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ABSTRACT: Strain localization for slabs in tension and curvature localization for
beams in flexure are associated with the fracture toughness of the material. Even
if no initial cracks are supposed to exist in the sturcture, the concepts of fracture
mechanics are applicable. Size-scale and slenderness are demonstrated to have a
fundamental influence on the global structure behavior, which can range from duc-
tile to brittle when softening is taken into account. Whereas in classical plasticity
and damage theory geometrically similar structures exhibit congruent behavior since
only energy dissipation per unit volume is allowed, when energy dissipation per
unit area is also considered (strain or curvature localization), the global brittleness
becomes scale-dependent. A limit analysis for beams in flexure is proposed, taking
into account the cohesive forces developing between the two opposite crack sur-
faces. Such a-simple approach shows a clear trend toward brittle behavior and
catastrophic events for large size and slenderness. When snap-back mstabﬂxty oc-
curs, the softening load-deflection curve exhibits a positive slope and its path be-
comes virtual. If the loading process is deflection-controlled, the loading capacity
of the beam will exhibit a discontinuity with a negative jump. Such results are
confirmed by refined finite element investigation.

INTRODUCTION

Several materials used in civil engineering, e.g., concrete, rocks, and fi-
ber-reinforced cement composites, exhibit softening in their ultimate behav-
ior under loading. This means that after the elastic, hardening, and/or plastic
stages, the load sustained by the material element begins to decrease if the
deformation is further increased (BaZant 1976; Carpinteri 1985a; Hillerborg
et al. 1976; Ingraffea and Gerstle 1985; Jenq and Shah 1985; Roelfstra and
Wittman 1986; Rots et al. 1987).

Softening behavior is considered unstable only if the loading process is.

load-controlled. When the loading process is strain-controlled, the material
element behaves in a stable manner, and the descending load-deformation
law miay be experimentally detected. '

When softéning is involved in the mechanical behavior of a structural
component not homogeneous or not homogeneously loaded, it is accom-
panied by strain-localization. For the uniaxial tensile loading of slabs, the
constitutive law from stress-strain becomes stress displacement (Hillerborg
et al. 1976), while for the bending of beams, the constitutive law from mo-
ment versus curvature becomes moment versus rotation (BaZant 1976; Maier
1968). Equivalently, a stress-strain and a moment-curvature law, respec-
tively valid in a slab band width (BaZant 1984) and in a beam contamination
length (Maier 1968), may be utilized for softening.

The objective of the present paper is to relate strain or curvature locali-
zation to the fracture toughness of the material. Even if no initial cracks are
supposed to exist in the structure, the concepts of fracture mechanics (Car-
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pinteri 1985b; Carpinteri 1986b; Carpinteri and Fanelli 1987; Jenq and Shah
1985; Petersson 1981). The size-scale and the slenderness of the structure
are demonstrated to have a fundamental influence on_global structural be-
havior. Whereas in elasticity and plasticity, geometrically similar structures
exhibit the same behavior, when softening is taken into account, the struc-
tural behavior ranges from ductile to brittle only by increasing size-scale
and/or beam slenderness and keeping material properties and external con-
straints unchanged. In classical plasticity and damage theory, only energy
d1381pat10n per unit of volume is allowed, whereas if energy dissipation per
unit area is also considered (i.e., strain or curvature localization), the global
brittleness becomes sca]e—dependent (Dougill 1976; Mazar and Lemaitre 1985).
Uniaxial tensile geometry and three-point bending geometry are herein
considered, assummg a linear stress-displacement cohesive law. For both
these cases, it is possible to consider a dimensionless brittleness number

(Carpinteri l981a, 1981b, 1982a, 1982b, 1985a, 1985b, 1985c, 1986a, 1986b,

1987; Carpinteri et al. 1986a, 1986b, 1986¢, 1987; Carpinteri and Fanelli
1987; Carpinteri and Sih 1984), which is a function of size-scale, beam slen-
derness, and material properties (including fracture energy Gr. For each
structural geometry, there is a lower bound to this number, below which the
mechanical behavior is unstable with rapid and uncontrollable crack prop-
agation, even if the loading process is deflection-controlled. It is possible to
prove that such brittle behavior is due to snap-back instability (Carpinteri
1985a, 1985b, 1985c, 1986a, 1987, Carpinteri et al. 1986a, 1986b, 1986c,
1987; Carpinteri and Fanelli 1987). In these cases, the softening load-de-
flection curve exhibits a positive slope, and its path becomes virtual. -

'THREE-POINT BENDING OF BEAMS

The linear eléstic behavior of a three-point bending, initially uncracked
beam may be represented by the following dimensionless equation:

by

_ Pl

B S 2)
Y

B 3)

in which'/-= beam span; b = beam depth, ¢ = beam thickness, N = 1/b.
Once the ultimate tensile stress o, or strain €, is achieved at the lower
beam edge, a fracturing process in the central cross section is supposed to
start. Such a process admits a limit situation as is shown in Fig. 1. The limit
stage of the fracturing and deformation process may be considered as that
of two rigid parts connected by the hinge A in the upper beam edge. The
equilibrium of each part is ensured by the external load, the support reaction,
and the closing cohesive forces. The latter depend on the distance bctween
the two interacting surfaces; increasing the distance w, the cohesive -forces
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FIG. 1. Limit-Situation of Complete Fracture with Cohesive Forces

decrease linearly till they vanish for w = w..
The geometrical similitude of the triangles ABC and AB'C’ in Fig. 1 pro-
vides :

where x = the extension of the triangular distribution of cohesive forces.
Eq. 4 can be rearranged as

The rotational equilibrium around point A is possible for each beam part
only if the moments of support reaction and cohesive forces, respectively, .
are equal:

Pl _ o | - ©
35T Tg g EERRS

Recalling Eq. 5, the re;latioh between load and deflection may be obtained
as

B o, tiw? 1 7
Sa BT
Eq. 7 can be represented in dimensionless form as follows:
-1 [N '
P=- i7> ................................................. (8a)
6 \¢€,06/.




with

W, Gr

2 o,b

in which Gr = 1/2 o,w. = the material fracture energy.

-While the linear Eq. 1 describes the elastic behavior of the beam, Initially
uncracked, the hyperbolic Eq. 8 represents the asymptotical behavior of the
same beam, totally cracked. Eq. 1 is valid only for load values lower than
that producing the ultimate tensile strength o, at the lower beam edge:

. 2
Ps— ............. T 9)

Sg

On the other hand, Eq. 8 is valid only for deflection values higher than that
producing a cohesive zone of extension x equal to the béam depth &:

XD (10)

From Eqgs. 5 and 10, it follows that

- SE}\Z

U 11
2. (11)

The bounds of Eqs. 9 and 11, upper for load and lower for deflection, re-
spectively, can be transformed into two equivalent bounds, both upper for
deflection and load. Egs. (1) and (9) provide

- A

0 = E ........................................................ (12)

whereas Eqgs. (8) and (11) provide

B2 (13)
3 .

Conditions represented by Eqs. 9 and 13 are coincident. Therefore, a sta-
bility criterion for elastic-softening beams may be obtained comparing Egs.
11 and 12. When the two domains are separated, it may be presumed that
the two P = § branches, linear and hyperbolic, are connected by a regular
curve [Fig. 2(a)]. On the other hand, when the two domains are partially
overlapped, it is well-founded to consider them as connected by a curve with
a highly negative or even positive slope [Fig. 2(3)]. _

Unstable behavior and catastrophic events (snap-back) are then expected
for
seN® N
I T (14)
2€, 6 :

and the brittleness condition for the three-point bending geometry becomes

"The system 1is brittle for low brittleness numbers s;, high ultimate strains
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€,, and large slendernesses . Observe that the same dimensionless ratio sz/
€,\ appears also in the case of uniaxial tension geometry, where the upper

bound for brittleness is equal to 1/2 (Carpinteri 1986b).
The global brittleness of the beam can be defined as the ratio of the ul-

‘timate elastic energy contained in the body to the energy dissipated by frac-
ture:

1
—P,%, — o,€,btl
18 €, N

Brittleness = . = = S S (16)
Gr X (Area) Ggpbt - 18sg

Such a ratio is higher than unity when

Sg 1

—_— —

e,N 18

.......................................................

Eq. 17 represenfs a more strict condition for global structural brittleness
compared with Eq. 15.

THREE-POINT BENDING OF SLABS

When the shear forces cannot be neglected (in sufficiently slender beams)
and the Poisson ratio is negligible, Eq. 1 is replaced by (Biolzi, private
communication, n.d.)

- 1 5, 3
O = Pl= N = A (18)
- \4 5
whereas Eq. 12 becomes
- A2
= e e N (19)
6 5 /. ‘

Snap-back is then expected for
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FIG. 4. Stress Distribution: (a) Across Cohesive Zone; (b) Equivalent Nodal Forces
in Finite Element Mesh

se A’ A2

= B st N T R (20)
2€, 6 5

or

Sg A 4 1

e B el (21)
€, 3 5\

The system is brittle for low-brittleness numbers sz and high ultimate strains .

€,, whereas low slendernesses A (A < 1.55) produce a clear trend toward
unstable behavior (Fig. 3). Let us observe that below the ratio sg/€, = 1.03,
instability is always predicted.
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STRAIN LOCALIZATION AND APPARENT STRENGTH OF INITIALLY
UNCRACKED SLABS

The cohesive crack model is based on the following assumptions (Car-
pinteri 1985a; Hillerborg et al. 1976; Hillerborg 1985; Petersson 1981):

1. The cohesive fracture zone (plastic or process zone) begins to develop when
the maximum principal stress achieves the ultimate tensile strength o,,.

2. The material in the process zone is partially damaged but still able to trans-
fer stress. Such a stress is dependent on the crack opening displacement w.

The real crack t1p is defined as the point at which the distance between
the crack surfaces is equal to the critical value of crack opening displacement
w,.. At this point, the normal stress vanishes [Fig. 4(a)]. On t/h\e other hand,
the fictitious crack tip is defined as the point at which the normal stress
attains the maximum value o,, and the crack opening vanishes [Fig. 4(a)].

The closing stresses acting on the crack surfaces [Fig. 4(a)] can be re-
placed by nodal forces [Fig. 4(b)]. The intensity of these forces depends on
the opening of the fictitious crack w, according to the ¢ — w constitutive
law of the material. When the tensile strength o, is achieved at the fictitious
crack tip, the top node is opened and a cohesive force starts acting across
the crack, while the fictitious crack tip moves to the next node.

With reference to the three-point bending test (TPBT) geometry shown in
Fig. 5, the nodes are distributed along the potential fracture line. The coef-
ficients of influence in terms of node openings and deflection are computed
by a finite element analysis in which the fictitious structure shown in Fig.
5 is subjected to (n + 1) different loading conditions. Consider the TPBT
shown in Fig. 6(a) with an initial crack of length a, and the tip in node k.
The crack opening displacements at the » fracture nodes may be expressed
as follows: '

w=KF+CP+T .. ....ccoiiiiii ... o (22)

in which w = vector of the crack opening displacements; K = matrix of the
coefficients of influence (nodal forces); F = vector of the nodal forces; C
= vector of the coefficients of influence (external load); P = external load;
and I' = vector of the crack opening displacements due to the specimen

weight.
On the other hand, the initial crack is stress-free, and therefore
F, =0, fori=1,2, ...,k =1) .. (23a)

while at the ligament there is no displacement discontinuity
W= 0, Bt i = (ko 1)y o) B (23b)

Egs. 22 and 23 constitute a linear algebraical system of 2n equations and
2n unknowns, i.e., the elements of vectors w and F. If load P and vector
F are known, it is possible to compute the beam deflection & as

8= CTF + DpP + Dyttt (24)

where D, = the deflection for P = 1 and D, = the deflection due to the
specimen weight.
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FIG. 6. Cohesive Crack Configurations at: (a) First Crack Growth Increment; (b)
(1 — & + 1)th Crack Growth Increment '

After the first step, a cohesive zone forms in front of the real crack tip

[Fig. 6(b)], say between nodes j and /. Then Egs. 23 are replaced by

F; =0, fori=1,2,..., (=1 ... i, e (25a)
W; -
F,~—F,,<'1 ——-), fori=j, G+ 1), ool e, (25b)
W, ‘
w; = 0, fori =L (L+ 1), .., e (25¢)
whese F, = the ultimate strength nodal force [Fig. 4(b)]
O-Il
F = b e e (26)
m

Eqs. 22 and 25 constitute a linear algebraical system of (2n + 1) equations
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FIG. 7. Dimensionless Load versus Deflection Diagrams by Varying Brittleness
Number [s; = G-/a.b (A = 4, a,/b = 0.0, ¢, = 0.87 x 107%)]

and (2n + 1) unknowns, i.e., the elements of vectors w and F and the ex-
ternal load P. At the first step, the cohesive zone is missing (I = j = k),
and load P,, which produces the ultimate strength nodal force F, at the initial
crack tip (node k), is computed. Such a value P, together with the related
deflection 8, computed through Eq. 24, gives the first point of the P-8 curve.
At the second step, the cohesive zone is between the nodes k and (k + 1),
and the load P,, which produces the force F, at the second fictitious crack
tip (node k + 1) is computed. Eq. 24 then provides the deflection 3,. At
the third step, the fictitious crack tip is in the node (k + 2), and so on. The
present numerical program simulates a loading process in which the con-
trolling parameter is the fictitious crack depth. On the other hand, real (or
stress-free) crack depth, external load, and deflection are obtained at each
step after an iterative procedure.

The program stops with the untying of node n and, consequently, with
the determination of the last values F, and §,. In this way, the complete
load-deflection curve is automatically plotted by the computer.

Some dimensionless load-deflection diagrams for a concrete-like material
are plotted in Fig. 7, with a,/b = 0.0, ¢, = 0.87 X 107™*, v = 0.1, t = b,
[ = 4b, and by varying the nondimensional number s;. The specimen be-
havior is brittle (snap-back) for low sz numbers, i.e., for low fracture tough-
nesses G, high tensile strengths o,, and/or large sizes b. For sz =< 10.45
X 107>, the P-3 curve exhibits a positive slope in the softening branch and
a catastrophic event occurs if the loading process is deflection-controlled.
Such an unstable branch is not virtual only if the loading process is con-
trolled by a monotonically increasing function of time (Fairhurst et al. 1971;
Rokugo et al. 1986), e.g., the displacement discontinuity across the crack
(Biolzi et al. 1987). On the other hand, Eq. 15 gives: sz = 11.60 X 107>,
Such a condition reproduces that shown in Fig. 7 very accurately, whereas
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Eq. 17 appears too severe. When the post-peak behavior is kept under con-
trol up to complete structural separation, the area delimited by the load-
deflection curve and the deflection axis represents the product of fracture
toughness GF and the initial cross-section area, bt.

The maximum loading capacity P, of initially uncracked spemmens with
[ = 4b is obtained from Flg 7. On the other hand, the maximum load
P&, of ultimate strength is given by :

2 o, tb°
PO = e U . 2T)

max 3 l

The values of the ratio P4 /P{), may also be regarded as the ratio of the
apparent tensile strength o, (given by the maximum load P}, and applying
Eq. 27) to the true tensile strength o, (considered as a material constant). It
is evident from Fig. 8 that the results of the cohesive crack model tend
toward those of the ultimate strength analysis for low sz values

lim P, = P& . S P (28)

sg—0

Therefore, only for comparatively large specimen sizes can the tensile strength
o, be obtained as o, = g, With the usual laboratory specimens, an apparent
strength higher than the true one is always found.

As a limit case, for the size b — 0 or fracture energy Gr — o (elastic-
perfectly plastic material in tension), i.e., for sz — o, the apparent strength
gr — 30,. In fact, in the center of the beam, the uniform stress distribution
(Fig. 9) produces a plastic hinge with a resistant moment M., that is twice
the classical moment of the birectangular limit stress distribution (elastic-
perfectly plastic material in tension and compression).

The fictitious crack depth at the maximum load is plotted as a function
of 1/sg in Fig. 10. The brittleness increase for s; — 0 is also evident from
this figure, in which the process zone at dP/dd = 0 tends to disappear (brit-
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FIG. 9. Constant Distribution of Cohesive Stresses

tle collapse), whereas for s — o (ductile collapse), it tends to cover the
whole ligament. On the other hand, the real (or stress-free) crack depth at
the maximum load is always zero for each value of s;. This means that the
slow crack growth does not start before the softening stage. Therefore, nei-
ther the slow crack growth nor the cohesive zone develops before the peak,
when s; — 0. ' :

Referring again to Figs. 8 and 10, it is possible. to state that the smaller
the brittleness number sz is, the more accurate the bifurcation is in repro-
ducing the peprfectly brittle ultimate strength instability (a,/b = 0).

The diagrams shown in Fig. 11 are related to higher beam slenderness, \
= 16. The same brittleness increase by decreasing sz is obtained as previ-
ously discussed, but in this case, it is easier to achieve the snap-back insta-
bility of the beam, when s; < 62.70 X 107°. On the other hand, Eq. 15

FICTITIOUS CHACK DEPTH
AT THE MAXIMUM LOAD

0.0 . .

0 1 2 3 4 5 s
DIMENSIONLESS SIZE, b,/ ¥ (10°)

FIG. 10. Fictitious Crack Depth at Maximum Load as Function of Specimen Size
(A =4, a/b=0.0,¢, = 0.87 X 10%
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provides: sz = 46.40 X 107>, which is a good approximation.
The diagrams shown in Fig. 12 are related to higher ultimate strain which

is four times the preceding one, €, = 3.48 x 107" (\ = 4). Also in this -

case, the snap-back appears for sz < 62.70 X 107°. Obviously, Eq. 15 again
provides s; = 46.40 X 107°, whereas Eq. 21 gives sz = 53.36 x 107,
which is a better approximation. '

CoHesIVE CRACK PROPAGATION AND FiCcTiTIOUS FRACTURE .
TOUGHNESS OF INITIALLY CRACKED SLABS

The mechanical behavior of three-point bending slabs with initial cracks
is investigated on the basis of the same cohesive numerical model presented
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in the preceding section. Some dimensionless load-deflection diagrams are
shown in Fig. 13, for a,/b = 0.5, ¢, =0.87 x 107, v =0.1,r=b, | =
4b, and by varying the br1ttleness number sz. The initial crack makes the
spemmen behavior more ductile than in the case of initially, uncracked spec-
imens. For the set of sz numbers considered in Fig. 13, snap-back does not
occur.

The area delimited by the load-deflection curve and the deflection axis
represents the product of fracture toughness Gy times the initial ligament
area, (b — ap)t. The areas under the P-8 curves are thus proportional to the
respective sz numbers in Fig. 13 as well as in Figs. 7, 11, and 12. This
simple result is due to the assumption that energy dissipation occurs only on
the fracture surface, whereas in reality, energy is also dissipated in a damage
volume around the crack tip, as assumed.by Carpinteri and Sih (1984) and
proved by Cedolin et al. (1987).

The maximum loading capacity P, according to the cohesive crack model, “
is obtained as shown in Fig. 13. On the other hand, the maximum load

P®@ of brittle fracture can be obtained from the linear elastic fracture me-
chanics equation (ASTM, n.d.):

Pg,;xl dg '
KIC = tb3/2 f 'b_ ..................................... P e e e (2961)
172 4 3/2 4 5/2 )
f<—°> =2 9(——") - 4.6<—°> + 21 8(—9>
b b b
7/2 9/2
24
- 37 6< ) + 38.7<;> .................................... (29b)

in which K;c = VGrE (plane stress condition).
The values of the ratio P{), /P2, are reported as functions of the inverse
of the brittleness number s; in Fig. 14. Such a ratio may also be regarded
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as the ratio of the fictitious fracture toughness (given by the maximum load
P8) ) to the true fracture toughness (considered as a material constant).

It is evident that for low sz numbers, the results of the cohesive crack
.model tend to those of linear elastic fracture mechanics:

Hm P = PO (30)

se—0

and therefore, the maximum loading capacity can be predicted by applying
the simple condition K, = K,c. It appears that the true fracture toughness K¢
of the material can be obtained only with very large specimens. In fact, with
the laboratory specimens, a fictitious fracture toughness lower than the true
one is always measured (Barr and Bear 1977; Carpinteri 1981a, 1982b, 1985a;
Ingraffea and Saouma 1985; Kasperkiewicz et al. 1986; Li-et al. 1987; Li
~and Liang 1986; Shah 1984; Walsh 1972; Zaitsev and Kovler 1986; Zie-
geldorf et al. 1980).

When the brittleness number sz — 0, P$), = P@,, and Eq. 23 provides

In a three-point bending specimen of linear elastic material, the deflection
is given by the contribution of a distributed and a concentrated compliance,
respectively:

5=2 1>\3+3>\2<a°> ' (32)
=2 5 gb ..... B AR

where (Tada et al. 1963):
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FIG. 15. Definition of Structure Brittleness as Ratio of Elastic Energy Contained
in Body at Bifurcation Point to Energy Dissipated in Fracturing Process: (a) Ini-
tially Cracked Specimen of Infinite Size; (b) Uncracked Specimen of Infinite Size

2
dg

2
a a
g<—°> B {5.58 - 19.57(—‘-’) T 36.82(2(3)
b aop b b

b

—34.94[ 2 ) +12.77(2) | o (33)
b b

Eq. 32 is also.valid for the point of instability, and then Eq. 31 is trans-
formed as follows:

o3
Pmaxamax> f b b

Gr(b — agt = P
F( aO) < 2 1 3 <a0>
4 2 \b

If brittleness is defined as the ratio of the elastic energy contained in the
body at the point of instability to the energy that can be dissipated in the
body [Fig. 15(a)], the result is a function of beam slenderness and initial

crack depth:
1 1 3 dy
_Pmaxgmax _}\+_g—
2 4

Golh — a0 2<1 ] @)p(@)
| b)" \b

When the beam is initially uncracked, i.e., a,/b = 0, the brittleness tends
to infinity, and the softening branch is coincident with the elastic one [Fig.
15(b)]. On the other hand, when the initial crack length differs from zero

Brittleness =

(ay #°0), the brittleness tends to the value in Eq. 35 for the size-scale tending
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to infinity [Fig. 15(a)]. In this case, the softening branch is always distinct
from the elastic branch.

When the beam is initially uncracked, the elastic energy contained in the
body at the point of instability is an infinite quantity of higher rank with
respect to the fracture energy, the former being proportional to b’(o%/E) and
the latter to b°Gr. When there is an initial crack, the two quantities are of
the same rank for the size-scale b tending to infinity, their ratio being finite
and provided by Eq. 35.

CONCLUSIONS

1. Referring back to Figs. 8 and 14 it is possible to state that the smaller the
brittleness number sz, the more accurate the snap-back instability is in repro-
ducing the perfectly brittle ultimate strength instability (a,- = O) or the linear
elastic fracture mechanics instability (aq # 0). >

2. Ultimate tensile strength o, or fracture toughness K- can be obtained ex-
actly only with very large (initially uncracked or cracked, respectively) speci-
mens (BaZant 1984; Carpinteri 1982b). On the other hand, the critical value Gg
of strain energy release rate may be derived from the area delimited by the load-
deflection curve and the deflection axis for any specimen size, when plastic (or
volume) dissipation and distributed cracking are negligible.

3. The assumption of a linear o-w diagram is only illustrative. On the other
hand, it was shown by Carpinteri et al. (1987) that the present analysis is also
applicable when the diagram is nonlinear.
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