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Micro-damage instability
mechanisms in composite
materials: Cracking coalescence
versus fibre ductility and slippage

Alberto Carpinteri and Federico Accornero

Abstract

The load-displacement softening response of quasi-brittle solids exhibits an unstable structural behavior,

which is characterised by a negative slope in the post-peak regime. In severely brittle situations, the post-

peak behaviour can show a virtual positive slope, the fracture propagation occurring unexpectedly with a

catastrophic loss in the load-carrying capacity. In this case, if the displacement controls the loading

process, the curve exhibits a discontinuity and the representative point drops to the lower branch

with a negative slope. On the other hand, in order to obtain a stable crack growth, a decrease both

in load and in displacement is required. In the last forty years, in-depth study of the so-called snap-back

instability was conducted in relation to crack propagation phenomena in quasi-brittle materials. In the

present work, the structural response of two brittle-matrix specimens is analysed: the first contains a

distribution of collinear micro-cracks, whereas the second presents multiple parallel reinforcing fibres

embedded in the matrix. In both cases, it is shown that the structural response presents a discrete

number of snap-back instabilities with related peaks and valleys, the crack propagation occurring alter-

nately within the matrix and through the heterogeneities. Thus, the strong analogy between weakened

and strengthened zones consists in a multiple snap-back mechanical response, where descending

branches of propagating cracks alternate with ascending (linear) branches of arrested cracks.
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Introduction

The load-displacement softening response of quasi-brittle solids exhibits an unstable structural
behaviour, which is characterised by a negative slope in the post-peak regime. In severely brittle
situations, the post-peak behaviour can show a virtual positive slope, the fracture propagation
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occurring unexpectedly with a catastrophic loss in the load-carrying capacity. In this case, if the
displacement controls the loading process, the curve exhibits a discontinuity and the representative
point drops to the lower branch with a negative slope. On the other hand, in order to obtain a stable
crack growth, a decrease both in load and in displacement is required. In the last forty years, in-
depth study of the so-called snap-back instability was conducted in relation to crack propagation
phenomena in quasi-brittle materials (Carpinteri, 1984, 1989a, 1989b, 2021). In the framework of
the Cohesive Crack Model, the cusp catastrophe represents the classical Griffith and Irwin insta-
bility according to Linear Elastic Fracture Mechanics (LEFM) for very brittle conditions.

To introduce a multiple snap-back mechanical response, consider a tension test specimen con-
taining a distribution of collinear micro-cracks, as illustrated in Figure 1(a). In addition, consider
the case of a specimen where parallel reinforcing fibres are embedded in the matrix, as illustrated in
Figure 1(b). A load P is applied that opens the faces of an edge crack that propagates through the
collinear micro-cracks or through the parallel fibres. The propagation occurs alternately through
the matrix and the heterogeneities (Carpinteri and Accornero, 2018, 2019), the process being con-
trolled by a monotonically increasing crack growth.

In both cases, the structural response is characterized by a discrete number of snap-back insta-
bilities, showing peaks and valleys (Figure 1(c)). After each single peak, the crack starts growing in
the matrix. Thus, the descending branches after the peaks describe the crack growth between a
micro-crack tip and the next, or between a fibre and the next. The crack arrests at the minimum of
each valley, which represents the achievement of the next crack tip or fibre (Figure 1(a) and (b)).
The analogy between weakened and strengthened zones consists therefore in a multiple snap-back
mechanical response, where descending branches of propagating cracks alternate with ascending
(linear) branches of arrested cracks.

Cohesive crack model and snap-back instability

The traditional definition of strength —intended as force per unit area that causes failure— needs to
be revised in light of the latest cutting-edge scientific developments in the field of materials mechan-
ics, which arose for the first time in the second half of the 20th Century. This is especially true when

Figure 1. Brittle specimen with an edge crack and collinear micro-cracks (a); Regular distribution of parallel
reinforcing fibres in a brittle-matrix specimen with an edge crack (b) and Load-displacement response diagram (c).
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dealing with structures that are particularly large or small. To effectively determine the ductility or

the brittleness of a structure, the strength of the material must be compared to other properties, such

as the toughness in the event of fracturing processes, together with the structural size (Carpinteri,

1981, 1982, 1984, 1984, 1989, 1989, 2021). It is important to distinguish between the simple thick-

ness effect, which takes into account the variations in fracture toughness with the specimen thick-

ness, whilst maintaining constant the remaining planar sizes, and the scale effect as the competition

between two distinct collapses governed by generalized forces with different physical dimensions.

The first descends from a transition between plane stress and plane strain conditions (Carpinteri and

Accornero, 2021). Both these effects are interacting in metals, whereas only the scale effect is present

in concrete-like materials (Bigaj and Walraven, 1993; Goldstein and Vainshelbaum, 1978; Kani,

1967; Tanabe et al., 2004; Tang et al., 1992).
The minimal basis for predicting the structural response consists of taking into account two

intrinsic properties of the material plus a geometrical characteristic of the structure. In strict anal-

ogy to the change from plastic collapse to buckling instability in structures subjected to compression

as their slenderness increases, so there is a transition from plastic collapse to brittle fracture in

structures subjected to tension as size-scale increases.
Glass filaments and Liberty ships are two prominent examples of the abovementioned properties.

Liberty ships, which were largely exploited during the Second World War, split into two parts

without warning (Figure 2(a)). The contrast between the significant brittleness involved in these

failures and the high ductility displayed by specimens of the same steel in the laboratory caused

profound astonishment in technicians and researchers at the time (Gordon, 1975; Tassava, 2003;

Thomason and Vlug, 1996; Tipper, 1962). Conversely, it has been demonstrated that a microscopic

filaments of glass used for fibre-reinforcement can withstand large strains and stresses up to two

orders of magnitude greater than the tensile strength of the glass itself (Figure 2(b)). These two

examples highlight the striking relationship between strength, ductility, and the structural size-scale:

brittleness and low strength can define large steel structures, whereas ductility and high strength

characterise microscopic glass structures. On the other hand, it is commonly recognized that glass is

a particularly brittle material, whereas steel is a relatively ductile material when tested in laboratory.
Furthermore, a ductile-to-brittle transition occurring when the specimen size increases has been

observed, even at the laboratory scale. Increasing the size-scale entails a clear transition towards

brittle structural behaviour, which is actually observed for all materials, whether they are metal,

polymer, ceramic, or cement (Carpinteri, 2021). This transition is accompanied by a sudden drop in

Figure 2. Brittle failure of a large-scale steel hull (a) and Ductile behaviour of small-scale glass fibre (b).
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the loading capacity and a rapid crack propagation if the material and the geometrical shape remain
unchanged. However, it is worth noting that specimens with relatively small dimensions exhibit
ductile behaviour and slow crack development (Figure 3).

As anticipated, very complex phenomena can affect the load vs. displacement relationship of a
structure: snap-through instability, defined as a loss of stability in the controlled load condition, and
snap-back instability, representing a loss of stability in the controlled displacement condition. Such
phenomena are very general, and usually encountered in structural problems characterized by either
geometrical or mechanical non-linearities. As an example, they may appear in the buckling response
of elastic structures, as evidenced in the work by von Kármán and Tsien (von Kármán and Tsien,
1941) for thin cylindrical shells under axial compression (Figure 4).

On the other hand, snap-back instabilities can be encountered when materials exhibiting strain-
softening behaviours are considered (Rots and de Borst, 1987). This is, for instance, the case of plain

Figure 3. Ductile-to-brittle transition by increasing the specimen size.

Figure 4. Buckling of thin cylindrical shells under axial compression (von Kármán and Tsien, 1941).
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concrete slabs in tension (Figure 5(a)), whose overall responses are highly influenced by the soft-

ening behaviour of the process zone (Figure 5(b)), the latter being governed by the fracture energy

of the material, GF.
In the following, we consider an elastic-softening tie made by a material with a double consti-

tutive law: being E the elastic modulus, the constitutive law is described as tension r versus dilation

e, and, after attainment of ultimate tensile strength ru or strain eu¼ru/E, we have tension r versus

crack opening displacement w (Figure 5(b)).
If a plane slab of elastic-softening material is increasingly loaded, three deformation histories will

arise after the ultimate tensile strength ru is reached, depending on its characteristic structural size

l (Figure 6): (1) normal softening, when wc> eu l; (2) vertical drop, when wc¼ eu l; (3) snap-back,

when wc< eu l.
Briefly, the global brittleness of the slab can be defined as the ratio of ultimate elastic energy at

the peak load contained in the body to the energy dissipated by fracture:

Brittleness ¼ r2u
2E

� Area� l= GF � Areað Þ / r2ul
EGF

(1)

This dimensionless quantity is higher than the unity when wc< eu l (specimen n. 3 in Figure 6)

and a catastrophic softening instability occurs.
In this context, the analytical and numerical investigations carried out by the first author in

(Carpinteri, 1989) put into evidence a transition from softening to snap-back instability either by

increasing the specimen dimensions and/or the material strength, and/or by decreasing the material

fracture energy, i.e., when GF

rul
¼ sE ! 0, being sE the so-called Energy Brittleness Number intro-

duced in the framework of the Cohesive Crack Model. Thus, it is worth noting that equation (1)

becomes: Brittleness¼ r2ul
EGF

¼ eu
sE
.

The post-peak catastrophic branch shown in Figure 6, which is a bifurcation of the global

equilibrium characterized by a positive slope in the load vs. displacement diagram, can be captured

only if the loading process is controlled by an increasing function of time.

Figure 5. Softening due to damage localization: Ductile-to-brittle transition influenced by the length of the specimen
(a) and Stress-strain vs cohesive behaviour (b).
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Moreover, it is interesting to remark how this cusp catastrophe, as described by the

Cohesive Crack Model, can represent the classical Griffith and Irwin instability (LEFM) for very
brittle conditions. In general, all the geometrical features of the specimen influence the global
ductility (or brittleness), and particularly slenderness and size-scale. In Figure 7, a three-point
bending scheme of an initially cracked (a) and initially uncracked (b) beam with depth b
and length ‘ is reported. For the notched beam, the critical situation in very brittle cases
(LEFM) is triggered when the stress-intensity factor attains the material fracture toughness,
KI¼KIC, whereas, for the initially uncracked beam, the critical situation is set by rmax¼ ru. The
structural behaviour of both the specimens depicted in Figure 7 can be analysed by means of the
Cohesive Crack Model.

In particular, a negative slope of the post-peak load-displacement curve (normal softening) will
occur for relatively large values of sE (Figure 8(a)), whereas a positive slope of the post-peak load-

displacement curve (snap-back) is related to sE ¼ GF

rub
! 0. It can be demonstrated that, for low

sEvalues, the results of the Cohesive Crack Model tend to those of LEFM with regard to the
cuspidal point in Figure 8(b): in this case, if the loading process is controlled by the deflection,
the P versus d curve will show a discontinuity in its bearing capacity with global instability.

In addition, it is worth noting that, by keeping sE unchanged, a post-peak softening behaviour
(Figure 8(a)) can characterise the case of large initial crack depth, a0/b, or low specimen slenderness,
‘/b, whereas a bifurcation of the global equilibrium (Figure 8(b)) arises for small initial crack depth,
a0/b, or high beam slenderness, ‘/b.

Figure 6. Plane slab in tension: Normal softening (1), vertical drop (2), and snap-back (3).
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Virtual crack propagation in brittle materials

Due to different physical dimensions of ultimate tensile strength, ru, and fracture toughness, KIC,

scale effects are always present in the usual fracture testing of common engineering materials. This

means that, for the usual scale of the laboratory specimens, the ultimate strength collapse or the

plastic collapse at the ligament tends to anticipate and obscure the brittle crack propagation. Such a

competition between collapses of a different nature can easily be shown by considering the ASTM

fracture toughness evaluation formula for the three-point bending test (Carpinteri, 1982):

KI ¼ P‘

tb3=2
f

a

b

� �
(2)

where b is the beam depth, t the beam thickness, and ‘ the beam span, whereas P is the external

force, and f a
b

� �
represents a suitable shape function.

At the moment of potential collapse due to brittle crack propagation, equation (2) becomes

KIC ¼ Pmax‘

tb3=2
f

a

b

� �
(3)

where Pmax is the external load of brittle fracture.

Figure 7. (a) Stress-singularity in an initially cracked specimen and (b) Navier stress distribution in an initially
uncracked specimen.

Figure 8. The crucial role of the brittleness number: (a) Normal softening (sE ¼ GF

rub
! 1) and (b) Snap-back

(sE ¼ GF

rub
! 0).
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If both members of equation (3) are divided by ru b1/2, we obtain (Carpinteri, 1980; Carpinteri,
1982; Carpinteri and Accornero, 2021)

KIC

rub1=2
¼ Pmax‘

rutb2
f

a

b

� �
(4)

Denoting by

s ¼ KIC

rub1=2
¼ sE

eu

� �1=2

(5)

the so-called Brittleness Number (Carpinteri, 1982), we have:

Pmax‘

rutb2
¼ s

f a
b

� � (6)

On the other hand, we can consider the force P that potentially produces ultimate strength
collapse in the ligament as:

1

4
Pmax‘ ¼ rut

b� að Þ2
6

(7)

from which follows, in nondimensional form

Pmax‘

rutb2
¼ 2

3
1� a

b

� �2

(8)

The diagrams of equations (6) and (8) are presented in Figure 9 as functions of the initial relative
crack depth a/b.

Whilst the former of these equations gives a family of curves as the nondimensional number s
varies, the latter is represented by a single curve (thick line). When s< 0.50, it may be noted how the
ultimate strength collapse precedes the brittle crack propagation both for sufficiently short cracks or
sufficiently long ones. Whilst the first tendency is typical of LEFM, the second represents a new,
non-intuitive development. It is basically due to the unlikelihood of a singular stress distribution
developing in the cases where there is an excessively reduced ligament. As the number s increases,
the interval of a/b for which brittle propagation of the crack precedes ultimate strength collapse
shrinks until it vanishes for s¼ 0.50, the value for which the corresponding fracture curve is tangent
to the curve of ultimate strength collapse. For s> 0.50, ultimate strength collapse precedes brittle
crack propagation for any relative crack length, there existing no points of intersection between the
fracture curve and the ultimate strength collapse curve. This means that a true LEFM collapse
occurs only for comparatively low fracture toughnesses, high tensile strengths, and/or large struc-
ture sizes. If the material ductility can always be calculated using the ratio KIC/ru (Barenblatt, 1962),
the size-scale must also be included into the formulation in order to determine the ductility of the
structure. The most synthetic way of characterizing the degree of ductility in a structure is the
Brittleness Number s given by equation (5). Therefore, plastic limit analysis turns out to be a
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valid method of assessment only when the structure under examination has a Brittleness Number
that is not excessively low.

The flexural behaviour of the beam depicted in Figure 9 will be analyzed in the following. The
deflection due to the elastic compliance of the uncracked beam is

de ¼ P‘3

48EI
(9)

where E is the material Young’s modulus, and I is the moment of inertia of the beam cross-section.
On the other hand, the deflection due to the local crack compliance is (Tada et al., 1973):

dc ¼ 3

2

P‘2

tb2E
g

a

b

� �
(10)

where g a
b

� �
represents a suitable shape function.

Figure 9. Nondimensional load of crack instability versus initial relative crack depth.
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The Superposition Principle provides d ¼ de þ dc, and, in nondimensional form

d‘
eub2

¼ P‘

rutb2
1

4

‘

b

� �3

þ 3

2

‘

b

� �2

g
a

b

� �" #
(11)

where eu ¼ ru=E. The term comprised between the square brackets is a dimensionless compliance,
which is a function of the relative crack depth, a/b, as well as of the beam slenderness, ‘=b. Different
load-deflection curves are represented in Figure 10 by varying the relative crack depth, a/b, and
considering a constant ratio ‘=b ¼ 4. On each linear plot in Figure 10, the point of ultimate strength
and that of fracture propagation can be found using equations (6) and (8). In contrast to the latter,
which is a single value, the former is dependent on the Brittleness Number s. A virtual load-
deflection path is formed by the set of crack propagation points for which s is constant and by

Figure 10. Nondimensional load of crack instability versus nondimensional deflection.
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changing the relative crack depths. On this path, the considered load produces crack instability
point by point.

When the crack grows, the instability load decreases and the compliance increases, so that the
product on the right-hand side of equation (11) may prove to be either decreasing or increasing. The
diagrams of Figure 10 show the deflection decreasing (with the load) up to the crack depth a/b� 0.3,
and then increasing (in discordance with the load). Therefore, whereas for a/b> 0.3 the P-d curve
presents the usual softening path having a negative derivative, for a/b< 0.3 it presents a positive
derivative. Such a branch could not be detected by deflection-controlled testing, and the represen-
tative point would jump from the positive to the negative branch with a discontinuity in the behav-
iour (snap-back instability).

The set of the ultimate strength points, for varying relative crack depths, is represented by the
thick line in Figure 10. This line intersects the virtual crack propagation curves for s � s0¼ 0.50,
which is analogous to what emerges from Figure 9.

In addition, the crack mouth opening displacement (CMOD), w1, is a function of the beam
geometry and of the elastic modulus (Tada et al., 1973)

w1 ¼ 6P‘a

tb2E
p

a

b

� �
(12)

where p a
b

� �
represents a suitable shape function.

In nondimensional form, equation (12) becomes

w1‘

eub2
¼ P‘

rutb2
6

‘

b

� �
a

b

� �
p

a

b

� �" #
(13)

The term comprised between the square brackets represents the dimensionless compliance that,
also in this case, depends on crack depth and beam slenderness. Figure 11 presents different load-
CMOD curves by varying relative crack depths a/b and with constant ratio ‘=b ¼ 4.

Also in this case, a virtual process is represented by the set of crack propagation points for
constant s and varying relative crack depths. For all values of a/b, when the crack opens, the
product on the right-hand side of equation (13) always increases, being the compliance increase
overcoming the critical load decrease. The crack mouth opening displacement w1 increases even
when both deflection and load decrease in the catastrophic P-d branch. Therefore, the P-w1 curve
presents always a negative derivative. If the process is controlled by the crack mouth opening
displacement, i.e., if w1 increases monotonically without discontinuities, the virtual P-d path with
positive slope could be followed regularly (without jumps or drops) (Carpinteri, 1989).

Progressive micro-cracking coalescence: Multiple snap-back instabilities

In the current section, an application of the crack length control scheme is presented in order to
analyse the damage evolution in solids containing a distribution of collinear interacting micro-
cracks in front of a macro-crack (Carpinteri and Accornero, 2018; Portela et al., 1993; Saleh and
Aliabadi, 1995; Salgado and Aliabadi, 1996; Schlangen and van Mier, 1992; van Mier, 1991).
During the incremental loading process, the macro-crack length is extended in order to achieve a
slow and controlled propagation of the damage. Some examples are shown with regard to finite
plates under plane strain conditions with one row of uniformly spaced collinear micro-cracks.

Carpinteri and Accornero 11



Then, the effect of crack interaction on the evolution of damage is examined (Crouch and Starfield,

1983; Horii and Nemat-Nasser, 1985; Kachanov, 1985, 1993; Ortiz, 1988; Portela et al., 1992;

Portela and Aliabadi, 1992; Portela and Santana, 2016) and multiple snap-back branches of the

load-displacement curve are obtained numerically. Consider the case of a finite plate of width 2 b

with a central macro-crack of initial length 2a0 and with 2n initial collinear micro-cracks equally

spaced between the corresponding tips. The plate is subjected to a uniaxial traction, r, as shown in

Figure 12. The loading process is controlled by the macro-crack length, which is always growing

perpendicularly to the direction of traction.
The measure of the pre-existing damage, D, is defined as the ratio of the sum of the micro-crack

initial lengths to the ligament (D¼ 0 means absence of micro-cracks, i.e., undamaged ligament,

whereas D¼ 1 represents total separation). It is worth noting that the evolution of the propagation

is also symmetric.
In Figures 13 to 16, some numerical tests considering the geometry of Figure 12 are reported in

terms of stress-strain diagrams. The different curves are obtained by varying the initial damage

Figure 11. Nondimensional load of crack instability versus nondimensional crack mouth opening displacement.
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ratio, D, the number of collinear micro-cracks, n, and the initial relative length of the dominant
crack, a0/b. In this way, the snap-back instabilities in the global structural response are numerically
captured, and the crack interaction effects are analyzed with respect to fracture evolution.

We can observe that, by increasing the initial damage ratio, D, the post-critical softening branch
tends to decrease its slope. In Figures 13 and 14, the global snap-back phenomenon is less and less
severe as D increases. As regards the influence of the number of micro-cracks, it can be observed
that, by varying n, there is no substantial change in the global response, although it modifies the
number and relevance of the single local snap-back. In addition, by comparing the four cases related
to a0/b¼ 0.1 (Figures 13 and 14), with those related to a0/b¼ 0.3 (Figures 15 and 16), a transition

Figure 12. Finite plate subjected to uniaxial traction with a central dominant crack and a distribution of collinear
micro-cracks.

Figure 13. Normalized stress-strain diagrams of different micro-cracking coalescence case studies with a0/b¼ 0.1.
(a): D¼ 0.3; n¼ 4 and (b): D¼ 0.7; n¼ 4.
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from a global snap-back instability to a global softening behaviour is evidenced. Therefore, by

increasing the initial length of the dominant crack, a0, and keeping D and n unchanged, a decrease

in the global brittleness of the specimen is detected.
In conclusion, a sharp global snap-back instability is identified in the case-studies with small

initial damage ratios and/or short initial dominant cracks. On the contrary, a small and/or damaged

ligament can avoid snap-back instabilities presenting a post-peak softening response.

Figure 15. Normalized stress-strain diagrams of different micro-cracking coalescence case studies with a0/b¼ 0.3.
(a): D¼ 0.3; n¼ 4 and (b): D¼ 0.7; n¼ 4.

Figure 14. Normalized stress-strain diagrams of different micro-cracking coalescence case studies with a0/b¼ 0.1.
(a): D¼ 0.3; n¼ 10 and (b): D¼ 0.7; n¼ 10.

Figure 16. Normalized stress-strain diagrams of different micro-cracking coalescence case studies with a0/b¼ 0.3.
(a): D¼ 0.3; n¼ 10 and (b): D¼ 0.7; n¼ 10.
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Fibre-reinforced brittle-matrix composites: Multiple snap-back instabilities

The Updated Bridged Crack Model (UBCM) allows to investigate the post-cracking flexural
behaviour of fibre-reinforced brittle-matrix structural elements, taking into account the elastic-
perfectly brittle response of the matrix together with a cohesive softening law of the fibre-
reinforcements (Accornero et al., 2022a, b, c; Carpinteri, 1981, 1984). Different versions of this
model have been used to describe the fracture behaviour of fibre-reinforced composites as well as
of materials reinforced by a rather small number of elements (Bosco and Carpinteri, 1992, 1995;
Carpinteri and Massabò, 1997). In both cases, UBCM is able to explain and reproduce the
constitutive flexural response that is often discontinuous owing to the presence of virtual cata-
strophic branches, i.e., snap-through and snap-back branches due to fibre action and matrix
brittleness, respectively (Abdallah et al., 2018; Abdallah and Rees, 2019; Accornero et al.,
2020, 2022a, 2022b; Banjara and Ramanjaneyulu, 2018; Bayramov et al., 2004; Boulekbache
et al., 2016; Campione et al., 2001; Carlesso et al., 2019; Carpinteri et al., 2023; Carpinteri and
Accornero, 2019, 2020; Enfedaque et al., 2021; Fataar et al., 2021; Germano et al., 2016; Goel
et al., 2012; Güvensoy et al., 2004; Hasegawa et al., 1989; Horii and Nemat-Nasser, 1985; Jun and
Mechtcherine, 2010; Paschalis and Lampropoulos, 2016; Sch€afer et al., 2021; Sornette et al.,
1998). In addition, scale effects are considered as fundamental for a correct comprehension of
the global structural behaviour, which can range from ductile to catastrophic simply by varying a
dimensionless number, the Reinforcement Brittleness Number, NP, which is a function of the
matrix fracture toughness, KIC, of the slippage strength of the fibre-reinforcement, �rs, of the fibre
volume fraction, Vf, and of the characteristic structural size, b (Accornero et al., 2022; Carpinteri,
1981; 2021):

NP ¼ Vf
�rs

KIC
b1=2 (14)

In the following, the analyses performed by UBCM consider different fibre-reinforced brittle-
matrix rectangular cross-section beams with slenderness equal to 4 and an initial notch of depth a0.

Figure 17. Fibre-reinforced brittle-matrix beam cross-section.
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The scheme of the cracked beam section together with the position of the n parallel fibres ahead of
the crack tip are shown in Figure 17.

In Figures 18 to 21, the normalized load-deflection diagrams of different numerical tests are
reported, in which the geometry of Figure 17 is considered by varying the Reinforcement Brittleness
Number, NP, the number of parallel fibres, n, and the initial relative crack depth, a0/b. In this way,
the snap-back branches of the load vs. deflection curve are numerically captured, and the effects of
the fibres interaction on fracture evolution are analyzed.

It is worth noting the crucial role played by the Reinforcement Brittleness Number, NP: moving
from lower to higher NP values, the global post-cracking response changes from strain-softening to

Figure 18. Normalized load-deflection diagrams of different fibre-reinforced brittle-matrix beams with a0/b¼ 0.1.
(a): NP¼ 0.1; n¼ 4 and (b): NP¼ 1.0; n¼ 4.

Figure 19. Normalized load-deflection diagrams of different fibre-reinforced brittle-matrix beams with a0/b¼ 0.1.
(a): NP¼ 0.1; n¼ 10 and (b): NP¼ 1.0; n¼ 10.
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strain-hardening. In this respect, a comparison can be made between the case of micro-cracking
coalescence and that of fibre-reinforcements.

It can be observed that, by varying n, there is no change in the global response, although it
modifies the number and relevance of the single local snap-back. As regards the influence of the
notch depth, by comparing the cases related to a0/b¼ 0.1 (Figures 18 and 19), with those related
to a0/b¼ 0.3 (Figures 20 and 21), and keeping NP and n unchanged, an increase in the
global ductility of the specimen is detected, i.e., the slope of the softening branch decreases
(Figures 18(a), 19(a), 20(a) and 21(a)), whereas the slope of the hardening branch increases
(Figures 18(b), 19(b), 20(b) and 21(b)).

Figure 20. Normalized load-deflection diagrams of different fibre-reinforced brittle-matrix beams with a0/b¼ 0.3.
(a): NP¼ 0.1; n¼ 4 and (b): NP¼ 1.0; n¼ 4.

Figure 21. Normalized load-deflection diagrams of different fibre-reinforced brittle-matrix beams with a0/b¼ 0.3.
(a): NP¼ 0.1; n¼ 10 and (b): NP¼ 1.0; n¼ 10.
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Conclusions

In the present work, the structural response of two brittle-matrix specimens is analysed: the first

contains a distribution of collinear micro-cracks, whereas the second presents multiple parallel

reinforcing fibres embedded in the matrix. In both cases, it is shown that the structural response

presents a discrete number of snap-back instabilities with related peaks and valleys, the crack

propagation occurring alternately within the matrix and through the heterogeneities. A strong

analogy emerges between traversing weakened or strengthened zones, consisting in a multiple

snap-back mechanical response, where descending branches of propagating cracks alternate with

ascending branches of arrested cracks. In addition, the damage ratio, D, or the Reinforcement

Brittleness Number, NP, prove to govern the ductile-to-brittle transition occurring in the weakened

specimen or in the strengthened one, respectively. Moving from lower to higher D or NP values, the

slope of the post-cracking branch changes from snap-back to strain-softening or from strain-

softening to strain-hardening.
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