During the past years, the theory of aCM and Ulrich bundles has become a central area of research in Algebraic Geometry. Spurred by the question raised by D. Eisenbud and F.O. Schreyer whether any polarized variety is the support of an Ulrich sheaf, a lot of work has been devoted to this problem, receiving inputs from many different methods.
Moreover, aCM and Ulrich bundles are interesting not only on their own, but also due to the many links they own with other areas of research, such as: moduli spaces of (semi-)stable sheaves, Boij-Söderberg theory, the theory of Cayley forms, etc.

The goal of this School and Workshop is to give a unified presentation of all of the aforementioned topics in a coherent and gentle way.
Laura Costa, Universitat de Barcelona
Rosa Maria Miró-Roig , Universitat de Barcelona
Joan Pons-Llopis, Politecnico di Torino
Marian Aprodu, Universitatea din București (TBC)
Luca Chiantini, Università di Siena
Daniele Faenzi, Université de Bourgogne et Franche Comté
Gunnar Fløystad, Universitetet i Bergen
Yeongrak Kim, Universität des Saarlandes

Vincenzo Antonelli, Politecnico di Torino
Ada Boralevi, Politecnico di Torino
Francesco Malaspina, Politecnico di Torino
Roberto Pignatelli, Università di Trento
Joan Pons-Llopis, Politecnico di Torino
Luis Solá Conde, Università di Trento

The School/Workshop is supported by CIRM-Fondazione Bruno Kessler (formerly CIRM-ITC), Dipartimento di Scienze Matematiche – Politecnico di Torino, and by INdAM-GNSAGA.

Design: TEMPLATED and Ada Boralevi