HYSTERETIC BEHAVIOR OF RC BEAMS

By Alberto Carpinteri' and Andrea Carpinteri?

ABsTRACT: A mechanical model for the cross section of a reinforced concrete
beam is proposed. Attention is focused on the local phenomena relating to the
cross section, while the phenomena relating to the beam element to which the
section belongs is ignored. In particular the concrete fracturing mechanism and
the slippage and yielding of steel are considered, while the smeared damage
of concrete are not taken explicitly into account. Namely, a rigid-plastic con-
stitutive law is assumed for steel, while for concrete a linear elastic one. Load-
ing and unloading processes are considered, the bending moment range being
lower than that of crack extension. The phenomenon of shake-down due to
slippage or plastic deformation of the steel bars is studied. Up to a certain value
of the bending moment an elastic shaké-down occurs; above this value the shake-
down becomes elastic-plastic and an hysteretic loop is described by the stress-
strain diagram of steel. Thus the energy absorbed in such a dissipative phe-
nomenon is computed for each loading cycle and some expérimental results are
reviewed.

INTRODUCTION

When a reinforced concrete beam is subjected to seismic, and gener-
ally repeated loadings, it deteriorates in a progressive manner and its
stiffness and loading capacity sensibly decrease (3). Such effects are the
result of different damage phenomena, like crushing and fracturing of
concrete or pulling-out and yielding of the steel bars.

Several models have already been proposed with the aim of simulating
the nonlinear behavior of reinforced concrete beams. For instance, the
dual component model, where each member is replaced by an elastic ele-
ment and an elasto-plastic element in parallel, the fiber model, where each
section is divided into many layers of fibers and the moment-curvature
relationship is determined by steel and concrete constitutive laws, the
single component model, where each member is represented by an elastic
beam element with inelastic springs (hinges) at its two ends (1). These
models do not distinguish the contribution of each damage mechanism,
but they are intended to represent a global effect.

In the present paper, a mechanical model for the cross section of a
reinforced concrete beam will be proposed. The attention will be focused
on the local phenomena relating to the cross section, while the phenom-
ena relating to the beam element to which the section belongs will be
ignored. In particular, the concrete fracturing mechanism and the slip-
page and yielding of steel will be considered, while the smeared damage
of concrete will not be taken explicitly into account. Namely, a rigid-
plastic constitutive law will be assumed for steel, while for concrete, a
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linear elastic one, coupled with a crack propagation condition according
to Fracture Mechanics Theory (13). A more realistic concrete model should
in fact simulate an elasto-softening behavior (8), with the possibility of
a crushing collapse. However, the proposed model is able to predict,
with sufficient accuracy, the order of magnitude of some interesting
quantities, such as the dissipated energy in one loading cycle.

More precisely, a reinforced concrete beam section with a through-
thickness edge crack in the stretched part will be considered. The force
transmitted by the reinforcement to the beam can be estimated by means
of a rotation congruence condition (5). Applying Linear Elastic Fracture
Mechanics, such a force increases linearly by increasing the applied
bendmg moment, until the limit force of pulling-out or yielding of steel
is reached. From this point onwards, a perfectly plastic behavior of the
reinforcement can be considered. In fact, it is possible to show that even
the slippage is describable by a rigid-plastic law (7) arnid the bond stress-
slip relationship for monotonic loading in tension is almost identical to
that in compression (6).

Once the bending moment of slippage or yielding has been exceeded,
the cracked beam section presents a linear-hardening behavior, until the
concrete fracture also occurs (5).

Loading and unloading processes will be considered, the bendmg mo-
ment range being lower than that of crack extension. The phenomenon
of shake-down due to slippage or plastic deformation of the steel bars
will be studied. Up to a certain value of the bending moment an elastic
shakedown occurs; above this value the shake-down becomes elastic-
plastic and an hysteretic loop is described by the stress-strain diagram
of steel. Thus the energy absorbed in such a dlSSlpatlve phenomenon
will be computed for each loading cycle.

BeHAvIOR oF BEAM-SEcTION UNDER MONOTONIC LOADINGS

Let us consider a reinforced concrete beam element of length Al — 0,
with a rectangular cross section of thickness t and depth b, subjected to
a bending moment M (Fig. 1). Let the steel reinforcement be distant h
from the external surface, and a through-thickness edge crack of depth
a = h is assumed to exist in the stretched part (Fig. 1). Therefore the
cracked concrete beam element will be in all subjected to the bending

» moment M and to the eccentric axial force F, due to the statically un-
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FIG. 1.—Cracked Reinforced Beam Element
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determined reaction of the reinforcement.
It is well-known that, while an uncracked section performs an internal
action of perfectly fixed joint [Fig. 2(a)], a cracked section is equivalent

to an elastic joint, rotating under the action of the bending moment M* .

and the axial force F* [Fig. 2(b)] (5):

¢=>\MMM*+)\MPF* ........................................... (1)

in which Ayu = 2/b*tE [§Y3(£)dE; and Ny = 2/BtE [§Y u(E) Yr(E)dE.
Applying a rotation congruence condition (5), the statically undeter-
mined force F, transmitted by the reinforcement [Figs. 1, 2(b)] can be
computed as a function of the applied moment M:

Fo 1
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From Eq. 2, it is possible to obtain the bending moment of plastic flow
for the reinforcement:

1 h | :
MP=pr[(5—E> +r(§)] S PP YRPPPPFY 4)

F, can indicate either the force of yielding f, A or the force of pulling-
out, when the latter is lower than the former, as on the other hand very

often happens.
For M = M the relative rotation of the cracked section is zero, while

for M > Mp Eq. 1 gives:
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FIG. 2.—Local Rotation in Cracked and Uncracked Beam Cross Section
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This relationship represents the equivalence of the cracked section with
a rigid-linear hardening hinge (5). By increasing the crack depth §, the
hardening line becomes more and more inclined, until giving rigid-per-
fectly plastic behavior. :

ELasTic-PLASTIC SHAKE-DOWN UNDER REPEATED LOADINGS

Since the analysis of the preceding section exclusively concerns a cracked
section, or at most, a cracked beam element of infinitesimal length, it is
coherent to hypothesize a rigid-perfectly plastic behavior of the rein-
forcement.

If the cracked section is assumed to be cyclically loaded and unloaded
and the crack extension possibility is ignored for the moment, we have
the three following fields of steel behavior (Fig. 3):{1) 0 = M = Mp:
elastic behavior; (2) Mp < M =< Mgp: elastic shake-down; and (3) Msp
< M: plastic shake-down. The unknown element of the problem is the
mdment Mgy, above which the shake-down becomes plastic and the
steel stress-strain curve presents hysteretic cycles and energy dissipation
(Fig. 3). ‘ ‘ .

If the cracked section is loaded with a moment M, a little higher than
Mp, and then it is unloaded, a residual rotation remains, which, in the
limit-case of rigid-perfectly plastic reinforcement, coincides with the un-
der loading rotation ¢ (M). In this case constraint between steel and con-
crete occurs, i.e. the concrete element compresses the steel segment,
which works as a strut [Fig. 4(b)]. Therefore we can assume that the

unknown compression F produces the rotation ¢ (F) in the cracked section.

Thus, when the reinforcement is rigid-perfectly plastic, the following
condition holds:
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FIG. 3.—Hysteretic Loops in Steel Stress-Strain Curve
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from which the unknown F can be extracted, that is the steel compres-
sion, when the beam-section has been unloaded. The moment of plastic
shake-down Mgp is defined as the lowest moment for which F = Fp,
i.e., for which the steel yields even in compression after unloading.

Now Eq. 6 will be made explicit. Rotation ¢ (M) due to the bending
moment M, M > M; [Fig. 4(a)], is given by Eq. 5, while rotation ¢ (F)
produced by the force F after unloading is [Fig. 4(b)]:

; .
&(F) = )\MMF<§ - h) M e e e )

Applying Eq. 6 one obtains:

N wam

F=M 5 R 2 (8)

If both the members of Eq. 8 are divided by Fp and Eq. 4 is recalled,
the following linear relationship, connecting the external bending mo-
ment M with the compression F after unloading, results:

F M
Fp M,

A graphic representation of such a connection is reported in Fig. 5.
For M = Mp, of course, the steel compression after unloading is equal
to zero, while for M = Mgp = 2Mp the reverse steel yielding after un-
loading begins to happen Observe that ratio 2, between the moment of
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FIG. 4—Statical Schemes: (a) Under Loading; and (b) After Unloading for Rein-
forced Beam Cross Section
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FIG. 5.—Compression Force after Unloading Against Maximum Applied Bending
Moment '

plastic shake-down Mgp and the moment of direct plastic flow Mp, is
the same as that which results in the case of the well-known simple

model with in-parallel elements of Fig. 6.
The arguments developed up to now are valid only if the crack ex-

tension does not precede the plastic shake-down:

M  being the moment of crack extension (5). In the opposite case, the

elastic shake-down will occur for Mp < M < M, while the plastic shake-
down is impossible. Recalling Fig. 9 of Ref. 5, it is possible to specify
that the plastic fatigue can theoretically occur only for sufficiently low
values of the number Np = ( fybl/2 /Kic)A,/A, where K¢ is the concrete
fracture toughness. In the case of high Np numbers, the model than
predicts the possibility of a nonlinear combined effect of stable progres-
sive fracture in concrete and shake-down in steel (5).

Q1<22=Q3

FIG. 6.—Simplified Shake-Down Model with In-Parallel Elements
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Consider now the case M > Mgp (Fig. 7). Once the beam-section has
been unloaded, the residual rotation is reduced to that related to the
moment Mp . More precisely, unloading with constant rotation occurs
at first (line 1-2 of Fig. 7) and then the plastic flow of the compressed
steel up to the equilibrium situation (line 2-3). When the moment is in-
creased again, the moment Mgp is reached, at first the rotation being
constant (line 3-4), and then the final moment M, the rotation increasing
linearly in this second stage (line 4-1).

As Fig. 7 makes evident, the point representative of the system on the
plane M-¢ describes—during a loading cycle—a. closed curve, which,
when M < Mgy, degenerates into a segment. It is therefore quite easy
to compute the plastic energy dissipated in each cycle; it is equal to the
area of the rectangular trapezium of Fig. 7:

work

1 : | .
== (M+2Mp)[6M) — d(2Mp)] ...... . (11)
cycle 2 |

Recalling Eqgs. 4 and 5 we get:
work _1_2 fe Y4 (®)de [MZ — 4F? b2<—1— By r(g)> ZJ (12)
cyde 2B%EJ, T\ YY) |

which in nondimensional form appears as

‘work/cycle - {(M)zz_ <pr)2<l_lf >2]
b*E _L Yu®@dt | \rg) ~ ) 275770 (13)

and in a more compact form:

work/cycle ‘ ) . (M )2_ <MSD>2]
TR —fo Yu(E)dE [ Py Pap) | (14)
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FIG. 7.—Hysteretic Loop in Moment-Rotation Diagram, under Unidirectional Cyclic
Loading -
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FIG. 8.—Dissipated Energy per Cycle Against Maximum Bendlng Moment Vary-
ing Parameter F,/btE

In Fig. 8 the dissipated energy per cycle is reported as a function of
the maximum bending moment and varying the parameter Fp/btE. Ob-

viously, it increases quadratically by increasing the moment and de-

creases by increasing Fp/btE. The points, where the curves intersect the
abscissae axis, represent the moment Msp, as Eq. 14 explicitly shows.

In Fig. 9 the dissipated energy per cycle is reported as a function of
the crack depth £ and varying the parameter Fp/btE. It increases with §
in a monotonic way.
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FIG. 9.—Dissipated Energy per Cycle against Crack Depth &, Varying Parameter
Fp/btE
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FIG. 10.—Hysteretic Behavior of Moment-Rotation Diagram, under Reversed Cyclic
Loading: (a) Theoretical Prediction when M, = M =< M ; and (b) Experimental
Confirmation (3) .

In the case of doubly reinforced beam-section subjected to cyclic load-
ings, the considered model predicts an hysteretic behavior as that of Fig.
10(a), when Mp, = M = Mgp, as well as that of Fig. 11(a), when M >
Mp (see Fig. 7). It should be observed that the theoretical behavior of
Fig. 10(a) is qualitatively similar to the experimental one of Fig. 10(b) (3).
In the latter, however, further degradation phenomena are present, which
the proposed model is not able to predict. On the other hand Eq. 4 gives
the following value of steel yielding moment, in relation to the case of
Fig. 10(b) (3) and for § = h/b = 0.1 (this means that a crack deep up to

the reinforcement is assumed):
Mp=0.6Fpb =0.6f,Asb= 0.6 X 32,30 kg mm™ x 1,205 mm?
X 305 mm = 7,122,634 kg mm = 618 kips in.

Such a value is very close to the experimental result [Fig. 10(b)].

The dissipated energy in one loading cycle, when the maximum and
the minimum bending moments are respectively +Mgp and —~Mgp, can
be evaluated by considering the M-¢ diagram of Fig. 12:

APPLIED LOAD s0
P (KIPS)

z =2

Y
A

. {a) ) (b)

FIG. 11.—Hysteretic Behavior of Moment-Rotation Diagram, under Reversed Cyclic
Loading: (a) Theoretical Prediction when M > Mgy ; and (b) Experimental Confir-
mation (11) ‘
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Recalling that
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cycle
- which in nondimensional form becomes:
2 2 rk
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—_— =8 —] |- ==+ Y dE . 17
PIE ) \37% r(€) : m(E) dE _ (17)

In Fig. 12, the dissipated energy per cycle is displayed by varying the
crack depth ¢ and the parameter Fp/btE. It is interesting to verify that
the order of magnitude of the energy dissipated in the experimental case
of Fig. 10(b) is the same as that predicted by the theoretical model. It is
also possible to determine the crack depth &, for which we have the
coincidence of the two values. For the experimental case of Fig. 10(b),
we have the parameter: Fp/btE = (85,919 1b)/(12 in.) X (6 in.) X (4,272
ksi) = (0.381 MN)/(0.305 m) X (0.152 m) x (29,434 MPa) = 2.8 X 107%,

* and the dimensionless energy: work/cycle/b*tE = (1,400 kips in.) X (6°/

360°) X 6.28/(12 in.)? X (6 in.) X (4,272 ksi) = (0.158 MNm) X (6°/360°)
X 6.28/(0.305 m)* X (0.152 m) X (29,434 MPa) = 39.7 x 107,
Therefore, we can assert that the experimental dissipated energy co-
incides with the theoretical one when the crack depth is £, = 0.7 (Fig.
12). This means that the theoretical model is able to predict the experi-
mental dissipated energy exactly only when the cross section is com-
pletely disconnected (£, > 0.5). In fact, the interlocking of the two free
surfaces and the steel dowel action will contribute to hold the two beam
segments together and to present a compressed part at every loading
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cycle. Then, more generally, we can say that the obtained crack depth
€y can represent a measure of the damage level in the concrete cross-
section.

The theoretical behav1or of Fig. 11(a) is then analogous to the experi-
mental one of Fig. 11(b) (11), which shows considerable concavities of
the cycle in the second and fourth quadrant.

CoNcLUDING REMARKS

1. The considered Fracture Mechanics model does not claim to de-
scribe every aspect of reality; it only means to explain those, which can-
not be explained by means of the traditional concepts of Solid Mechanics
(stress, strain, displacements, . . .).

2. Cracks grow in reinforced concrete beams before steel yielding, only
when slippage is allowed between concrete and steel. Even if slippage
is not explicitly considered in the model, it can be simulated by a ficti-
tious yield strength f, of steel, lower than the real f, [e.g. f, ~ 0.1 f, in

7)1
- 3. Itis coherent to consider the reinforcement as rigid-perfectly plastic
rather than elastic-perfectly plastic, since the proposed model represents
only the behavior of a cracked section, or—at the most—of a cracked
beam element of infinitesimal length. On the other hand, several efforts
were made in order to derive the plastic rotation by integration of cur-
vatures, but the tests showed that it is caused by a concentrated rupture
mechanism (4).

4. The fracturing process has been analyzed up to the relative crack
depth 0.6. On the other hand the presented diagrams make clear the
trends of the model even for higher depths.

5. A linear elastic constitutive law has been assumed for concrete,
coupled with a fracture condition. Namely the process zone size is a
small percentage of crack length at crack tip instability. In tests on con-
crete (12), the process zone size has been observed to be only a few
millimeters in length. Thus, when the computed stress-intensity factor
K; reaches the value of the concrete fracture toughness Kj-, a necessary
and sufficient condition for local instability is met. Moreover, as has nu-
merically been demonstrated by Saouma and Ingraffea (12), most of the

-overall structural nonlinearity stems from concrete cracking, and only
towards failure does concrete softening play a substantial role.
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AppPeNDIX Il.—NoTATION

The following symbols are used in this paper:
A = total area of cross section;
Ag = steel area; '
a = crack depth;
b = depth of beam;
E = Young's modulus of concrete;
F = statically undetermined reaction of reinforcement;
Fr=f,A;, = force of plastic flow for reinforcement;
fo = compressive strength of concrete;
fu. = tensile strength of concrete;
fy, = yield strength of steel;
h = distance of reinforcement from external surface;
K; = stress-intensity factor;
Kic = fracture toughness of concrete;
M = bending moment;
Mr = bending moment of crack propagation;
Mp = bending moment of steel plastic flow;
Msp = bending moment of plastic shake-down;
Np = f,b"?/K;c-A;/A = nondimensional number;
tr = ratio defined in Eq. 3;
t = thickness of beam;
Yu,Yr = functions defined in Eq. 3;
£ =a/b = relative crack depth; :
Mum,Ayr = rotational compliances due to bending moment and ax1a1
force; and
¢ = local rotation.
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