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STABILITY OF FRACTURING PROCESS IN RC BEAMS

By Alberto Carpinteri’

ABsTRACT: A reinforced concrete beam section with a through-thickness edge
crack in the stretched part is considered. The eccentric axial force transmitted
by the reinforcement to the concrete beam element, is estimated by means of
a rotation congruence condition able to provide this statically undetermined
reaction. In the field of linear elastic fracture mechanics, such a force increases
linearly by increasing the external bending moment, until the limit force of
yielding or slippage is reached. From this point on a perfectly plastic behavior
of the reinforcement is considered. Once thé bending moment of steel plastic
flow is exceeded, the cracked beam segment presents a linear-hardening be-
havior, until the concrete fracture occurs. It is shown how the stability of the
process of concrete fracture and steel plastic flow depends on the mechanical
and geometrical (scale included) properties of the beam cross section.
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INTRODUCTION

In the limit analysis of a reinforced concrete beam cross section, the
stretched part of concrete is conventionally assumed not to be traction
bearing, while a perfectly plastic behavior of the compressed part is hy-
pothesized (10). Such analysis does not take into consideration the cracks
which usually develop in concrete and generally cause a more complex
crisis phenomenon: the collapse of the concrete-steel system. In fact the
limit analysis approach does not consider at all the stiffness variation
and the stress concentration due to the presence of cracks. On the other
hand, these two effects can be studied through fracture mechanics
concepts. ' :

Traditionally, the problems relating to cracked masonry or concrete
constructions are studied on the basis of empirical parameters, such as
the crack width, i.e., the distance between the crack free surfaces (1).
Such parameters cannot be considered as absolute indications of the crack
stability condition, but only as alarm signals of incipient collapses. In.
fact, the crack width will not be constant, but will generally increase,
moving away from the crack tip. It will, however, depend on the sizes
of the cracked structure. In the present treatment, scale effects will be
emphasized in the collapse phenomena of reinforced concrete beams, as
has been already done for plain concrete structures (2--5). Five types of
potential collapses will be considered: (1) Crack propagation in concrete;
(2) tensile strength collapse in concrete; (3) crushing collapse in concrete;
(4) yielding of steel; and (5) slippage of steel. . .

The final collapse is generally the definitive and irreversible conse-
quence of the five aforementioned collapses. Such collapses will occur
in a well-defined sequence, according to the mechanical and geometrical
(scale included) properties of the beam cross section. ,
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Then, the stability of the process of concrete fracture and steel plastic
flow will be studied, and its dependence on the mechanical and geo-
metrical (scale included) properties of the beam cross section will be
shown. A role of primary importance, besides that of steel percentage
A,/A (1), is played by the nondimensional number f,b"?/K (analogous
to the brittleness number defined in Ref. 3, which includes the me-
chanical properties of the materials and the sizes of the structure, i.e.,
f, = the yield strength of steel, K;c = the fracture toughness of concrete,
and b = the beam depth. Finally, it is surprising to verify how we can
increase either the structure size or the steel area in order to obtain a
real concrete fracture phenomenon. Therefore, a glimmer of light could
fall on the problem of fracture testing with small specimens of aggre-
gative materials. At this point, in fact, it seems to be confirmed that the
determination of concrete fracture toughness with §mall specimens is
meaningless, since, with small sizes, the ultimate strength collapse comes
before the fracture collapse (3).

STtaTIcALLY UNDETERMINED REACTION OF REINFORCEMENT

Let us consider a reinforced concrete beam element with a rectangular
cross section of thickness t and depth b, subjected to a bending moment,
M. Let the steel reinforcement be distant, &, from the external surface,
while a through-thickness edge crack of depth a = h is assumed to exist
in the stretched part (Fig. 1). Therefore, the cracked concrete beam ele-
ment will be subjected to the external bending moment, M, and to an
eccentric axial force, F, due to the statically undetermined reaction of
the reinforcement. It is well known that a bending moment, M*, induces
a stress-intensity factor, K;, at the crack tip equal to

*

KI =
in which £ = a/b = the relative crack depth; and Y = the function (8).
For £ = 0.7

Yau(E) = 6 X (1.99EY2 — 2.47¢32 + 12.97¢% - 23.17£77 + 24.80€°7)  (2)

In the same way, an axial tensile force, F*, induces the stress-intensity
factor (8) ' ‘
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FIG. 1.—Cracked Reinforced Beam Element




for £ < 0.7
Yr(f) = 1.99£Y2 — 0.41£%% + 18.70£%2 — 38.48£72 + 53.85¢%% .. ... .. (4)

On the other hand, the bending moment, M*, causes a local rotation,
¢, equal (8,9) to

O = Mt o e e (5)
) 3
ith Ny = Y2 dE 6
wi M=o r fo m(€)d§ (6)
while the axial tensile force, F*, causes the rotation (8,9)
O = A (7)
5 £ . o>
with Nyrp=—= 1] Y@ Yr(E)dE ............ S (8)
. btE )y :

In the case of the considered statically undeterminate system, i.e., the
reinforced beam element (Fig. 1), the global moment acting on the cross
section will be

i.e., it will be given by the external moment (opening the crack) sub-
tracted by the reinforcement reaction moment (closing the crack). Then
the axial force acting on the cross section will be

R (10)

Up to the moment when steel yields the rotation, due to the bending
moment M* and to the closing force F*, will be equal to zero:

Cb:)\MMM*'i')\MF.F*:O .......... et (11)

Eq. 11 is the congruence condition which is able to provide the unknown
F. Replacing Eqgs. 9-11, the result is

AMM[M—FG —/h>] N E = 0 (12)
and finally it is possible to obtain
D o 13)
M h
<§ - E) +7(£)
3 .
Yu(6) Yr(E)AE
in which  7(§) = e (14)
L Yi(6)dE

The statically undetermined reaction of the reinforcement, against the
relative crack depth, for h/b = 1/10, 1/20, is reported in Fig. 2. The
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FIG. 2.—Reaction of Reinforcement and Bending Moment of Reinforcement Plas-
tic Flow, Due to Yielding of Steel or to Slippage of Bar

decrease of the reaction by increasing the crack depth is not immediately
understood, and, indeed, it may even surprise the reader. However, it
can be explained by observing that the compliances Ayus and Nyr both
increase with an increasing crack length, but A increases more rapidly
than \,p. Thus lower and lower axial forces, F, are needed to annul
the rotation due to the external moment, M.

BenpING MOMENT OF REINFORCEMENT PLAsTIC FLow DUE 10 YIELDING
OR SLIPPAGE : '

As Eq. 13 shows, the force F, transmitted by reinforcement, increases
linearly by increasing the external moment, M, until the limit force, Fp
=f,A,, is reached, f, being the steel yield strength and 4, the steel area.
Before steel yields, cracks grow in reinforced concrete only when slip-
page is allowed between the concrete and steel. Even if slippage is not
explicitly considered in the model, it can be simulated by a fictitious
yield strength, f,, of steel, lower than the real f,.

In any case, a perfectly plastic behavior of the reinfercement will be
considered. This means that the infinitesimal reinforcement segment,
which is uncovered, i.e., included between the two crack surfaces, will
flow, always transmitting the same force, Fp, to the cracked concrete
element (Fig. 3). From Eq. 13 it is possible to obtain the moment of plas-
tic flow for the reinforcement: :

Mszpb[<_——> +r(§)] ..................................... (15)
2 b A
Such a moment against the relative crack depth, for h/b = 1/10, 1 /20,
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FIG. 3.—Force Transmitted by Rein- FIG. 4.—Hypothesis %f\\Linear Stress
forcement Against Applied Moment Variation through Ligament

is reported in Fig. 2. According to the decrease of the reaction from in- -
creasing the crack depth, £ (Fig. 2), an increase of the moment of rein- f
forcement plastic flow, Mp, occurs by increasing &.

However, it should be observed that, if concrete presents a low crush-
ing strength, f,, and steel presents a relatively high yield strength, f,,
the concrete crushing collapse can come before the steel plastic flow. If
M, is the external moment of concrete crushing and a hypothesis of lin-
ear stress variation through the ligament holds (Fig. 4) (1), it follows that

c

h
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The dashed line of Fig. 2 represents the diagram of Eq. 16 for f. = 2.85
ksi (19.62 MPa); f, = 51.26 ksi (353.16 MPa); A;/A = 0.024; and k/b =
1/10. It can be observed that, although values very favorable to the con-
crete crushing collapse have been chosen, such collapse in fact comes
before the steel plastic flow only for sufficiently high values of the crack

depth (£ = 0.175).

Ricip-HARDENING BEHAVIOR OF CRACKED BEAM SECTION

This section describes the mechanical behavior of the cracked rein-
forced concrete beam section, once the bending moment, Mp, of steel
plastic flow has been exceeded. For M = My we have ¢ = 0, while for

M > Mp

¢=}\MMliM_PP<'§—h>:l—>\MPFP ............................. (17)

The M-¢ diagram is represented in Fig. 5. This diagram expresses the
equivalence of the beam section with a rigid-linear hardening spring. It
is interesting to observe that the hardening line is parallel to the M-¢

~ diagram relating to the same cracked beam section without reinforce-
l ment (broken line).
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FIG. 5.—Hardening Coefficient Against Relative Crack Depth

The hardening coefficient \3iv against the relative crack depth § is
reported again in Fig. 5. By increasing the crack depth, §, the hardening
line becomes more and more inclined, until giving rigid-perfectly-plastic
behavior. On the other hand, for ¢ — 0, the hardening line becomes
nearly vertical, until giving a rigid behavior of the beam section simu-
lating spring.

Therefore, it is possible to conclude that, by increasing §, the moment
of steel plastic flow increases (Fig. 2), while the slope of the hardening
line decreases (Fig. 5). Some M-a diagrams, for h/b = 1/20, are reported
in Fig. 6 with ¢ varying between 0.05 and 0.50. The moment of steel
plastic flow increases very little by increasing &; on the other hand, the
slope of the hardening line decreases sharply.
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FIG. 6.—Moment-Rotation Diagrams for Different Crack Depths
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BenpING MOMENT oF CONCRETE FRACTURE

In this section, crack growth in concrete will be examined. It is con-
sequent to the steel plastic flow, i.e., it occurs for a bending moment,
Mr= Mp.

After the steel plastic flow, the stress-intensity factor acting at the crack
tip will be equal to the algebraical addition of Egs. 1 and 3, and the

actual loadings will be .

b
M*=M—Fp<£_h) .......................... e (18)
Fo s ottt e e e e e (19)
1 b Fp o
Thus KI=E§§—tYM(§) Mpr E_h —bthP(g) ............ (20)

Presuming that Eq. 20 is equal to the concrete fracture toughness, K¢,
it is possible to obtain the fracture moment Mp:

F YM(E) YM(g) F M 5 b — ................. )
In nondimensional form
M 1 Y 1 h
A N
Kicb™*t Y u(§) Yu®€ 2 b
b2 A,
inwhich Np nych T e (22)

The concrete fracture moment, M, against the relative crack depth, &,
is shown in Fig. 7, varying the nondimensional number Ny (h/b = 1/
20).

For Np values close to zero, i.e., for low reinforced beams or for very
small cross sections, the fracture moment decreases while the crack ex-
tends, and a typical phenomenon of unstable fracture occurs.

For higher N values, a stable branch follows the unstable one of the
curve, which describes the crack extension against the applied load. Im-
mediately, for Np = 1, the minimum of the curve is evident and takes
place for £ = 0.35. For higher N values, the ¢ value for which the min-
imum occurs is lower, while the stable branch becomes steeper and
steeper. For Np = 8.5, the unstable branch disappears and only the sta-
ble branch remains.

Analogous behavior has been underlined in the case of a cracked ma-
sonry wall, subjected to an eccentric axial compression force (7). In that
case, however, the unstable branch and the consequent stable one ap-
pear steeper and the existence of the minimum is then more evident.

The locus minimorum is represented by a dashed line in Fig. 7. This
line divides the quadrant of the diagram into two zones: the upper zone
is where the fracturing process is stable, while the lower one is where
the process is unstable. It is therefore possible to assert that the frac-
turing process in reinforced concrete becomes stable only when the beam

KRN




%
0.

0!
00 0. 0.2 03 04 0.5

FIG. 7.—Bending Moment of Crack Propagation Against Relative Crack Depth
(h/b = 1/20) '

is sufficiently reinforced or the cross section is sufficiently large, and
when the crack is sufficiently deep.

If the curve Np = constant were perfectly horizontal, a condition of
indifferent equilibrium would occur. In fact, none of the curves shows
such a regularity. However, it is important to observe that the curve
relating to Np = 1, which could represent the fracturing phenomenon
for very common reinforced concrete beams, is only slightly deflected
downwards: the minimum is only about 15% lower than the value of
the function for ¢ = h/b = 0.05. . o ‘

For h/b = 1/10, curves very similar to those of Fig. 7 are obtained.
Only two slight differences are present: (1) The curves go down, i.e.,
fracture collapse occurs for lower moments, since the reinforcement, being
internal, resists to a lesser extent than in the preceding case; and (2) the
dashed line goes up, i.e., the stable zone of the diagram shrinks.

Finally, it may be interesting to compute the nondimensional number,
Np, for three different reinforced concrete beams. As a first example,
let us consider the following set of values: f, = 34.17 ksi (235.44 MPa);
K = 715.2 psi Vin. (0.78 MN m™%); b = 11.81 in. (30 cm); A,/A =
0.01; from which one obtains: Np = 1.64.

Thus, it is possible to verify in Fig. 7 that, for this very common rein-
forced concrete beam, the fracturing process is very close to a condition
of indifferent equilibrium. Let us now examine a low reinforced beam
with small cross section: f, = 34.17 ksi (235.44 MPa); Kic = 894 psi
Vin. (0.98 MN m~*?2); b = 7.87 in. (20 cm); A,/A = 0.0024; from which
it follows: Np = 0.26. In this beam the fracturing process occurs in an
unstable manner (Fig. 7).

As a third and last case, let us examine a high reinforced beam with
large cross section: f, = 51.26 ksi (353.16 MPa); K;c = 447 psi Vin. (0.49
MN m~2); b = 59.05 in. (150 cm); A,/A = 0.0240; from which results
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N; = 21.16. In this beam the fracturing process occurs in a stable manner
(Fig. 7).

STaBILITY OF PROCESS OF CONCRETE FRACTURE AND STEEL PLASTIC
FLow

In this section, fracture stability will be studied using energy consid-
erations. The stress-intensity factor acting on the crack is

1 i b 1 .
K =—3; Y m(B) M—P(——h)] Y Y:(§)F, for M=Mp ... (23)
32 ¢ i 2 b2t

1 i b 1

Replacing Eq. 13 in Eq. 23 gives
K= ! Y —M M : (I—j- - h)
1= b,3/2t M(g) b (1 h> 9
) =3 +7®
1 M
_mYF(g)—I; (1 h) ) , for MSMp.oooiiiiiiiieeeny (25)
27 r(€)
Egs. 25 and 24 in nondimensional form appear as follows:
K[bl/zt M r 1
=Yu® | 1- i
- M( )pr 1 . 7’(&)
-3
. 2 b/
M -1 |
-—Y for M=Mp...covvirrreriiiiiinen. 26
Fob P(ﬁ) 1 | or P (26)
S RIC
Kbt Y (&)[ M (1 h)} Yr(£), for M>M (27)
= — ===~ , for M>Mp..........
Fp MU \2 b ’ ’

The stress-intensity factor, K, against the crack depth, £, is reported in
Fig. 8, varying the loading parameter M/Fpb (h/b = 1/20). For M/Fpb
values lower than about 0.7, the stress-intensity factor is very low for
every considered depth, h/b = £ = 0.6. As the curve M/Fpb = 0.7 clearly
shows, the K; value is positive for small depths, & while it becomes
negative for larger depths. This means that, for 0 = M/Fpb =< 0.8, and
sufficiently deep cracks, the assumed -model predicts the closing of the
crack as well as the non-plastic state of steel. The plastic limit, as Fig. 2
suggests, is very near the curve, M/Fpb = 0.7, reported in Fig. 8. More
precisely, it is included between the two curves M/Fpb = 0.60 and M/
pr = 0.75. A
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FIG. 8.—Stress-Intensity Factor Against Relative Crack Depth, Varying Applied
Moment (1/b = 1/20)

For M/Fpb > 0.8, the K| factor is positive for every investigated depth,
. For M/Fpb < 0.9, the function K;(£) presents a positive maximum.
This means that, for sufficiently low bending moments and sufficiently
deep cracks, the fracturing process is stable. In fact, from an energy point
of view, we can assert that the generalized crack extension force, 4; =
K?/E, has the same course of K;, for M/Fpb > 0.8. Thus, for 0.8 < M/
Fpb < 0.9 and for sufficiently high, £

9%, FRav
—— e e <
Ik 3 E2

in which V = the total potential energy of the concrete-steel system. In
other words, for those particular values of bending moment and crack
depth, the total potential energy, V, can present, as a stationary value
(K; = K¢), only a minimum and therefore a stable equilibrium condition.

FRACTURE SENSITIVITY INCREASE DUE TO REINFORCEMENT

Up to now, no indication of how much the fracture moment, My, is
higher than the plastic flow moment, My, has been given. From Egs.
15 and 21, it follows that

b
i (29)

Me 1 v+ G—E>
N r(€) T Ym(§) 57 %

1 h
M [5 -t f(&)] Y(8)
P

553




o4 & & o
FIG. 9.—Ratio between Moment of Steel Plastic Flow and Moment of Concrete

Fracture, Against Nondimensional Number N, Varying Relative Crack Depth, &
(h/b = 1/20)

In Fig. 9, the ratio Mp/M; against the nondimensional number, Np,
is represented, varying the crack depth, § (h/b = 1/20). From this dia-
gram we deduce that the higher the number, Np, and the deeper the
crack, the closer the crack propagation is to steel plastic flow. This means
that the fracture collapse can be obtained immediately after the plastic
one by varying two parameters: (1) The beam size, b; and (2) the steel
percentage, A;/A.

Of the five potential collapses mentioned in the Introduction, only three
have been explicitly considered up to now. Eq. 16 shows that the con- -
crete crushing collapse tends to precede the others for high steel per-
centages, A,/A. Once such a collapse has been -avoided, the other four
are to be considered. The steel flow due to plastic deformation or to
slippage is certainly the first to be reached, while the ultimate strength
collapse and the crack propagation in concrete follow with a priority which
is difficult to estimate.

In the field of fracture toughness testing, it is in the experimenter’s
interest that a real fracture phenomenon occurs in concrete, i.e., that the
crack extension is due to the fracture toughness overcoming rather than
to the ultimate strength overcoming. In a preceding paper (3) the writer
has explained that this goal can be reached, with nonreinforced speci-
mens, simply by considering sufficiently large specimen sizes. In the
case of reinforced fracture specimens and in the most unfavorable hy-
pothesis, the ultimate strength collapse could precede the fracture col-
lapse; on the other hand, it should follow the steel plastic flow. For ex-
ample, in the case h/b = 0.05, §£ = 0.10, Np = 10, the result is Mp/Mpr
= 0.95 (Fig. 9), and then the ultimate strength moment, M, , would be
included in a very narrow interval, 0.95 My = M, = Mg, which im-
mediately precedes the fracture moment, Mg . ‘

Therefore, the possibility of increasing the concrete fracture sensitiv-
ity, simply by reinforcing the fracture specimen, stands out. According
to the previous analysis, this operation appears to be exactly the same
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as that of increasing the specimen sizes. In both cases, in fact, the same
effect of increasing the system capacity, as for an elastic energy con-
tainer, is attained.

Thus, according to the utilized fracture model, one can conclude that
the collapses for steel plastic flow, for concrete ultimate strength, and
for crack propagation, tend to coincide, by increasing Np, i.e., by in-
creasing the specimen sizes or the steel percentage.

A serious problem lies in the fact that the experimenter does not know
a priori the number, Np, of the test which he is going to perform, since
he does not know K;-. Thus, he does not know the ratios between Mp,
M, , Mr. This handicap could probably be eliminated through iterative
experimental techniques of progressive approach to the real K¢ value.
However, a very slight variation of the ratio Mp/Mp occurs for £ = 0.20
and Np = 2 (Fig. 9). o

SYNTHESIS AND CONCLUDING REMARKS

In Fig. 10 the moment-rotation diagrams, M(¢), are reported for h/b
= 1/20, £ = 0.1, and for five different values of number Np: 0.0, 0.1,
0.3, 0.7, and 3.0. Once the cross section sizes and the mechanical prop-
erties of the material have been defined, they represent five different
steel areas.

Rigid behavior (0 = M =< M) is followed by linear hardening behavior
(Mp < M = M;p). The latter stops when crack propagation occurs. If the
fracture phenomenon is unstable, function M(¢) presents a discontinuity
and drops from value M to value Fpb with a negative jump [Figs. 10(a)-
(d)]. In fact, in this case a complete and instantaneous disconnection of
the concrete cross section occurs. While the rotation, ¢, is constant, the
new moment, Fpb, can be estimated according to the scheme of Fig. 11,
where each beam segment is subjected to the traction, Fp, of the rein-
forcement and to the contact compression, Fp, i.e., altogether, to the
moment Fp(b — h) = Fpb. Then, increasing the rotation, ¢, and ignoring
any phenomenon of instability, the bending moment decreases with a
nonlinear law (Fig. 11): '

On the other hand, if the fracture phenomenon is stable, function M(¢)
does not present any discontinuity and describes ‘hardening behavior
[Fig. 10(e)] analogous to that of Fig. 6.

In Fig. 10(a), the case Np = 0 is considered, i.e., the beam without
reinforcement. The plastic flow moment, Mp, is naturally equal to zero,
as well as the moment Fpb, which occurs immediately after the complete
disconnection of concrete.

In Fig. 10(b), the case Np = .0.1 is described, i.e., a low reinforced
beam. With Fig. 2, it is possible to obtain the ratio Mp/Fpb, and with
Fig. 9, the ratio Mp/Mp . The slope of the hardening line does not vary
with respect to the preceding case, since it depends only on the crack
length, besides the concrete elastic modulus and the cross section sizes
(Fig. 5).
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FIG. 10.—Mechanical Behavior of Cracked Reinforced Beam Section, for Different
Nondimensional Numbers, N; (1/b = 0.05; £ = 0.10)

"In Fig. 10(c) the case Np = 0.3 is considered, which is analogous to
the previous one, except for the fact that the ratio M /M is higher. On
the other hand, the ratio M/Fpb, which is independent of N, (Fig. 2),
remains unchanged. In Fig. 10(d) the case Np = 0.7 is reported. For this
value it is My = Fpb, and then the discontinuity vanishes.

Finally, in Fig. 10(¢) the case Np = 3 is described. In this case the
fracture moment, Mg, is only slightly higher than the plastic moment,
M, and the moment Fpb would be obtainable only with a positive jump
of the function. On the other hand, from Fig. 7 it is known that the
fracturing process, for Np = 3 and § = 0.14, is stable and, thus, a com-
plete and instantaneous disconnection of concrete cannot occur (Fig. 11).

It is observed that for Np < 0.7, Fpb < Mg, and then a discontinuity
appears in the diagram, M(¢) [Figs. 10(2)—(d)], so for Np = 0.7, the curves
of Fig. 7 lie completely in the unstable zone. Therefore, it is possible to




_U’l'l

P
(b__h) cos -

P

FIG. 11.—Statical Scheme after Complete Disconnection of Concrete

conclude that, by increasing the steel percentage, A;/A, or, in the same
way, by increasing the beam size, b, the concrete fracturing process be-
comes stable.
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AprPENDIX Il.—NOTATION

The following symbols are used in this paper:
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total area of cross section;

steel area;

crack depth;

depth of beam;

Young’'s modulus of concrete;

statically undetermined reaction of reinforcement;
force of plastic flow collapse for reinforcement;
compressive strength of concrete;

tensile strength of concrete;

yield strength of steel;

distance of reinforcement from external surface;
stress-intensity factor;

fracture toughness of concrete;
bending moment;

bending moment of crack propagation;
bending moment of steel plastic flow;
(fyb'?/Kic)(As/A) = nondimensional number;
ratio defined in Eq. 14;

functions defined in Egs. 2 and 4;

thickness of beam;

a/b = relative crack depth;

i

rotational compliances due to bending moment and axial

force; and
local rotation at cracked cross section.




