths o,, and/or large structure size-scales b, i.e. when sz = %cfs,b — 0.

On the other hand, if the loading process is controlled by a monotonically increasing function of time
(e.g. the crack mouth opening displacement), the snap-back instability in the load-displacement curve can
be captured experimentally. When the post-peak behaviour is kept under control up to the complete structure
separation, the area delimited by the load—displacement curve and the displacement-axis represents the
product of %c and the initial ligament area.

Finally, it is verified that, for sz — 0, the maximum load for catastrophic failure is provided by the simple
LEFI};{Illfondition : Ky = Kic = J/%cE (plane stress), and that there is no slow crack growth prior to
instability.

1. INTRODUCTION

It 15 OBSERVED experimentally that, in some cases, the plastic zone at the crack tip
develops as a localized strain field colinear to the initial crack line. In other cases, the
crack tip plastic zone is diffused in a wider band or even presents a butterfly-shape,
when the material is particularly ductile. The cohesive crack model considered in this
work is a representative model only when the plastic zone is confined to a very narrow
band. It consists of an ideal crack, including in its length also the real plastic zone,
with restraining forces which close the crack tip faces and simulate the effects of
plasticity. In fact, such forces are usually non-increasing functions of the distance
between the crack surfaces. Softening cohesive relationships between force and crack
opening reveal themselves to be very accurate in describing crack behaviour and strain
localization in cementitious and polymeric (fibre-reinforced) composites.
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The cohesive crack model was originally proposed by BARENBLATT (1959), who
considered the interatomic restraining forces near the crack tip confined to an inter-
action zone of constant size. The shape of the terminal crack region was supposed to
be fixed even if translating, while the stress at the end of the crack , due to external
load and cohesive force distribution, was assumed to be finite.

A similar analysis was independently conducted by DUGDALE (1960) to study the
extent of plastic yielding in steel sheets (of infinite size) containing an initial crack.
The cohesive model was reconsidered by BiLBY, COTTRELL and SWINDEN (1963) and
the distribution of plastic strain in the yielded region was represented by an inverted
pile-up of dislocations. A comparison of the crack growth criteria of GRIFFITH (1921)
and BARENBLATT (1959) was provided by WiLLIs (1967), who proved the coincidence
of the modulus of cohesion with the critical stress-intensity factor. Then, RicE (1968)
observed that the critical value of the J-integral is equal to the area under the diagram
of stress vs crack opening displacement.

In the last few years, the cohesive crack model was reproposed, with some modi-
fications, by WNUK (1974)—the Final Stretch Model—and by HILLERBORG, MODEER
and PETERSSON (1976)—the Fictitious Crack Model. The latter was applied mostly
to concrete-like materials and numerically implemented in a finite element program.
Lastly, FooTg, MAI and CotTereLL (1986) developed a theoretical model able to
show that the K curve is almost unique and independent of specimen geometry and
initial crack length.

In the present paper the cohesive crack model is applied to analyse stable vs unstable
crack propagation in elastic-softening materials. The shape of the structural load—
displacement response changes substantially by varying the size-scale while keeping
the geometrical shape of the structure unchanged. For size-scales larger than a
threshold value, a snap-back instability appears, when the plastic zone is still absent
and the slow crack growth has not yet occurred. Asymptotically, the snap-back load
may be provided by the simple LEFM condition: K; = Kjc (CARPINTERI, 1985).

The snap-back load—displacement branch may be captured experimentally if the
loading process is controlled by a monotonically increasing function of time, such as
the crack mouth opening displacement.

The size-scale transition from ductile to brittle behaviour is governed by a dimen-
sionless brittleness number sz, which is a function of material properties and structure
size-scale. A truly brittle failure occurs only with relatively low fracture toughnesses,
%, high tensile strengths o, and/or large structure size-scales b, i.e. when
Sg = gIC/aub - 0.

A Dimensional Analysis application to fracture mechanics is presented. It is
shown that, due to the different physical dimensions of strength, [F] [L]~% and
toughness, [F] [L]~', scale effects are always present in the experimental testing of
common engineering materials (CARPINTERI, 1981, 1982). The virtual propagation of
a brittle fracture is also considered. Such an approach is analogous to that of BERRY
(1960) and demonstrates that large cracks are more stable than small cracks. The
same trend was recently confirmed experimentally by BioLzi, CANGIANO, TOGNON
and CARPINTERI (1987).

An algorithm to describe cohesive crack propagation is presented in Section 2,
whereas the size-scale transition from ductile to brittle failure is dealt with in Section
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3. The brittleness-ratio of ultimate elastic energy to energy dissipated in the fracture
process is introduced in Section 4. This ratio tends to infinity, for the size tending to
infinity, when the element is initially uncracked. On the other hand, it tends to a
finite quantity when there is an initial crack. In the latter case, the snap-back load—-
displacement branch is always distinct from the elastic one. '

2. CoOHESIVE CRACK PROPAGATION

The cohesive crack model is based on the following assumptions.

(1) The cohesive fracture zone (plastic or process zone) begins to develop when
the maximum principal stress achieves the ultimate tensile strength o, (Fig. 1a).

(2) The material in the process zone is partially damaged but still able to transfer
stress. Such a stress can be considered as linearly dependent on the crack opening
displacement w (Fig. 1b).

The energy necessary to produce a unit crack surface is given by the area under the
o-w diagram in Fig. 1b:

W‘,
Gic = J cdw = io,w,.
0

The real crack tip is defined as the point where the distance between the crack
surfaces is equal to the critical value of crack opening displacement w, and the normal
stress vanishes (Fig. 2a). On the other hand, the fictitious crack tip is defined as the
point where the normal stress attains the maximum value o, and the crack opening
vanishes (Fig. 2a).

A three point bending slab of elastic-softening material is considered (Fig. 3). The
displacement discontinuity on the centre line may be expressed as follows :

STRESS, ¢
STRESS, ¢

=

-—

\

STRAIN, € OPENING, w

(a) (b)

FIG. 1. Stress-strain (a) and stress—crack opening displacement (b) constitutive laws.
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FiG. 2. Stress distribution across the cohesive zone (a) and equivalent nodal forces in the finite element
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F1G. 3. Finite element nodes along the potential fracture line.
b
w(x) = J‘ K(x,p)o(»)dy+Cx)P+T(x) for 0<x<b, )
0

where K and C are the influence functions of cohesive forces and external load
respectively, and I is the crack opening due to the specimen weight. If a stress-free
crack of length a has developed with a cohesive zone of length Aa the following
additional conditions are to be taken into account:

c(») =0, for 0<y<a, (2a)
o(y) = o‘u[l — iny)]’ for a<y<(a+Aa), (2b)

w(x) =0, for (a+Aa) <x<b. (2¢)
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Equations (1) and (2) can be rearranged as follows:

w(x) = f ke, y)[l 0 )Ja,, dy

We

b
+J . K(x,y)a(y) dy+ C(x)P+T(x),

for 0<x< (ea+Aa), (3a)
w(x) =0, for (a+Aa)<x<b. (3b)

The function ¢(y) depends on the distribution w(x) and on the external load P.
Therefore, for each value of P, (3a) represents an integral equation for the unknown
function w. On the other hand, the beam deflection is given by

b
6= L C(»o(y)dy+D,P+D,, 4

where D, is the deflection for P =1 and D, is the deflection due to the specimen
weight.

A numerical procedure is implemented to simulate a loading process where the
parameter incremented step by step is the fictitious crack depth. Real (or stress-free)
crack depth, external load and deflection are obtained at each step after an iterative
computation. The closing stresses acting on the crack surfaces (Fig. 2a) are replaced
by nodal forces (Fig. 2b). The intensity of these forces depends on the opening of the
fictitious crack w, according to the o—w constitutive law of the material (Fig. 1b).
When the tensile strength o, is achieved at the fictitious crack tip (Fig. 2b), the top
node is opened and a cohesive force starts acting across the crack, while the fictitious
crack tip moves to the next node.

With reference to the three point bending test (TPBT) geometry in Fig. 3, the nodes
are distributed along the potential fracture line. The coefficients of influence in terms
of node openings and deflection are computed by a finite element analysis where the
fictitious structure in Fig. 3 is subjected to (n+1) different loading conditions. Con-
sider the TPBT in Fig. 4a with the initial crack tip in the node k. The crack opening
displacements at the n fracture nodes may be expressed as follows :

w=KF+CP+T, ©)
where

w = vector of the crack opening displacements,

K = matrix of the coefficients of influence (nodal forces),

F = vector of the nodal forces,

C = vector of the coefficients of influence (external load),

P = external load,

I' = vector of the crack opening displacements due to the specimen weight.

On the other hand, the initial crack is stress-free and therefore
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FIG. 4. Cohesive crack configurations at the first (2) and (/—k+ 1)th (b) crack growth increment.

F,=0, for i=12,...,(k=1), (62)
while at the ligament there is no displacement discontinuity :
w; =0, for i=k,(k+1),...,n (6b)

Equations (5) and (6) constitute a linear algebraic system of 2z equations and 2n
unknowns, i.e. the elements of vectors w and F. If load P and vector F are known, it
is possible to compute the beam deflection 6:

8 = C'F+D,P+D,. 0

After the first step, a cohesive zone forms in front of the real crack tip (Fig. 4b),
say between nodes j and /. Then Eqs (6) are replaced by

F,=0, for i=12,...,(j—1), (8a)
W; ..

F}=Fu<1—y), for i=7(G+D,....1 (8b)

w; =0, for i=L{+1),...,n, (8c)

where F, is the ultimate strength nodal force (Fig. 2b):
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F, = bo,[m. )

Equations (5) and (8) constitute a linear algebraic system of (2n+ 1) equations and
(2n4-1) unknowns, i.e. the elements of vectors w and F and the external load P.

At the first step, the cohesive zone is missing (/ = j = k) and the load P, producing
the ultimate strength nodal force F, at the initial crack tip (node k) is computed. Such
a value Py, together with the related deflection 6 computed through (7), gives the first
point of the P-d curve. At the second step, the cohesive zone is between the nodes k
and (k+1), and the load P, producing the force F, at the second fictitious crack tip
(node k+1) is computed. Equation (7) then provides the deflection §,. At the third
step, the fictitious crack tip is in the node (k+2), and so on. The present numerical
program simulates a loading process where the controlling parameter is the fictitious
crack depth. On the other hand, real (or stress-free) crack depth, external load and

deflection are obtained at each step after an iterative procedure.

The program stops with the untying of the node »n and, consequently, with the
determination of the last couple of values F, and §,. In this way, the complete load—
deflection curve is automatically plotted by the computer.

3. S1zE-SCALE TRANSITION FROM DUCTILE TO CATASTROPHIC FAILURE

Let us consider a cracked beam in flexure with the span #, equal to four times the
beam depth & (Fig. 3). Such sizes will be scaled with geometrical similitude, whereas
the beam thickness will be kept constant, # = 10 cm. The initial crack depth a,/b, will
range between 0.0 (initially uncracked beam) and 0.5. The mechanical properties are
those typical of a concrete-like material :

Young’s modulus £ = 400000 kg cm ™2,
ultimate tensile strength o, = 40 kg cm™2,

critical crack opening displacement w, = 0.005 cm.

The area under the ¢ vs w curve in Fig. 1b is the strain energy release rate
Ye=130w,=01kgcm™".

For the size-scale parameter b = 10 cm, the load—deflection curves are reported in
Fig. 5a by varying the initial crack depth ao/b. For deep cracks, stiffness and loading
capacity decrease, whereas ductility increases. The slope of the softening branch
achieves its maximum when the beam is initially uncracked.

The load—deflection curves in Fig. 5b relate to the case b = 20 ¢cm. The general
trend by varying the geometrical ratio a,/b is the same as in Fig. 5a. In this case,
however, the maximum softening slope for a,/b = 0 is nearly infinite and a drop in
the load carrying capacity is predicted when 6 ~ 12 x 1073 cm.

The case b = 40 cm is described in Fig. 5c. For a,/b < 0.20, the softening slope
presents even positive values with snap-back of the P-4 curve. If the loading process
is deflection-controlled, the load will present a discontinuity with a negative jump.
Substantially, this is the case of a cusp catastrophe.
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FIG. 5. Load—deflection curves obtained by varying the initial crack depth a,/b. (a) b = 10 cm; (b) & = 20
cm; (c) b=40cm; (d) b =80 cm.

The case b = 80 cm is eventually contemplated in Fig. 5d. The cusp catastrophe
occurs for agh < 0.25. That is, when the size-scale increases, the initial crack depth
interval of the cusp catastrophe spreads.

The opposite trends of brittleness increase by increasing size-scale and/or decreasing
initial crack depth, are shown schematically in Fig. 6. The gradual transition from
simple fold catastrophe to bifurcation or cusp catastrophe generates an equilibrium
surface (or catastrophe manifold).

Such theoretical results were confirmed by BIoLzI et al. (1987) through an experi-
mental investigation on high strength concrete beams. The mechanical response of
the specimens with deep cracks appeared stable (Fig. 7a). Both load—deflection and
load—CMOD curves showed the same shape with a softening branch of negative slope.
By decreasing the relative crack depth such a branch becomes steeper with an increase
in the brittleness of the system. At the same time, obviously, loading capacity and
stiffness increase.

The specimens with shallow cracks (Fig. 7b) on the contrary, presented a very
unstable behaviour. Whereas the load-CMOD curves have a softening tail with
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FiG. 5.—continued.

negative slope, the load—deflection curves are characterized by a snap-back softening
instability with a softening branch of partial positive slope. More precisely, the case
@, = 30 mm shows an almost vertical drop in the loading capacity when the maximum
load is achieved. This experimental finding confirms the theoretical results in Fig. 5.
In fact, the relative crack depth a,/b = 0.3 is the critical condition between stability
and instability for deflection-controlled loading processes. If the loading process had
been deflection-controlled, then, once the bifurcation point of the loading path had
been reached, the load would have presented a negative jump down to the lower
softening branch with a negative slope. Therefore, it is evident that, although the
process is unstable in nature, it can develop in a stable manner if CMOD-controlled.

All the diagrams in Fig. 7 converge towards the same asymptotic tail, the limit
situation being independent of the initial crack length.

The previous theoretical and experimental analyses emphasize that the (brittle or
ductile) structural behaviour is connected with a geometrical feature, as is the case of
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FiG. 6. Three point bending specimen (a) and catastrophe manifold (b).

the crack depth. More generally, all the geometrical features of the specimen influence
the global brittleness (or ductility), and particularly slenderness and size-scale.

The maximum loading capacity P{), according to the cohesive crack model is
obtained from the P-§ diagrams in Fig. 5. On the other hand, the maximum load
P®, according to LEFM can be derived from the ASTM formula, with the critical
value of stress-intensity factor Kic computed according to the well-known relation-
ship:

KIC = glcE. (10)

The values of the ratio PL),/P2, are reported as functions of the dimensionless
size, bo,/%:c, or equivalently, of the energy brittleness number, sz = % c/o.b in Fig.
8. The ratio P{),/P{?, may also be regarded as the ratio of the fictitious fracture
toughness (given by the non-linear maximum load) to the true fracture toughness
(considered as a material constant).

It is evident that, for low s; values, the results of the cohesive crack model tend to
those of LEFM.:

lim P{), = P2, (11)
sg=0
and, therefore, the maximum loading capacity can be predicted applying the simple
condition K; = Kjc (CARPINTERI, 1985).

The fictitious crack depth at the maximum load is plotted as a function of the

inverse of brittleness number s in Fig. 9. The brittleness increase for sz — 0 is evident
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FIG. 8. Size-scale transition towards LEFM.

also from these diagrams, the process zone at dP/dé = 0 tending to disappear, whereas
it tends to cover the whole ligament for sz — oo (ductile collapse). The real (or stress-
free) crack depth at the maximum load is nearly coincident with the initial crack depth
for each value of sz This means that the slow crack growth does not start before the
softening stage. Therefore, neither the slow crack growth occurs nor the cohesive zone
develops before the peak, when sz — 0.}

Recalling once again Figs 8 and 9, it is possible to state that, the smaller the
brittleness number sy, is, i.e. the lower the fracture toughness ;c, the larger the size-
scale b and/or the higher the ultimate tensile strength ¢,, the more accurate the cusp
catastrophe is in reproducing the classical LEFM instability.

4. FRACTURE ENERGY DISSIPATION AND BRITTLENESS LiMiT
FOR INFINITE SIZE-SCALE

If the loading process is controlled by a monotonically increasing function of time,
like, for instance, the crack mouth opening displacement, the snap-back behaviour in
the load—displacement curve can be captured experimentally. When the post peak
behaviour is kept under control up to the complete structure separation, the area
delimited by the load—displacement curve and displacement-axis represents the pro-
duct of strain energy release rate %c, with the initial ligament area (b—ay)?, (Fig. 10).

+Slow crack growth and cohesive zone may develop only if both load and displacement are decreased,
following the virtual branch with positive slope. On the other hand, with normal softening (i.e. only
negative slope in the P-6 curve after the peak) only the load must be decreased to control the fracture
process.
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F1G. 9. Fictitious crack depth at the maximum load as a function of dimensionless size. (@) ag/b =10.1; (b)

ao/b=10.3; (c) ay/b =0.5.
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(a) (b)

FiG. 10. Energy dissipated in the fracturing process. Ductile (a) and brittle (b) behaviour.

The area under the curve ao/b = 0.0 is thus twice that under the curve ao/b = 0.5 in
Fig. 5a, as well as the half of that under the curve a,/b = 0.0 in Fig. 5b, etc. This
simple result is due to the assumption that energy dissipation occurs only on the
fracture surface, while in reality energy is also dissipated in a damage volume around
the crack tip. When the brittleness number s; — 0, PWM ~ P2 and (10) provides:

(¢/b)*f*(ae/b)
— 2
gIC - Pmax bt2E (12)
being:
Pmax/ a
K = Wf(f) (13a)
1/2 3/2 5/2 772 9/2
f<%9> = 2.9(%) —4.6<a-l;’-> +21.8(%> —37.6(%) +38.7<%9> .
(13b)

In a three point bending specimen of linear elastic material the deflection is given by
the contribution of a distributed and a concentrated compliance respectively (TADA,

Paris and IRWIN, 1963) :
Pl1/¢N 3(¢V [a
0 =E[Z <z) * 5<z>g(z>} =

where g(ao/b) is given by:

2
a,/b 2 3 4
P _[— - % Qo) _ % %
g<?> =\,_@ {5.58 19.57<b >+36.82<b> 34.94<b> +12.77<b> }
b

(15)
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Fic. 11. Definition of structure brittleness as the ratio of elastic energy contained in the body at the
bifurcation point to energy dissipated in the fracturing process. Initially cracked (a) and uncracked (b)
specimen.

Relation (14) is valid also at the point of instability, and then (12) is transformed as

follows :
2 G0 _%
4 <b><1 b)

gIC(b_aO)I = (PraxOmax/2) 1 </> 3 /4 .
aRey

(16)

4\p/" 29\ b

If brittleness is defined as the ratio of the elastic energy contained in the body at the
point of instability to the energy which can be dissipated in the body (Fig. 11), it
results in a function of beam slenderness and initial crack depth:

1(7), 3 (1)
%Pmax(smax 4 b 2g b

brittleness = = . 17
Gic(b—ap)t ag\ ., (o a7
=)\

When the beam is initially uncracked, i.e. a,/b = 0, the brittleness tends to infinity
and the softening branch is coincident with the elastic one (Fig. 11b). On the other
hand, when the initial crack length is different from zero (a, # 0), the brittleness tends
to the value in (17) for the size-scale tending to infinity (Fig. 11a). In this case, the
softening branch is always distinct from the elastic one.

When the beam is initially uncracked, the elastic energy contained in the body at
the point of instability is an infinite quantity of higher rank with respect to the fracture
energy, the former being proportional to 5*(¢2/E) and the latter to 52%;c. When there
is an initial crack, the two quantities are of the same rank for the size-scale b tending
to infinity, their ratio being finite and provided in (17).
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