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Abstract 

Current design Standards for reinforced concrete beams prescribe to respect a minimum, ρmin, and a maximum, 
ρmax, reinforcement ratio in the design of structures. Below ρmin a brittle failure due to unstable crack propagation 
is expected. On the other hand, for ρ > ρmax a brittle failure due to concrete crushing is obtained. In this framework, 
a reinforced concrete element with ρmin < ρ < ρmax presents yielded steel at Ultimate Limite State (ULS) with a stable 
behaviour and no catastrophic loss of bearing capacity. Design Standards define ρmin and ρmax limits on the basis 
of the Bernoulli’s hypothesis of plane sections, and completely disregard size-scale effects. Within the present paper, 
Dimensional Analysis is used to determine the Brittleness Numbers that govern the behaviour of reinforced concrete 
(RC) as well as of prestressed reinforced concrete (PC) beams. Therefore, parametric analyses carried out by means 
of the Cohesive/Overlapping Crack Model (COCM) are used to study the ductile-to-brittle transitions in RC and PC 
beams, and to highlight the size-scale dependency of the two above-mentioned reinforcement limits.
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1  Introduction
Design Standards for reinforced concrete (RC) and pre-
stressed reinforced concrete (PC) beams are based on the 
following four assumptions:

•	 the tensile strength of concrete may be neglected;
•	 the constitutive law for concrete in compression is 

defined in a σ-ε diagram;
•	 the constitutive law for steel is defined in a σ-ε dia-

gram;
•	 plain sections remain plane after deformation.

The first assumption is due to the low tension strength 
of the concrete matrix: since the tension strength, σt, is 

one order of magnitude lower than the compression 
stength, σc, it may be neglected for practical reasons.

In Fig. 1, stress–strain curves in compression for sev-
eral concrete grades according to Model Code 2010 [21] 
are reported. It may be observed that for high strain lev-
els the curves are markedly nonlinear, suggesting that the 
actual stress distribution in the compressed zone of a RC 
beam is a function of the loading stage. Therefore, the 
stress may be considered linear only for low load levels. 
On the other hand, when the flexural strength of the sec-
tion is reached, the stress distribution becomes nonlinear 
and may be described as a function of the parameters k1, 
k2, and k3, as reported in Fig. 2. In this framework, with 
the introduction of Limit Design for RC beams (1937), 
Whitney [38] introduced an equivalent stress block to 
simplify the calculations: the actual distribution of the 
stress within the compressed zone may be substituted by 
an equivalent rectangular stress block having a width of 
ησc and a depth of βx, x being the neutral axis depth, and 
β, η ≤ 1 (Fig. 2). The assumption introduced by Whitney 
[38] has been widely accepted and calculation models 
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included in current Standards are based on the equiva-
lent stress block of Fig. 2.

The elastic-perfectly plastic constitutive law reported 
in Fig.  3 is usually adopted for steel reinforcement: 
since a possible strain-hardening implies an increase in 
the load bearing capacity, it may be neglected in order 
to simplify calculations.

The last hypothesis introduced above is known as 
Bernoulli’s principle and implies that the strain in con-
crete and in the steel reinforcement is proportional 
to the distance from the neutral axis. Generally, this 
assumption is reliable at all stages of loading up to 
failure, if good bond between the reinforcement and 
the surrounding concrete exists. Nevertheless, in the 
zone close to a crack this assumption is not completely 
respected since a slip between the concrete matrix and 
the reinforcement always occurs.

Based on the hypotheses introduced above, Standards 
distinguish three different types of failure for beams in 
bending: flexural failure, balanced failure and crushing 
failure. In the case of a flexural failure, steel is yielded at 
ULS and if the axial force N = 0, the depth, x, of the neu-
tral axis of a rectangular cross-section may be found as:

and the corresponding ultimate bending moment, Mu, as

d being the effective beam depth, and Φ ≤ 1 a strength 
reduction factor. Although Standards neglect the tension 
strength of concrete, they require to design RC elements 
providing a reinforcement percentage higher than a lower 

(1)x =
Asσy

ηβσcb
,

(2)Mu = �σyAsd 1− 0.5
Asσy

ηβσcbd
,

Fig. 1  Constitutive laws for concrete in compression [21]

Fig. 2  Stress distribution for concrete in compression and equivalent stress block
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bound, ρmin, in order to avoid hyperstrength phenomena. 
In this framework, by neglecting in (2) the second term in 
brackets and by equalling Mu = Mcr, Mcr being the crack-
ing bending moment, it is possible to obtain the mini-
mum reinforcement ratio, ρmin, adopted by Standards as

with γ = d/h.
In the case of a crushing failure, the concrete matrix 

reaches its ultimate deformation, εcu, with steel reinforce-
ment still within its elastic range. In this case, by means 
of the Bernoulli’s hypothesis it is possible to state

Thus, the stress in steel may be found as

Therefore, it is possible to find the depth of the neutral 
axis, x, by solving the following quadratic equation

Once the depth, x, of the neutral axis has been found, 
the ultimate bending moment, Mu, may be calculated as

(3)ρmin =
σt

6�γσy
,

(4)
εs

εcu
=

d − x

x
.

(5)σs = εcu

(

d

x
− 1

)

Es.

(6)
ησcβb

εcuEsAs
x2 + x − d = 0.

In this context, the balanced failure is defined as 
the failure mode at which concrete crushing and steel 
yielding simultaneously occur. The reinforcement ratio 
corresponding to this condition is defined balanced rein-
forcement ratio, ρbal. In a failure mode of this type, the 
depth of the neutral axis may be easily found from (5) as

and the balanced reinforcement ratio, ρbal, may be 
defined as

In Fig.  4, the bearing capacity and the dimensionless 
neutral axis depth, x/d, of a RC beam (h = 400  mm) for 
different values of the reinforcement ratio are reported. 
The concrete matrix has a compression strength 
σc = 35  MPa, εcu = 3.5 ‰, β = 0.8, and η = 0.85. On the 
other hand, the steel yield strength is σy = 500 MPa, with 
Es = 2.1 × 105  MPa, and d = 320  mm. The two diagrams 
are obtained by means of (1, 2, 6, 7) by setting Φ = 1. 
The balanced reinforcement ratio, ρbal, for this beam is 
ρbal = 2.8%. Figure 4a shows that for ρ < ρbal an increase in 
the reinforcement ratio leads to an almost linear increase 
in the load bearing capacity. On the other hand, for ρ > ρbal 
only a small increase in Mu is recognised. This difference 

(7)Mu = �σsAs(d − 0.5x).

(8)x =
εcuEs

εcuEs + σy
d,

(9)ρbal =
γησcβ

σy

εcuEs

εcuEs + σy
.

Fig. 3  Constitutive law for steel
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in the response of the beam at ULS is due to a transition 
in the failure mechanism: if steel has a sufficient ductil-
ity, for ρ < ρbal a flexural failure is obtained. On the other 
hand, for ρ > ρbal a brittle catastrophic failure due to con-
crete crushing is detected without any plastic rotation 
capacity. This ductile-to-brittle transition is predicted by 
Standards by assuming a different strength reduction fac-
tor, Φ, for increasing reinforcement ratios, by defining an 
upper bound reinforcement limit, ρmax, and/or by defin-
ing a maximum neutral axis depth (Fig. 4b).

The constitutive laws and the hypotheses introduced 
above form the Standards’ theoretical background for 
beam design and assessment. On the other hand, they are 
not able to take into account the quasi-brittle nature of 
concrete, and size-scale effects in the transitions between 

failure mechanisms [5, 19, 20, 22, 25, 28] and on mini-
mum and maximum reinforcement ratios.

In the past, important results in the study of size-scale 
effects on plain concrete beams in bending have been 
obtained by means of the Cohesive Crack Model [12, 
26]. The Cohesive Crack Model is a Nonlinear Fracture 
Mechanics model that is able to describe the cracking 
process of concrete by taking into account the bridg-
ing effect of aggregates [10, 11]. In this model, a tradi-
tional σ-ε constitutive law is applied on the undamaged 
part of the beam until the tension strength, σt, is reached 
(Fig.  5a). Beyond this limit, strain-localization phenom-
ena take place and a softening σ-wt constitutive law is 
used, wt being the crack opening displacement (Fig. 5b). 
In a cohesive crack it is possible to recognise two 

Fig. 4  Behaviour of a RC beam at ULS for increasing reinforcement ratios: (a) Bearing capacity; (b) Dimensionless neutral axis depth, x/d 

Fig. 5  Constitutive laws for the Cohesive Crack Model: (a) Pre-peak σ-ε law; (b) Post-peak σ-wt relationship
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different tips. The fictitious crack tip is the point where 
the tension strength is reached. On the other hand, the 
real crack tip is the point where the critical crack open-
ing displacement, wt

cr, is attained: beyond wt
cr the crack 

faces are too far and the bridging effect of aggregates is 
null (Fig. 5b). The crack length included within the ficti-
tious and the real crack tips form the process zone, where 
energy dissipation occurs. Parametric studies carried out 
by means of the Cohesive Crack Model [12] on plain con-
crete beams have demonstrated that a ductile-to-brittle 
transition is detected by increasing the concrete matrix 
tension strength, σt, and/or the beam depth, h, and/or by 
decreasing the fracture energy, GF. This transition from 
a softening to snap-back post-peak behaviour has been 
widely confirmed by several experimental campaigns car-
ried out in the past [7, 24].

In 1997, the International Union of Laboratories and 
Experts in Construction Materials, Systems and Struc-
tures (RILEM) organized a large experimental campaign 
[36] in order to study the effects of loading boundary 
conditions and specimen slenderness on the post-peak 
behaviour of concrete in compression. The results of this 
campaign have demonstrated that in the softening regime 
a reliable constitutive law for concrete in compression 
may be established only if a fictitious interpenetration, 
wc, is considered. In this context, Carpinteri et  al. [16] 
have introduced the Overlapping Crack Model to study 
strain-localization phenomena of concrete in compres-
sion. As in the Cohesive Crack Model, in the Overlapping 
Crack Model two different constitutive laws are applied. 
A first constitutive law defined in a traditional σ-ε dia-
gram is used until the concrete compression strength, 
σc, is reached (Fig.  6a). On the other hand, beyond this 

limit a second constitutive law defined in a σ-wc dia-
gram is adopted (Fig. 6b). The area below the σ-wc curve 
defines the concrete crushing energy, Gc, which has been 
demonstrated [27] to be a real property for concrete in 
compression.

Within the present paper, the Cohesive and the Over-
lapping Crack Models are coupled together in the Cohe-
sive/Overlapping Crack Model (COCM). The COCM [1, 
2, 14, 15, 17, 18] is able to study strain-localization phe-
nomena in tension and compression, size-scale effects, 
and ductile-to-brittle transitions in RC and PC beams in 
a unified approach. Therefore, some parametric studies 
are presented in order to highlight the effects of the beam 
size-scale and reinforcement percentage on beam ductil-
ity. Moreover, Dimensional Analysis is used to determine 
the Brittleness Numbers that govern the ductile-to-brittle 
transitions in RC and PC beams. Thus, these Brittleness 
Numbers are used to identify a size-scale dependent mini-
mum and a size-scale dependent maximum reinforcement 
percentage.

2 � The Cohesive/Overlapping Crack Model
The Cohesive/Overlapping Crack Model (COCM) is able 
to describe cracking and crushing phenomena in RC or 
PC beams by means of an evolutionary analysis. More 
precisely, within this model the beam cross-section is dis-
cretized into n nodes, and at each computation step, t, the 
following equation is solved:

In (10), {w}t and {F}t are the vectors containing nodal 
openings/overlappings and forces at step t, respectively; 
{Fp} is the vector of forces generated by a potential 

(10){w}t = [KF]{F}t + [KF]{Fp} + {KM}Mt .

Fig. 6  Constitutive laws for the Overlapping Crack Model: (a) Pre-peak σ-ε law; (b) Post-peak σ-wc relationship
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compressive force due to prestressing; Mt is the bending 
moment at step t; [KF] and {KM} are the matrix and the 
vector containing nodal openings/overlappings for unit 
nodal forces and for a unit bending moment, respectively. 
The unknowns of (10) are (2n + 1) and are represented 
by the n nodal displacements {w}t, the n nodal forces 
{F}t, and by the applied bending moment, Mt. In order to 
reduce the number of the unknowns, in the general case 
of the damaged cross-section at step t of Fig. 7, it is pos-
sible to apply the Cohesive and the Overlapping constitu-
tive laws of Figs. 5b and 6b to relate the nodal forces with 
the nodal displacements:

j, m, p and q being the fictitious and real crack tip posi-
tions of the cohesive and overlapping zones as reported 
in Fig. 7; Ft is the tension force that triggers the cohesive 
zone propagation; Fc is the compressive force that trig-
gers the overlapping zone propagation. The condition 
(11f ) defines the crack closing force generated by rein-
forcement as a function of the nodal displacement wr, 
where reinforcement is positioned. This force may be 

(11a)Ft
i = 0 for i = 1, . . . ,

(

j − 1
)

, i �= r

(11b)Ft
i = Ft

(

1− wt
i

wt
cr

)

for i = j, . . . , (m− 1)

(11c)wt
i = 0 for i = m, . . . , p

(11d)Ft
i = −Fc

(

1+ wt
i

wc
cr

)

for i = (p+ 1), . . . , q

(11e)Ft
i = 0 for i = (q + 1), . . . , n

(11f )Ft
i = f

(

wt
i

)

for i = r

easily evaluated by means of bond-slip constitutive laws 
suggested by Model Code 2010 [21] as reported in Ruiz 
[32] and Cafarelli et al. [8]. Although the conditions (11) 
estabilish a relationship between nodal openings/overlap-
pings and nodal forces, they do not allow the determina-
tion of Mt. In this framework, another constraint should 
be considered. More precisely, since the loading process 
of a RC beam may present snap-back and snap-through 
unstable branches, in the COCM the loading process is 
followed numerically by setting at each computation step 
an increased value of the crack depth by means of the 
Crack Length Control Scheme (CLCS) [6]. On the other 
hand, since in the COCM we have a crack in tension and 
a fictitious crack in compression (the overlapping zone), 
the CLCS should be extended to consider multi-cracking 
phenomena [9]. More precisely, if we assume that at step 
(t–1) we have reached the convergence of the numeri-
cal procedure with a bending moment Mt−1, at step t the 
bending moment may be calculated as

ΔMt being a correction for Mt–1 that should be 
applied to generate Ft in the fictitious cohesive crack 
tip, or Fc in the fictitious overlapping tip. In the general 
condition reported in Fig.  7, with a fictitious cohesive 
crack tip in m and a fictitious overlapping crack tip in p, 
two virtual corrections for Mt–1 are calculated:

Fm(Mt–1 + 1), Fp(Mt–1 + 1) being the two forces gen-
erated in nodes m and p with a bending moment 

(12)Mt = Mt−1 +�Mt .

(13a)�Mt
1 =

Ft − Fm(M
t−1 + 1)

Fm
(

Mt−1 + 1
)

− Fm(Mt−1)
,

(13b)�Mt
2 = −

Fc + Fp
(

Mt−1 + 1
)

Fp
(

Mt−1 + 1
)

− Fp
(

Mt−1
) ,

Fig. 7  Beam cross-section damaged in tension and compression at computation step t 
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(Mt–1 + 1); Fm(Mt–1), Fp(Mt–1) being the two forces that 
we have in the same nodes with a bending moment 
equal to Mt–1. The real correction ΔMt is set as

Once the value of Mt is calculated by means of (12, 13, 
14), a check is performed on the displacements of the two 
process zones since according to the constitutive laws of 
Fig.  5b and Fig.  6b the following conditions should be 
ensured:

If (15) are not satisfied, the two process zones are 
shrunk, the nodes j and q are moved, and the calculation 
of Mt is repeated. Therefore, the beam cross-section rota-
tion, ϑt, is calculated by means of the Betti’s Theorem as:

where DM is the rotation generated by a unit bending 
moment. At the end of the current step t, if ΔMt is calcu-
lated by means of (14a), the fictitious cohesive crack tip is 
moved in (m + 1). On the other hand, if ΔMt is calculated 
by means of (14b), the fictitious overlapping crack tip is 
moved in (p – 1). Thus, the numerical algorithm moves 
to calculation step (t + 1) and all the procedure described 
above is repeated.

It is worth noting that (13) may be applied only if linear 
cohesive and overlapping constitutive laws are adopted: 
in the case that nonlinear laws are used, ΔMt should be 
determinated by means of iterative methods. Moreover, 
it should be noted that the elastic coefficients of (10) and 
(16) may be calculated only once by means of a finite ele-
ment software and then rescaled according to the par-
ticular beam geometry to be analysed.

The COCM is able to calculate the beam response in 
the bending moment-rotation (M-ϑ) diagram. On the 

(14)

�Mt =
{

�Mt
1 if

∣

∣�Mt
1

∣

∣ = min
(
∣

∣�Mt
1

∣

∣,
∣

∣�Mt
2

∣

∣

)

�Mt
2 if

∣

∣�Mt
2

∣

∣ = min
(∣

∣�Mt
1

∣

∣,
∣

∣�Mt
2

∣

∣

)

.

(15a)wt
i ≤ wt

cr for i = j, . . . , (m− 1),

(15b)wt
i ≥ −wc

cr for i = p+ 1, . . . ., q.

(16)ϑ t = {KM}T{F}t + DMMt ,

other hand, the load-displacement (P-δ) curve may be 
easily obtained by following the procedure described in 
Mattock [30] and Cafarelli et al. [8].

3 � Model validation
In this section, the COCM is validated by means of a 
numerical versus experimental comparison. More pre-
cisely, the experimental campaign carried out by Man-
sor et al. [29] is considered. The beams of this campaign 
have a width of 200 mm, a depth of 300 mm, and a rein-
forcement ratio, ρ, between 0.46%-3.00%, as reported 
in Table  1. The specimens were casted with a concrete 
matrix having a compression strength σc > 35  MPa, 
and with a steel reinforcement having a yield strength 
σy > 400  MPa. Since Mansor et  al. [29] have not carried 
out experimental tests for the determination of con-
crete tension strength, σt, fracture energy, GF, and crush-
ing energy, Gc, the values of these parameters have been 
determinated according to Model Code 2010 [21] and 
the formula proposed by Suzuki et al. [35]. All the beams 
are tested in a four point bending scheme by using the 
applied load as loading parameter, as reported in Fig. 8.

In Fig.  9, the numerical (thick) and experimental 
(thin) curves are reported. It is possible to observe that 
the COCM provides results that are very close to the 
experimental ones. More precisely, the model is capable 
of describing in a reliable manner the ascending branch 
after concrete cracking and the plastic plateau generated 
by steel yielding. Moreover, the model proves to be able 
to predict the reduction of the plastic plateau, and the 
transition from a flexural to crushing failure by increas-
ing the reinforcement percentage, ρ. In this context, it is 
important to note that all the numerical curves of Fig. 9 
present a first snap-back branch after the first peak load 
and a second snap-back after the plastic plateau. These 
instabilities are respectively triggered by concrete crack-
ing and concrete crushing and are absent in the experi-
mental curves due to the adopted loading parameter.

Althought the experimental campaign of Mansor et al. 
[29] was planned to study the ductility of RC beams, it 
completely disregards size-scale effects. In order to 
recover this lack, in the next two sections of the paper 

Table 1  Mechanical and reinforcement ratio parameters of the experimental campaign carried out by Mansor et al. [29]

Beam σc (MPa) σt (MPa) GF (N/mm) Gc (N/mm) σy (MPa) ρ (%)

R1 38.2 3.4 0.146 30.0 460 0.46

R2 37.5 3.4 0.145 30.0 459 0.75

R3 37.3 3.3 0.145 30.0 440 2.05

R4 37.0 3.3 0.145 30.0 460 0.69

R5 39.1 3.5 0.146 30.0 459 1.30

R6 40.7 3.5 0.147 30.9 440 3.00



Page 8 of 14Cafarelli et al. Smart Construction and Sustainable Cities             (2024) 2:5 

some parametric studies carried out by means of the 
COCM are presented.

4 � Failure‑mode scale‑transitions in RC beams
In Fig.  10, a numerical investigation on RC beams per-
formed by means of the COCM is reported. The study 
considers four different reinforcement ratios, ρ, between 
0.5% and 3.0%. Moreover, for each reinforcement per-
centage, seven different beam depths, h, between 0.1  m 
and 2.0 m are considered. The beam thickness, b, is fixed 
in order to have a ratio h/b = 2, and the reinforcement 
position is set in order to have d = 0.9  h. The concrete 
matrix has the following properties: σc = 40 MPa; Gc = 30 
N/mm; σt = 4 MPa; GF = 0.08 N/mm. On the other hand, 
the steel has a yield strength σy = 400  MPa. In Fig.  10a, 
the curves for ρ = 0.5% are reported. It may be observed 
that for this reinforcement percentage the beam hav-
ing h = 0.1 m has a large plastic rotation capacity. How-
ever, a clear reduction in the width of the plastic plateau 
by increasing the beam depth, h, may be detected. In 
Fig.  10b the case of ρ = 1.0% is analysed. For this rein-
forcement ratio, all the beams with h ≤ 1.0  m present 
a failure mode governed by steel yielding, and all the 
beams with h > 1.0  m exhibit concrete crushing without 
any rotation capacity. In this framework, for this rein-
forcement percentage a ductile-to-brittle transition is 
detected for h = 1.0 m.

In Fig.  10c, the curves for ρ = 2.0% are reported. As 
in the previous cases, the width of the plastic plateau is 
reduced by increasing the beam depth, h. However, for 

this higher reinforcement ratio a flexural to crushing 
failure transition is obtained for a lower beam depth: for 
h = 0.6 m, only a small plastic plateau may be recognised. 
By increasing further the reinforcement ratio (Fig. 10d), 
all the investigated beams migrate to a completely cata-
strophic behaviour: after the peak load, very steep snap-
back instabilities triggered by concrete crushing are 
revealed and a null rotation capacity is detected.

5 � Failure‑mode scale‑transitions in PC beams
Several experimental campaigns on PC beams carried 
out in the past were designed on small scale specimens 
in order to comply with laboratory constraints, and few 
studies exist on size-scale effects on these structural 
elements [37]. Thus, as in the case of RC beams, in this 
section of the paper a numerical investigation on these 
elements by means of the COCM is presented.

The parametric analysis is carried out considering 
four different prestressing reinforcement percentages, 
ρp, in the range 0.1%-0.8%. The concrete matrix has the 
same mechanical parameters of the numerical investiga-
tion of the previous section, and the steel yield strength 
is fixed to σy = 1700  MPa. The study considers five dif-
ferent beam depths, h, in the range 0.4  m-1.5  m. In 
Fig.  11, the obtained numerical curves are reported. It 
may be observed that for low reinforcement percent-
ages (Fig.  11a, b) the behaviour of PC beams is similar 
to that of RC beams: after concrete cracking, an ascend-
ing branch up to steel yielding is recognised. After steel 
yielding, a plastic plateau is described, and at the end 

Fig. 8  Beam geometry and loading conditions adopted by Mansor et al. [29]
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of this plastic plateau a snap-back instability triggered 
by concrete crushing is detected. In this framework, 
the beams having ρp = 0.1% and ρp = 0.2% have a stable 
behaviour since the ULS is reached with yielded steel. 
However, it may also be recognised that the width of the 
plastic plateau is reduced by increasing the beam depth, 

clearly suggesting size-scale effects. In Fig.  11c, the 
curves obtained for ρp = 0.4% are reported. For this rein-
forcement percentage, all the investigated beam depths 
present unstable concrete compression failure: after 
concrete cracking, the peak load is reached, and unsta-
ble strain localization phenomena are triggered without 

Fig. 9  Comparison between numerical (thick) and experimental (thin) results: (a) ρ = 0.46%; (b) ρ = 0.75%; (c) ρ = 2.05%; (d) ρ = 0.69%; (e) ρ = 1.30%; 
(f) ρ = 3.00%
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steel yielding. This behaviour is confirmed by Fig.  11d 
where the reinforcement percentage ρp = 0.8% is ana-
lysed. For this higher reinforcement ratio, the post-peak 
behaviour of the beams is characterized by steeper snap-
back branches, suggesting the more severe crushing of 
concrete.

6 � Dimensional Analysis and Brittleness Numbers
Dimensional Analysis [4, 13] might be used in the inves-
tigation of the different failure modes of RC structures, 
since it is able to reveal the geometrical and mechanical 
characteristics affecting the ductile-to-brittle transitions. 
In particular, the behaviour of a RC beam in bending may 
be written as:

KIC being the concrete toughness; Fb the maximum 
bridging force exerted by reinforcement; Fe the force 
generated at beam extrados due to prestressing; ℓ the 

(17)F

(

σt,KIC, σc,Gc, Fb, Fe, h;
ℓ

h
,
b

h

)

= 0,

beams span; b the beam thickness. If we are interested 
in the investigation of the flexural failure of RC ele-
ments, we may neglect σc, Gc, and Fe, leading to a sim-
plification of this general relationship:

We may further reduce the dimension of the prob-
lem stated in (18) by adopting h and KIC as independent 
variables

In (19) it is possible to recognise the Tension Matrix 
Brittleness Number,

and the Lower Limit Reinforcement Brittleness Number

(18)F1

(

σt,KIC, Fb, h;
ℓ

h
,
b

h

)

= 0.

(19)�1

(

KIC

σth0.5
,

Fb

KICh1.5
;
ℓ

h
,
b

h

)

= 0.

(20)st =
KIC

σth0.5
,

Fig. 10  Size-scale effects on RC beams for different reinforcement ratios, ρ 



Page 11 of 14Cafarelli et al. Smart Construction and Sustainable Cities             (2024) 2:5 	

On the other hand, if we want to study the crushing 
failure of PC beams, σt and KIC may be neglected in (17). 
Therefore, the problem is reduced to:

In this case, if (GcE)0.5 and h are assumed as independent 
parameters, (22) may be simplified as:

where it is possible to recognise the Compression Matrix 
Brittleness Number

(21)NL
P =

Fb

KICh1.5
∝ ρ

σbh
0.5

KIC
.

(22)F2

(

σc,Gc, Fb, Fe, h;
ℓ

h
,
b

h

)

= 0.

(23)�2

(
√
GcE

σch0.5
,

Fb√
GcEh1.5

,
Fe√

GcEh1.5
;
ℓ

h
,
b

h

)

= 0,

(24)sc =
√
GcE

σch0.5
,

the Upper Limit Reinforcement Brittleness Number

and the Prestressing Reinforcement Brittleness Number

σp being the prestressing stress, and e being the tendon 
eccentricity.

7 � Size‑scale dependent minimum and maximum 
reinforcement percentages

The Dimensional Analysis presented in the previous 
section demonstrates that the flexural failure of RC 
beams is influenced by the two Brittleness Numbers st, 
NL

P, and that the crushing failure is influenced by the 
other two Brittleness Numbers sc, NU

P. In this frame-
work, since the COCM is able to predict the flexural 
to crushing failure mode transitions by increasing the 

(25)NU
P =

Fb√
GcEh1.5

∝ ρ
σbh

0.5

√
GcE

,

(26)N
p
P =

Fe√
GcEh1.5

∝ ρ
σph

0.5

√
GcE

(6e/h− 1),

Fig. 11  Size-scale effects on PC beams for different prestressing reinforcement ratios, ρp
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reinforcement percentage, ρ, and/or the beam size-
scale, h, it may be adopted to outline size-scale depend-
ent minimum, ρmin, and maximum, ρmax, reinforcement 
percentages. The numerical investigation presented 
in the following has been set considering several con-
crete grades in the range 20–80 MPa. For each concrete 
grade, several beam size-scales in the range 0.1–6.4 m 
have been analysed, and for each beam depth the rein-
forcement ratio has been increased progressively. More 
precisely, the minimum reinforcement ratio, ρmin, has 

been calculated as the reinforcement ratio that is able 
to generate an ultimate bending moment equal to the 
cracking bending moment. Whereas, the maximum 
reinforcement percentage, ρmax, has been calculated as 
the minimum reinforcement ratio that is able to trigger 
concrete crushing before steel yielding. The results of 
this study are presented in Fig. 12 for RC beams and in 
Fig. 13 for PC beams, where two values of the Brittle-
ness Number Np

P are considered. In this context, the 

Fig. 12  Size-scale dependent reinforcement limits in RC beams: (a) Lower limit; (b) Upper limit

Fig. 13  Size-scale dependent upper reinforcement limit for PC beams: (a) NP
p = 0.05; (b) NP.p = 0.06
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COCM reveals a variation of ρmin proportional to h−0.15, 
and a variation of ρmax proportional to h−0.25.

In the past several models [3, 7, 23, 24, 31, 33, 34] have 
been proposed to determine an effective minimum rein-
forcement percentage for RC beams. Some of the size-
scale laws for ρmin found in literature are compared in 
Fig. 14 together with the size-scale law found by means 
of the COCM. It is possible to observe that all the models 
predict a reduction of ρmin by increasing the beam size-
scale, h, with the only exception of the Gerstle’s model 
[23].

8 � Conclusion
The Cohesive/Overlapping Crack Model (COCM) is 
a Nonlinear Fracture Mechanics model that is able to 
simulate strain localization phenomena occurring in 
RC structures by adopting constitutive laws for the con-
crete matrix defined in a stress-displacement diagram. 
Fracture Mechanics and experimental tests carried out 
in the past have demonstrated that only this type of 
law is able to predict the ductile-to-brittle transitions 
occurring in concrete and reinforced concrete speci-
mens in a comprehensive manner. On the other hand, 
constitutive laws and calculation models currently 
included in Standards are still based on traditional σ-
ε approaches, demonstrating their inability in predict-
ing the above-mentioned phenomena. In this paper, the 
COCM together with Dimensional Analysis has been 
adopted to define minimum and maximum size-scale 

dependent reinforcement ratios, providing the limits 
in which RC beams may exhibit a stable behaviour. The 
outcomes within the present paper may have impor-
tant consequences on structural design, structural 
assessment and retrofitting, and may be used to better 
understand the mechanical behaviour of new concrete 
composites made of high strength concrete mixtures, 
fibres, fibre reinforcing polymer bars (FRP), and recy-
cled aggregates. 
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