Istituzioni di Algebra e Geometria — Algebra, a.a. 2023-2024 Soluzioni foglio 2

1. (a) $G = \mathbb{N}$ è chiuso rispetto all'operazione $a * b = a^b$.

Per quanto riguarda l'elemento neutro è chiaro che a*b=a per ogni $a\in G$ implica b=1, quindi se un elemento neutro esiste, deve essere per forza 1: d'altra parte 1*b=1 per ogni b, quindi non esistono elementi neutri in G rispetto a *, e non ha nemmeno senso parlare di inverso. Si noti poi che l'operazione non è associativa:

$$(2*2)*3 = 4^3 = 64 \neq 256 = 2^8 = 2*(2*3).$$

Infine * non è nemmeno commutativa: $2*3 = 8 \neq 9 = 3*2$.

(c) Per $G=(1,+\infty)$ con l'operazione $a*b=a^{\log b}$, sia α la base del logaritmo. Assumiamo per ora che $\alpha=10$, provate a vedere come cambiano le risposte al variare di $\alpha\in(0,+\infty)$. È facile vedere che G è chiuso rispetto a *.

Per l'elemento neutro, abbiamo che se a*b=a per ogni $a\in G$, allora $b=\alpha$. Inoltre

$$\alpha * a = \alpha^{\log a} = a$$

per ogni $a \in G$. Concludiamo che α è elemento neutro per *.

Passiamo agli inversi: sia $a*b=\alpha$ per ogni $a\in G$, cioè $a^{\log b}=\alpha$: dalla definizione di logaritmo segue allora che $\log b=\log_a\alpha$: dunque $b=\alpha^{\log_a\alpha}$ che, quindi risulta essere l'unico candidato per l'eventuale inverso di a. Risulta

$$(\alpha^{\log_a \alpha}) * a = (\alpha^{\log_a \alpha})^{\log a} = \alpha^{(\log_a \alpha)(\log a)}$$

Poiché $(\log_a \alpha)(\log a) = \log_a a = 1$, segue che $a^{-1} = \alpha^{\log_a \alpha}$.

Per quanto riguarda l'associatività, osserviamo che

$$(a*b)*c = (a^{\log b})*c = (a^{\log b})^{\log c} = a^{(\log b)(\log c)},$$

$$a * (b * c) = a * (b^{\log c}) = a^{\log(b^{\log c})} = a^{(\log b)(\log c)}.$$

Infine cosa si deduce dall'uguaglianza $\log(a * b) = \log(a^{\log b}) = (\log b)(\log a)$?

I casi (b) e (d) li lascio a voi.

2. Indichiamo col prodotto l'operazione in G, e usiamo il criterio per sottogruppi. Se gli H_i sono sottogruppi di G allora $H = \bigcap_{i \in I} H_i$ è non vuoto perché contiene l'unità di G. Inoltre se $a,b \in H = \bigcap_{i \in I} H_i$, allora $a,b \in H_i$ per ogni $i \in I$, dunque $ab^{-1} \in H_i$ per ogni $i \in I$, quindi $ab^{-1} \in \bigcap_{i \in I} H_i = H$.

1

- 3. (a) L'implicazione $H \subseteq K$ o $K \subseteq H \Rightarrow H \cup K$ è un sottogruppo è banale. Viceversa supponiamo che $H \not\subseteq K$ e $K \not\subseteq H$. Siano $h \in H \setminus K$, $k \in K \setminus H$. Se $H \cup K$ fosse un sottogruppo dovrebbe essere chiuso rispetto all'operazione in G (che indichiamo col prodotto): in particolare si dovrebbe avere $hk \in H \cup K$. Poiché sia H che K sono sottogruppi, segue che se $hk \in H$, allora $k = h^{-1}(hk) \in H$, mentre se $hk \in K$, allora $(hk)k^{-1} \in K$: in entrambi i casi si ha una contraddizione. Concludiamo che se $H \not\subseteq K$ e $K \not\subseteq H$, allora $H \cup K$ non è un sottogruppo perché non è moltiplicativamente chiuso in G.
 - (b) Avendo dato come definizione di $H \vee K$ il minimo sottogruppo che contiene entrambi H e K, e avendo definito $\langle H \cup K \rangle$ come l'intersezione di tutti i sottogruppi di G contenenti sia H che K, l'uguaglianza è praticamente una tautologia.

Provate invece a dimostrare l'uguaglianza prendendo come definizione di $H \vee K$ questa:

$$H \vee K = \Big\{ \prod_{i=1}^n h_i k_i \mid h_i \in H, \ k_i \in K \Big\},\,$$

che abbiamo dimostrato essere equivalente.

- (c) Provate a utilizzare la prima affermazione della parte (a).
- 4. Come prima cosa osserviamo che la definizione è ben posta, cioè dà effettivamente un elemento di G^X . L'elemento neutro è l'applicazione

$$u: X \to G$$

 $a \mapsto 1_G$.

Sia ora $\varphi \in G^X$: poiché G è un gruppo, $\varphi(a)$ ha un inverso in G per ogni $a \in X$. Ne deduciamo che $\varphi \varphi^{-1} = \varphi^{-1} \varphi = u$, dove

$$\varphi^{-1} \colon X \to G$$

$$a \mapsto \varphi(a)^{-1}.$$

La verifica dell'associatività la lascio a voi.

Infine se G è abeliano, allora G^X è abeliano perché $\varphi(a)\psi(a)=\psi(a)\varphi(a)$ per ogni $a\in X$. Viceversa sia G^X abeliano e siano $h,g\in G$: le applicazioni $\varphi_g\colon a\mapsto g$ e $\varphi_h\colon a\mapsto h$ sono in G^X , dunque commutano, cioè G è abeliano:

$$gh = \varphi_q(a)\varphi_h(a) = \varphi_h(a)\varphi_q(a) = hg.$$

5. (a) $\operatorname{SL}_n(\mathbb{R}) < \operatorname{GL}_n(\mathbb{R})$ è un sottogruppo: usando il criterio, se $A, B \in \operatorname{SL}_n(\mathbb{R})$ allora $\det(AB^{-1}) = \det(A)\det(B^{-1}) = \det(A)\det(B)^{-1} = 1$, quindi $AB^{-1} \in \operatorname{SL}_n(\mathbb{R})$. (Alternativamente, possiamo anche osservare che $\operatorname{SL}_n(\mathbb{R}) = \operatorname{Ker}(\det)$, dove con det indichiamo l'omomorfismo determinante $(\operatorname{GL}_n(\mathbb{R}), \cdot) \to (\mathbb{R}^*, \cdot)$.)

- (d) $\operatorname{GL}_n^-(\mathbb{R})$ non è un sottogruppo di $\operatorname{GL}_n(\mathbb{R})$: si vede immediatamente che non è stabile, infatti se $A, B \in \operatorname{GL}_n^-(\mathbb{R})$ allora $\det(AB) = \det(A) \det(B) > 0$, cioè $AB \notin \operatorname{GL}_n^-(\mathbb{R})$. Inoltre non contiene l'identità I_n , che ha determinante positivo.
- (e) $\operatorname{GL}_n^+(\mathbb{R}) < \operatorname{GL}_n(\mathbb{R})$ è un sottogruppo: anche per lui possiamo usare il criterio per dimostrarlo. Date $A, B \in \operatorname{GL}_n^+(\mathbb{R})$ allora $\det(AB^{-1}) = \det(A)\det(B)^{-1} > 0$, quindi AB^{-1} è ancora un elemento di $\operatorname{GL}_n^+(\mathbb{R})$.
- (f) $\mathrm{SL}_n^+(\mathbb{R})$ non è un sottogruppo di $\mathrm{GL}_n(\mathbb{R})$: ad esempio, non contiene gli inversi dei suoi elementi, perché data una matrice $A \in \mathrm{SL}_n^+(\mathbb{R})$ con $\det(A) > 1$, si ha che $A^{-1} \notin \mathrm{SL}_n^+(\mathbb{R})$, perché ovviamente $\det(A^{-1}) = (\det(A))^{-1} < 1$.

I casi rimanenti li lascio per voi.

6. In $GL_2(\mathbb{R})$, se consideriamo le due matrici

$$a = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \quad \mathbf{e} \quad b = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix},$$

abbiamo che ax = b e xa = b hanno rispettivamente soluzione

$$x = \begin{pmatrix} 1 & 1 \\ 1/2 & 1 \end{pmatrix}, \quad \mathbf{e} \quad x = \begin{pmatrix} 1 & 1/2 \\ 1 & 1 \end{pmatrix}.$$

7. (a) Se $a^2 = 1$ per ogni $a \in G$, $\forall a \in G$: $a^{-1} = a$. Quindi G è abeliano perché

$$ab = (ab)^{-1} = b^{-1}a^{-1} = ba.$$

Provate a dimostrare con degli esempi che non vale il viceversa.

(b) Supponiamo che $a^{-1}b^{-1}=(ab)^{-1}$ per ogni $a,b\in G$. Applicando tale relazione ai due elementi a^{-1} e b^{-1} di G e tenendo conto che $a=(a^{-1})^{-1}$ e $b=(b^{-1})^{-1}$ segue

$$ab = (a^{-1}b^{-1})^{-1} = (b^{-1})^{-1}(a^{-1})^{-1} = ba,$$

per ogni $a, b \in G$, cioè G è abeliano.

(c) Se $a^2b^2=(ab)^2$ per ogni $a,b\in G$, allora G è abeliano perché:

$$ab = a^{-1}(a^2b^2)b^{-1} = a^{-1}(ab)^2b^{-1} = a^{-1}(abab)b^{-1} = ba.$$

8. Se ab = ba, allora:

$$[a,b] = aba^{-1}b^{-1} = baa^{-1}b^{-1} = 1.$$

Viceversa se [a, b] = 1, allora:

$$ab = aba^{-1}b^{-1}ba = [a, b]ba = ba.$$

3

9. (a) Chiaramente $1_G \in Z(G)$, perché $1_g g = g = g 1_g$ per ogni $g \in G$. Se $x,y \in Z(G)$ e $g \in G$ allora:

$$g(xy) = (gx)y = (xg)y = x(gy) = x(yg) = (xy)g,$$

cioè $xy \in Z(G)$. Infine, se $x \in Z(G)$ e $g \in G$ allora:

$$g^{-1}x = xg^{-1} \quad \Rightarrow \quad (g^{-1}x)^{-1} = (xg^{-1})^{-1} \quad \Rightarrow \quad x^{-1}g = gx^{-1},$$

cioè $x^{-1} \in Z(G)$.

- (b) Questa è quasi una tautologia: G è abeliano se e solo se xy = yx per ogni $x, y \in G$ se e solo se G = Z(G).
- (c) Sia $A=\begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} \in Z(\mathrm{GL}_2(\mathbb{R})).$ La condizione AB=BA applicata alle matrici diagonali implica che

$$\begin{pmatrix} b_1a_{1,1} & b_1a_{1,2} \\ b_2a_{2,1} & b_2a_{2,2} \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} \begin{pmatrix} b_1 & 0 \\ 0 & b_2 \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} \begin{pmatrix} b_1 & 0 \\ 0 & b_2 \end{pmatrix} = \begin{pmatrix} b_1a_{1,1} & b_2a_{1,2} \\ b_1a_{2,1} & b_2a_{2,2} \end{pmatrix}$$

per ogni scelta di $b_1, b_2 \in \mathbb{R}^*$. Quindi deve valere $b_1 a_{1,2} = b_2 a_{1,2}$ e $b_2 a_{2,1} = b_1 a_{2,1}$ per ogni scelta di $b_1, b_2 \in \mathbb{R}^*$, da cui deduciamo $a_{1,2} = a_{2,1} = 0$. Adesso imponiamo la commutatività con le matrici "antidiagonali":

$$\begin{pmatrix} 0 & c_1 a_{1,1} \\ c_2 a_{2,2} & 0 \end{pmatrix} = \begin{pmatrix} a_{1,1} & 0 \\ 0 & a_{2,2} \end{pmatrix} \begin{pmatrix} 0 & c_1 \\ c_2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & c_1 \\ c_2 & 0 \end{pmatrix} \begin{pmatrix} a_{1,1} & 0 \\ 0 & a_{2,2} \end{pmatrix} = \begin{pmatrix} 0 & c_1 a_{2,2} \\ c_2 a_{1,1} & 0 \end{pmatrix}$$

per ogni scelta di $c_1, c_2 \in \mathbb{R}^*$. Allora deve valere $c_1a_{1,1} = c_1a_{2,2}$ per ogni scelta di $c_1, c_2 \in \mathbb{R}^*$, e quindi $a_{1,1} = a_{2,2}$. In totale, se $A \in Z(\mathrm{GL}_2(\mathbb{R}))$, allora $A = \lambda I_2$ per qualche $\lambda \in \mathbb{R}^*$. Lascio a voi dimostrare che vale anche il viceversa, e dedurre quindi che

$$Z(\operatorname{GL}_2(\mathbb{R})) = \{\lambda I_2 \mid \lambda \in \mathbb{R}^*\}.$$

10. (a) Si ricordi che una relazione è d'equivalenza se è riflessiva, simmetrica e transitiva. Chiaramente $1 \cdot a \cdot 1^{-1} = a$, quindi il coniugio è riflessivo. Inoltre $gag^{-1} = b$ se e solo se $hbb^{-1} = a$ dove $h = g^{-1}$, quindi il coniugio è simmetrico. Infine se $gag^{-1} = b$ e $hbh^{-1} = c$, segue che

$$(hg)a(hg)^{-1} = hgag^{-1}h^{-1} = c,$$

quindi il coniugio è anche transitivo.

(b) L'implicazione G abeliano \Rightarrow il coniugio coincide con l'uguaglianza è ovvia. Viceversa, supponiamo che il coniugio coincida con l'uguaglianza in G. Siano $a,b\in G$: allora $x=bab^{-1}$ è coniugato ad a, quindi x=a: pertanto $a=bab^{-1}$ o, equivalentemente, ab=ba, cioè a e b commutano.

11. (a) Sia $\varphi: (\mathbb{R}, +) \to (\mathbb{R}^*, \cdot), x \mapsto e^x$. Dal corso di Analisi I dovreste sapere che

$$\varphi(x_1 + x_2) = e^{x_1 + x_2} = e^{x_1}e^{x_2} = \varphi(x_1)\varphi(x_2).$$

Deduciamo che φ è un omomorfismo. L'applicazione è iniettiva: infatti l'equazione $e^x = 1$ ha come unica soluzione x = 1, cioè $\text{Ker}(\varphi) = \{0\}$. L'applicazione non è suriettiva: infatti $e^x > 0$ per ogni $x \in \mathbb{R}$, cioè $\text{Im}(\varphi) = (0, +\infty)$.

(b) Sia $\psi: (\mathbb{R}^*, \cdot) \to (\mathbb{R}, +), x \mapsto \log |x|$, e sia α sia la base del logaritmo. L'applicazione non è iniettiva, poiché $\psi(x) = \psi(-x)$. L'applicazione è suriettiva, poiché l'equazione $\log |x| = y$ ha come soluzioni $x = \pm \alpha^y$. Di nuovo da Analisi I sappiamo che

$$\psi(x_1x_2) = \log|x_1x_2| = \log|x_1| \cdot |x_2| = \log|x_1| + \log|x_2| = \psi(x_1) + \psi(x_2),$$

quindi ψ è un omomorfismo. In particolare $\ker(\psi) = \{ \pm 1 \}$.

(i) Sia $\chi: (\mathbb{C}^*, \cdot) \to (\mathrm{GL}_2(\mathbb{R}), \cdot), \ a+bi \mapsto \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. È facile verificare che

$$\chi((a+ib)(c+id)) = \chi(ac-bd+i(ad+bc)) = \begin{pmatrix} ac-bd & -ad-bc \\ ad+bc & ac-bd \end{pmatrix}$$
$$= \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} c & -d \\ d & c \end{pmatrix} = \chi(a+ib)\chi(c+id).$$

Deduciamo che χ è un omomorfismo. Chiaramente non è suriettiva poiché

$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \notin \operatorname{Im}(\chi).$$

Infine

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} = I_2$$

se e solo se $a=1,\,b=0,$ cioè $\mathrm{Ker}(\chi)=\{1\}$: quindi χ è iniettiva (perché?).

I casi rimanenti sono tutti per voi.

12. (c) Sia $\varphi: (\mathbb{Z}_{10}, +) \to (\mathbb{Z}_5, +), n \pmod{10} \mapsto n \pmod{5}$. Per verificare che φ è ben definita, bisogna verificare che

$$n_1 \equiv n_2 \pmod{10} \Rightarrow n_1 \equiv n_2 \pmod{5}$$
.

Poiché $n_1 - n_2 = 10x = 5(2x)$, deduciamo che l'implicazione indicata sopra è soddisfatta, quindi φ è ben definita. Il lettore verifichi che φ è un omomorfismo suriettivo, ma non iniettivo e che $\ker(\varphi)$ è costituito dalle classi di 0 e di 5.

(e) Sia $\psi : (\mathbb{Z}_4, +) \to (\mathbb{Z}_5, +)$, $n \pmod{4} \mapsto n \pmod{5}$. Si noti che $0 \equiv 4 \pmod{4}$, ma $0 \not\equiv 4 \pmod{5}$, quindi ψ non è un'applicazione ben definita (cioè non è un'applicazione).

Lascio a voi gli altri punti dell'esercizio.

13. Dato un gruppo G, il suo insieme degli automorfismi è

$$\operatorname{Aut}(G) = \{ f : G \to G \mid f \text{ è un isomorfismo} \}.$$

Consideriamo la coppia $(\operatorname{Aut}(G), \circ)$, dove \circ è l'usuale composizione di funzioni, che già sappiamo essere associativa. L'elemento neutro è l'applicazione identità $id_G : G \to G$, che manda qualsiasi elemento $g \in G$ in se stesso. Inoltre, per ogni $f \in \operatorname{Aut}(G)$ sappiamo che esiste l'applicazione inversa, cioè $f^{-1} \in \operatorname{Aut}(G)$ tale che $f \circ f^{-1} = f^{-1} \circ f = id_G$. Concludiamo quindi che $(\operatorname{Aut}(G), \circ)$ è un gruppo.

14. Utilizziamo la notazione moltiplicativa sia in G che in H, e usiamo il criterio per sottogruppi. Siano $g, h \in K$: poiché φ e ψ sono omomorfismi di gruppi moltiplicativi

$$\varphi(gh^{-1}) = \varphi(g)\varphi(h^{-1}) = \varphi(g)\varphi(h)^{-1} = \psi(g)\psi(h)^{-1} = \psi(g)\psi(h^{-1}) = \psi(gh^{-1}),$$

cioè $gh^{-1} \in K$, e quindi K è un sottogruppo di G

15. Vi lascio la verifica che φ è un omomorfismo se e solo se G è abeliano (che comunque trovate negli appunti del 18 ottobre). Per la seconda parte, si noti che

$$\varphi^2(g) = \varphi(g^{-1}) = (g^{-1})^{-1} = g = id(g),$$

dunque φ è biettivo.

N.B. Ricordate che in generale il metodo per risolvere un esercizio non è unico. Se qualche cosa non vi è chiara, e/o se pensate di aver trovato un errore di stampa, fatemi sapere!