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Snap-back and hyperstrength in hghtly
reinforced concrete beams

Alberto Carpinteri

POLYTECHNIC OF TURIN*

SYNOPSIS

The phenomena of hyperstrength and snap-back in
lightly reinforced concrete beams are interpreted
according to the concepts of fracture mechanics. The
tensile strength and toughness of concrete, usually
disregarded, are so high in some cases that the maximum
bending moment overcomes the bending moment of
limit design (hyperstrength). The drop in load capacity
hides a virtual softening load-deflection branch with
positive slope (snap-back), which can be detected if the
loading process is controlled through the crack width.

Notation

A area of concrete

A, area of steel

a length of crack

B sgle

b slab width or beam depth

E  modulus of elasticity

F axial force

f,  yield strength of steel

G fracture energy of concrete

h  depth of reinforcement

K, stress-intensity factor

L span

! length of slab

M  bending moment

N, brittleness number (reinforced concrete)
P load

r Equation (20)

s brittleness number (plain concrete)
t  thickness

w  crack width
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Introduction

In this paper the experimental behaviour of lightly
reinforced concrete is explained on the basis of simple
theoretical models. The unstable fracturing process in
reinforced concrete beams as well as the phenomenon
of hyperstrength'” are interpreted according to the
principles of fracture mechanics. Such discontinuous
behaviour is due to the tensile strength and toughness
of concrete, which are usually totally disregarded, but
in some cases (e.g. low percentages of reinforcement,
high strength of concrete) are so high that the maxi-
mum bending moment overcomes the bending moment
of limit design. In these .cases a drop in the load
capacity is predicted by the model”™® and verified in
practice if the loading process is deflection-controlled.

On the other hand, if the loading process is
controlled by the crack width (i.e. the crack width
increases smoothly), it is possible to detect a strain-
softening load-deflection branch with positive slope.
Load and deflection both decrease, while the crack
opens and grows in a stable manner. Such a branch is
only virtual when the control is achieved by means of
the beam deflection. In this case, the crack growth is
unstable and a negative jump in the load-carrying
capacity of the beam occurs. The catastrophic soften-
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Figure 1: Double constitutive law for concrete in lension.

ing branch can be interpreted through a material
model with a double constitutive law: linear elastic
stress—strain relation, and softening stress—crack width
relation®”.

Cohesive crack model and catastrophic
softening behaviour

Consider an elastic-softening material with a double
constitutive law: (1) tensile stress o-strain &, and (2)
tensile stress o-crack width w, after reaching the
ultimate tensile strength o, or strain & = 0,/E
(Figure 1):

c = Eg, fore <& ....(1a)

g = au'<1-—1-4:>, forw < w, ... (1b)
W,

c = 0, forw > w, ... (Ic)

According. to Equation (lc), ttiere is no cohesive
interaction between the crack surfaces for widths
larger than the critical crack width w..

‘As the load on a plane slab is increased, the
deformation undergoes three stages.

(1) The slab behaves elastically without damage or
fracture zones, Figure 2(a). The displacement of the

(1 + &)

upper surface is:

5 = %1, FOr & < 4o vvvennnnns @)
(2) After reaching the ultimate tensile strength o, a
crack develops in the weakest section of the slab.
Observe that, as the stress field is homogeneous,
another cause of inhomogeneity must be assumed for
strain localization. The slab behaves elastically only
outside the fracture zone, Figure 2(b). The displace-
ment of the upper surface is: :

6 = %1 + w, forw < we.oon.o 3)
Recalling Equation (1b), Equation (3) gives:

0 = %? + w, <1 — g—u>, for w < we. .. (4)
While the fracture zone opens, the elastic zone shrinks
at progressively decreasing stresses. At this stage, the
loading process will be stable only if it is displacement-
controlled; i.e. if the external displacement d is imposed.

~ But this is only a necessary and not sufficient condition

for stability.

(3) When § > w, the reacting stress ¢ vanishes, the
cohesive forces disappear and the slab is completely
separated into two pieces, Figure 2(c).

Q
|
(@]

Y
T T,
(a) No damage

I

(h) Strain localization

TS L

(¢) Complete separation

Figure 2: Subsequent stages in the deformation history of a slab in 1ension.
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Figure 3: Stress-displacement response.

Rearranging Equation (2) gives:

0. :

c = E7,» foro < egl...... ... (5)

while the condition of complete separation (stage 3)
becomes:

g =0, fordzw............ (6)

When w, > &,/, the softening process is stable only

if it is displacement-controlled, since the slope do/dd

at stage 2 is negative, Figure 3(a). When w, = ¢,/ the

slope dg/dd is infinite and a drop-in the load capacity -

occurs, even if the loading is displacement—controlled,
Figure 3(b). Eventually, when w, < g,/, the slope
do/ds becomes positive, Figure 3(c), and a negative
- jump occlrs like that shown in Figure 3(D).
Rearranging Equation (4): '

d = w +".'0"= 2 e '.7 
AT ) RIS ),

The same.conditions just obtained from a geometrical

point of view, Figure 3, may be given also by the-

analytical derivation of Equation (7).
Normal softening occurs for dé/de < 0:

! w.

— e g 0 8

E g, < ®)
whereas catastrophical softening occurs for dé/de > 0:

/ We

— = =20, .

E o, 0 ®)
Equation (9) may be rearranged: -

YR ’
(ref20) _ 1

' “e, (b T 2

where b is the slab width.
The ratio (w,/2b) is dimensionless and is a function

of material properties and structural size®":

N W, GF
S = — = —F
CF 2b . a.b
Gr = 10,w, being the fracture energy of the material
(Figure 1). The brittleness number s¢ describes the

scale effects of fracture mechanics, i.e. the ductile- -
brittle transition when the size-scale is increased. -

Equation (10) may be presented in the form:
-
'ia

SE
— <
£,7

where 4 = slenderness = //b.

(h) Catastrophic softening

d 0 we &,/ )
(¢) Catastrophic softening (snap-buck )

When the size-scale and the slab slenderness are
relatively large and the fracture energy relatively Jow,
the global structural behaviour is brittle. The single
values of parameters s;, ¢, and Z are not responsible
for the global brittleness or ductility of the structure
considered, but only their combination B = sg/e, 4.

When B < 1/2, the. plane rectangular slab of
Figure 2 shows a mechanical behaviour which can
be defined as brittle or catastrophic. A bifurcation or
branching of the global equilibrium occurs, since, if
point U in Figure 3(c) is reached and then the imposed
external displacement ¢ is decreased by a very small
amount dé, the global unloading may occur along
two alternative paths: the elastic UO or the virtual
softening UC. '

The global brittleness of the-slab can be defined as

the ratio of the ultimate elastic energy contained in the

body to the energy dissipated by fracture:

T N
Brittleness = 2 £ - L (13)
T Gp x Area 2B

Such a ratio is higher than unity when Equation (9) is
verified and a catastrophic softening instability
oceurs. :

A linear elastic fracture mechanics model for
hyperstrength in reinforced concrete beams

Let the cracked concrete beam element in Figure 4
be subjected to a bending moment M and an eccentric
axial force F due to the statically indeterminate

reaction of the reinforcement. It is well known that

ben'ding moment M* and axial force F* induce stress-
intensity factors at the crack tip: .

#

g = My o (4

Al -0

Figure 4: Cracked concrete beam element.
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E® = o Y@ (14b)

where Y, and Y are given in Reference 2. :
On the other hand, M* and F* produce local
rotations:

oM = A M* (15a)
P = AypF* .ol (15b)

where:
e = 7E IE [[ri@a..... (16a)

2 g
e = po Jy Yu(©Ye(@) dE.... (16D)

Up to the moment of steel yielding or slippage, the
local rotation in the cracked cross-section is assumed
to be equal to zero:

6 = oM+ ¢P = 0........ (17)

Equation (17) is the congruence condition giving the
unknown force F. Recalling that, Figure 4,

M = M —Fb2—Hh)....... (182)

F¥ = —Foiiiiii.. .....(18b)
Equations (15) and (17) provide:

il L (19)

- 0= HD D
wheref '

@@
() = e FERERPR (20)
T e

If perfectly plastic behawour of the reinforcement is
considered (yielding or slippage), from Equatlon (19)
the moment of plastic deformation for- the reinforce-
ment is obtained:

M, = Fpb [(%— /—;> + r(g“)] . en

However, if the concrete has a low compressive
strength and the steel a high yield strength, crushing of
the concrete can precede plastic deformation of the
reinforcement.

The mechanical behaviour ofthe cracked reinforced
concrete beam section is rigid until the bending
moment M, is exceeded, i.e. ¢ = 0for M < M;.On
the other hand, for M > M, the M(¢) diagram
becomes linear-hardening:

¢ = (M — Mp)..oooio (22)

After plastic deformation of the reinforcement, the
stress-intensity factor at the crack tip is glven by the
superpos1t10n prmcxple

K, = K™+ KT (23) -
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BENDING MOMENT OF CRACK PROPAGATION, M; /K,cb¥2t

Recallmg Equatlon (14).and considering the loadings:
M* = M — F,(b2 =h)....... (24a)
F* = —Fpiiiiiiiiiiainnn. (24b)

the global stress-intensity factor results:

= B0 (-]

Fy

~ Ye(E) oot (25)
The moment of crack propagation is then:
Mg 1 Ye(S) h

> = + N + = e 26
Kcb™i T %@ [m@ Th 0
with
7 b2 . A,
Ny, = Ko 4 27

br = Aam(Me — Mp)......... (28)

The crack propagation moment is plotted in
Figure 5 as a function of the crack depth ¢ and the
brittleness number N,. For low N, values, i.e. for
lightly reinforced beams or for small cross-sections,
the fracture moment decreases as the crack extends,
and a typical unstable fracture occurs. For N, 2 07,
a stable branch follows the unstable one, while for
N, > 85 only the stable branch remains. The locus
of the minima is represented by a dashed line in
Figure 5. In the upper zone the fracture process is
stable whereas it is unstable in the lower one. .

Stability

0 01 0-2
~ RELATIVE CRACK LENGTH, { = a/b

Figure 5: Crack propugation moment versus relative crack length.
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Figure 6: Mechanical behaviour of the cracked reinforced beam section, for different values of the brittleness number

= (./;,[JIIZ/KKJA,./A.

In Figure 6 the moment-rotation diagrams, M(d),
are reported for h/b = 1/20, & = 0-1, and for five
different values of brittleness number Np: 0, 01, 0-3,
"0-7 and 3-0. Once the cross-section sizes and the
mechanical properties of the material have been
defined, they represent five different steel areas.
Rigid behaviour (0 < M < Mp) is followed by
linear-hardening behaviour (M, < M < Mg) which
stops when crack propagation occurs. If the fracture
phenomenon is unstable, function M(¢) presents a
discontinuity and drops from the value Mg to Fpb
with a negative jump, Figures 6(a) to (d). In fact, in
this case a complete and instantaneous disconnection
of the concrete cross-section occurs. While the rotation,
¢, is constant, the new moment, F,b, can be estimated
according to the scheme of Figure 7, where each beam
segment is subjected to the traction, Fp, of the rein-
forcement and to the contact compression Fp, i.e.
altogether, to the moment Fp(b — /1) = F.b. Then,
increasing the rotation, the bending moment decreases
nonlinearly (Figure 7):

M = Fbcos(¢f2) .oovmvnn (29)

On the other hand, if the fracture phenomenon is
stable, function M (¢) does not present any discon-
tinuity and describes hardening behaviour, Figure 6(e).

Fe

(b —h) cos%

‘— 1

A

f—\

Figure 7: Statical scheme of limit design.

For Ny < 07, F;b < Mg, and a discontinuity
appears in the M (¢) diagram, Figures 6(a) to (d), and
also the curves in Figure 5 lie completely in the
unstable zone. Therefore, it is possible to conclude
that, by increasing the steel percentage A4,/A4 or by
increasing the beam size b (4,/A4 being constant), the
concrete fracturing process becomes stable.

Experimental. confirmation of snap-back
behaviour

A lightly reinforced concrete beam was tested, in

" flexure by Levi et al.”). Load— crack width and load-

deflection curves were recorded Figures 8(a) and (b).
The loading process was controlled by the crack width
and since this is a monotonically increasing function
of time during the fracturing process, it was also
possible to detect the snap-back softening branch

with positive slope of the load-deflection diagram. In

this way, a phenomenon unstable in nature was made
stable in practice. While load and deflection both

decrease between A and B, Figure 8(b), at the same.

time the crack opens and grows in a stable manner,
Figure 8(a). The elementary softening model (Figure 1)
can interpret such unstable behaviour completely.

If the loading process had been deflection-controlled,
on the other hand, the load-bearing capacity would
have shown a negative jump and the catastrophic
softening branch would have been only virtual. In this
case, the loading drop can be described through the
Linear Elastic Fracture Mechanics (LEFM) model
(Figure 4). In fact, the high compressive strength of
concrete and the small steel area give priority to the
steel bar yielding in preference to concrete crushing.
In addition, in high strength concrete, the stress-
singularity in the crack tip region develops and
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dominates, which is consistent with the use of LEFM.
The apparent hyperstrength of concrete is thefefore
produced by the tensile strength and toughness of
this material, which, traditionally, are completely
disregarded.

The experimental response is thus predicted by

the LEFM model accurately, as the dashed line in
Figure 8(b) shows clearly. The geometrical  and
material features of the specimen provide a dimen-
sionless number N, =~ 0-3, corresponding to the
particular case of Figure 6(c) (b = 250mm, A,/4 =

0-15%, f, = 5000 kgjem?, K¢ ~ 120kg/cm™?).
0 01 03 05 07 10 15 2~o 265 30 . 4
CRACK WIDTH, AL : : ;

(a) Load versus crack width 0" Experimental confirmation of size effect
25 py Remarkable size-scale effects are theoretically pre-
20 ! ~dicted and experimentally confirmed in lightly rein-
sk it ity forced high strength concrete beams'”. The brittleness
of the system increases by incre'lsing the beam size
10r and/or decreasing the steel area. On the other hand,

5L physically similar behaviour is revealed in the cases -
, ' . . when the non-dimensional number™® N, is the same.
0 1 -2 3 4 5 Thirty reinforced concrete beams were tested, with
_ DEFLECTION, & - mm thickness 7 = 150 mm and with depth 4 = 100 mm
(b) Load versus deflection. R
' (case A), b = 200mm (case B), and b = 400mm
Figure 8: Experimental results from Reference (8). (case C) respectlvely‘g’ The span’ was assumed to be
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Figure:9: Dimensionless bending moment versus rotation of reinforced concrete beams-in flexure, for five different brittleness numbers, N"’.
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six times the beam depth b. Five different values of N,
were considered (~0, 0-10, 0-30, 0-70, 1-20). Both
size-scale b and steel percentage A,/4 were varied.

The dimensionless bending moment vs. rotation
diagrams are plotted in Figures 9(a) to (e), for each
brittleness number N, and varying beam sizes. The
local rotation is referred to the value @, of first
cracking, and is related to the central beam element of
length equal to the beam depth b. The diagrams are
significant only for ¢/¢ > 1, the strain softening and
curvature localization occurring only after the first
cracking. The dimensionless peak moment does not
appear to be the same, when the brittleness number is
the same and the beam depth is varied. This is due to
the absence of an initial crack or'notch. On the other
hand, the post-peak branches are very close to each
other and present the same shape for each selected
brittleness class.

The LEFM model described in References 2 and 3
is able to capture the most relevant aspects and trends
in the mechanical and failure behaviour of lightly
reinforced high strength concrete beams in flexure.
The extrapolation of predictions from small to large
scales is entrusted to the brittleness number N, where,
in addition to the traditional geometrical and mech-
anical parameters, even the concrete fracture toughness
K, or fracture energy G, appears.
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