
Buckling instability of a von Koch beam

Alberto Carpinteri , Federico Accornero *

Shantou University, Department of Civil Engineering and Intelligent Construction, Shantou, China

A B S T R A C T

In this paper, we commemorate the centenary since death of the Swedish mathematician Niels von Koch (and the 120th anniversary of the birth of its famous fractal 
set). The buckling analysis of a von Koch beam is investigated, which can effectively define the elastic stability problem for fractal-shaped antennas or more general 
and random natural forms. Results depending on the fractal dimension of the structure suggest peculiar scaling laws for the buckling load of fractal-shaped beams. It 
is found that the buckling load tends to zero when the iteration n → ∞, proving the high sensitivity to buckling of fractal antennas and trees. As in the case of free 
vibration, the eigenvalue tends to zero: the buckling load in the present case as well as the resonance frequency in dynamics. In the case of vibration, the fractal effect 
is extremely beneficial, whereas it is extremely dangerous in the case of buckling instability. The sudden collapse of a natural tree after a wind gust can be produced 
by elastic buckling much more likely than by dynamic resonance.

1. Introduction: fractals and complex patterns

Mandelbrot (1982) observed in the natural world a series of irregu
larities, tortuosities, and discontinuities, which cannot be described with 
classical mathematics. In this sense, he opposed Leibniz (Leibniz, 1765), 
the philosopher who lived at the turn of the 17th and 18th Centuries and 
was the founder of infinitesimal calculus, whose well-known apothegm 
states “Natura non facit saltus”, i.e., “Nature makes no leap”. Two worlds 
therefore collide, representing two ways of thinking: on the one hand the 
optimism, firstly related to the age of Enlightenment, and then to Posi
tivism, on the other the skepticism of critical rationalism, perhaps 
disillusioned, but also projected on new and exciting paradigms 
(Popper, 1934). Pythagoras (VI Century BC) already taught us that na
ture, with its irregularities and anomalies, can be described by mathe
matics: “The numbers are the beginning of all things. The whole 
universe is harmony and number” (Carpinteri, 1998, 1999). Pythagoras 
gives us a first significant example of how to obtain complex forms from 
elementary geometries, by recursive procedures. The application of his 
well-known theorem, repeated infinitely, gives a logarithmic spiral. Like 
mathematics, with its abstract recursive procedures, produces extremely 
complex geometric figures, similarly physics, chemistry, and biology, 
with recursive procedures – in this case real – create mineral crystals, 
plants, or animals even more complex (e.g., spiral shells, shrubs, flowers, 
ferns, trees, forests, etc.).

Even the artists try to reproduce the complexity of nature, with 
procedures hitherto considered irrational, but certainly also of a recur
sive type at the moment of inspiration. The brushstrokes of the 

Impressionist painters overlap sometimes in a systematic way, and 
sometimes only apparently disorderly. The notes of the most famous 
musicians are chasing each other without apparent rules, but in a 
harmonious way. Moreover, the chemical phenomena of growth by 
diffusion and aggregation create branched structures of dendritic type. 
Classical examples are electrolytic deposition, diffusion of fluids into 
other fluids, electrical discharges, and bacterial colonies. Urban aggre
gations also form and develop with similar rules and morphological 
results. So much that the Argentinian writer Borges rightly defines 
Buenos Aires in its years of great expansion as “a city growing like a tree” 
(Carpinteri, 1998).

In the animal world too, it is common to encounter structures or 
systems branched recursively. As an example, in human body we find 
the blood vessel system, or bronchi-system, as well as the nervous sys
tem. In addition, each neuron can be considered as a complex branched 
system, proving that there is self-similarity between the whole nervous 
system and its parts.

Furthermore, the fractures that originate and grow in metals, rocks, 
concrete, often have a branched and self-similar shape (Carpinteri, 
1994a, 2021). This means that peculiar geometric features are present at 
any length-scales, so that it may become difficult to distinguish between 
the morphology of a seismic fault and that of a corrosion microcrack.

The mountain contours themselves have sometimes complex and 
self-similar morphologies, so that often, without reference objects, it 
becomes difficult to guess the scale of the image: it could be a dolomite 
peak, but also a detail of a trivial stone.

Properties of self-similarity, which is the repetition of the same 
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geometric or statistic characteristics at any length-scale, are therefore 
often present in nature, from the microscopic scale (trajectories of the 
Brownian motions of elementary particles) to the intergalactic one 
(stars, galaxies, and clusters of galaxies). Self-similarity also concerns 
temporal phenomena. The graphs of heart rate, stock index, or earth
quake magnitude, when plotted as a function of time, resemble each 
other on any time-scale.

The dynamic behaviour of chaotic systems is unpredictable, since a 
small variation in the causes can lead to a huge variation in the effects. 
Determinism and classical mechanics thinking are thus brought into 
crisis when a multiplicity of solutions is presented for the same problem. 
The “butterfly effect” by Lorenz (1972) is the first example of this type of 
problems, describing the unpredictability of weather conditions. 
Therefore we have, on the one hand, chaotic dynamics with its inde
terminism, on the other hand, classical Newtonian mechanics with its 
determinism, which is capable of predicting the oscillation of a 
pendulum or the orbit of a planet with millimetric precision. There is no 
complete separation between these two worlds. Even the astral move
ments appear chaotic, at very large spatial and temporal scales. In the 
same way, atomic phenomena appear chaotic and undetermined at 
equally unusual scales.

In this context, the advent of Fractal Geometry has improved the 
understanding of processes of natural formation or transformation, of
fering new algorithms for extrapolating these processes (Mandelbrot, 
1967). Fractal mathematics has produced new means of expression that 
have been soon recognized as useful for the advancement of several 
scientific disciplines.

The term “fractal”, which comes from the Latin “fractus”, i.e., 
“fragmented”, was introduced by Mandelbrot (1975) to indicate a sys
tem that shows the property of self-similarity, such that by enlarging any 
part, however small, of the system, it has a structure identical to that of 
the whole system. In general, such property returns a dimension that is 
not integer. Mandelbrot has shown with numerous and suggestive ex
amples that concepts considered as abstract curiosities constitute 
instead a new type of mathematical apparatus for the description of 
intrinsically irregular structures (Carpinteri, 1994a,b; Falconer, 2014; 

Mandelbrot, 1967, 1982; Panagiotopoulos et al., 1993; Rian et al., 2018; 
Waller, 2006).

More in particular, invasive fractals are sets having a dimension 
greater than that of reference set. Their archetype is represented by the 
von Koch curve (von Koch, 1904, 1906). It can be constructed from an 
interval through an infinite sequence of operations of substitution of the 
“middle third” with the other two sides of the equilateral triangle that 
has its base on the removed segment (Fig. 1). The length, in classical 
terms, of the von Koch curve is infinite. It is possible to show, however, 
that the fractal dimension of this set is the noninteger number 1.262 and 
that the curve therefore presents a finite measure only in relation to a 
unit of length raised to such an anomalous exponent.

2. The triadic von Koch curve

In 2024 we commemorate the centenary of the death of the Swedish 
mathematician Niels Fabian Helge von Koch (1870–1924). We also 
celebrate the 120th anniversary of the birth of its famous fractal curve 
(von Koch, 1904). This fractal set represents one of the most emblematic 
geometric figures of the 20th Century and an inspiration to many sci
entific works, such as that of Mandelbrot, who devoted an entire chapter 
of his fundamental book to it (Mandelbrot, 1982). In particular, the 
potentiality of von Koch curve for improving the efficiency of natural or 
man-made objects has recently been suggested in different research 
fields (Carpinteri et al., 2009, 2010; Lakes, 1995). Fractal-shaped an
tennas or more general natural objects have some unique characteristics 
that are linked to the geometrical properties of von Koch curve.

Let us recall the properties of the triadic von Koch curve (Fig. 1), V, 
which splits into four parts Vj (j = 1, 2, 3, 4) geometrically similar to V 
but scaled by the factor 1/3: 

V = ∪
4

j=1
Vj (1) 

The heuristic definition of the Hausdorff dimension returns: 

Fig. 1. Triadic von Koch curve (4 iterations).
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Mes(V) = 4Mes
(
Vj
)
= 4

(
1
3

)α

Mes(V) (2) 

where α is the fractal dimension of the set by definition.
If we divide both sides by the Hausdorff measure, we obtain: 

1 = 4
(

1
3

)α

(3) 

Thus: 

α =
log(4)
log(3)

≈ 1.262 (4) 

The result reported above refers to the traditional von Koch curve, 
where the indentation angle is θ = 60◦ (Fig. 2).

Considering different indentation angles (Fig. 3), an analogous 

Fig. 2. Indentation angle θ.

Fig. 3. von Koch curves (after 5 iterations) with indentation angles θ = 15◦, 30◦, 45◦, 60◦.

Fig. 4. von Koch cantilever beam after 1 iteration.

A. Carpinteri and F. Accornero                                                                                                                                                                                                              International Journal of Solids and Structures 318 (2025) 113443 

3 



balance may be written: 

1 = 2
(

1
3

)α

+2
(

1
6cosθ

)α

≈ 4
(

1
2(1 + cosθ)

)α

= 4(q)α (5) 

Then: 

α =
log(4)

log(q− 1)
(6) 

3. Buckling instability

Let us now consider the buckling instability analysis of a triadic von 
Koch cantilever beam (Fig. 4). The buckling condition (Ncr = π2EI

4L0
2, only 

for the initiator) is evaluated for 4 iterations (Fig. 1) and for 4 different 
indentation angles θ (Fig. 3), considering the following geometrical and 
mechanical characteristics: I = 1000 mm4; L0 = 1000 mm (rectilinear 
beam); E = 1000 N/mm2. The following eigenvalue equation is solved 
for each framed beam system of the pre-fractal sequence (Carpinteri 
et al., 2009, 2010): 

det
(
[K] − N

[
Kg

] )
= 0 (7) 

where [K] and [Kg] are the elastic and geometric stiffness matrix, 
respectively, of each pre-fractal framed beam system. In particular, for 
the generic i-th beam element, the elastic stiffness matrix may be cast in 
the form: 

[Ki] =

∫ li

0
EIi

{
ηʹ́

i
}{

ηʹ́
i
}Tdz (8) 

where
li represents the length of the i-th beam element;
Ii represents the inertia of the i-th beam element cross-section;
{ηi} denotes the shape function vector.
On the other hand, the geometrical stiffness matrix of the i-th beam 

element can be cast in the form: 

[
Kgi

]
=

∫ li

0

{
ηʹ

i
}{

ηʹ
i
}Tdz (9) 

To solve the problem, the subsequent operations involve rotation and 
expansion of the local stiffness matrices (Carpinteri, 2017). Finally, the 
assemblage operation provides the global stiffness matrices, so that the 
eigenvalue problem can be formulated following Eq. (7). Then, the so
lution for the fractal is found as the limit of the solutions obtained for the 
pre-fractals.

The minimum eigenvalue N is said to be the critical multiplier of the 
loads. Concerning the problem of stability of the elastic equilibrium, the 
critical multiplier represents the load of incipient collapse and it mul
tiplies the unit force (1 Newton). The results of the buckling instability 

Table 1 
Critical multipliers of the load.

Iteration, n Ncr,n (θ = 15◦) Ncr,n (θ = 30◦) Ncr,n (θ = 45◦) Ncr,n (θ = 60◦)

0 2.47 2.47 2.47 2.47
1 2.42 2.30 2.10 1.84
2 2.38 2.15 1.79 1.38
3 2.34 2.00 1.53 1.03
4 2.30 1.87 1.31 0.78

Fig. 5. Fractal buckling load.
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analysis are reported in Table 1 by varying θ and increasing n, showing 
that the critical multiplier tends to zero when n → ∞ (extremely negative 
fractal effect).

The results shown in Table 1 are graphically represented in Fig. 5, 
where the normalized buckling load log(Ncr,n/Ncr,0) is displayed for each 
indentation angle θ and iteration n. The slope of the curves in Fig. 5 is 
equal to log(4q).

4. Conclusions

The buckling analysis of a von Koch cantilever beam, which can 
effectively define the elastic stability problem of fractal-shaped antennas 
or trees, is investigated in this paper. Results depending on the fractal 
dimension of the structure suggest peculiar scaling laws for the buckling 
load of the fractal antennas or trees. In particular, simple recursive re
lationships emerge, as also evidenced in the case of free vibration of the 
von Koch beam (Carpinteri et al., 2009, 2010). Eventually, it is found 
that the buckling load tends to zero when n → ∞, proving the high 
sensitivity to buckling of fractal antennas and trees. As in the case of free 
vibration, the eigenvalue tends to zero: the buckling load in the present 
case as well as the resonance frequency in dynamics. In the case of vi
bration, the fractal effect is extremely beneficial, whereas it is extremely 
dangerous in the case of buckling instability. As an original remark, we 
can conclude that the sudden collapse of a natural tree after a wind gust 
can be produced by elastic buckling much more likely than by dynamic 
resonance.
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