Istituzioni di Algebra e Geometria — Algebra, a.a. 2023-2024 Esercizi, foglio 4

- 1. Siano dati due gruppi ciclici G e H con generatori g e h rispettivamente. Si indichi con $\operatorname{Hom}(G,H)$ l'insieme degli omomorfismi da G in H.
 - (a) Stabilire se $\operatorname{Hom}(G,H)$ è un sottogruppo di H^G .
 - (b) Descrivere ogni $\varphi \in \text{Hom}(G, H)$ calcolando $\text{Ker}(\varphi)$ e $\text{Im}(\varphi)$.
 - (c) Caratterizzare, quando esistono, gli isomorfismi in Hom(G, H).
- 2. Siano G e H gruppi e $\varphi \in \text{Hom}(G, H)$.
 - (a) Dimostrare che se φ è iniettivo e H è ciclico, allora anche G lo è.
 - (b) Dimostrare che se φ è suriettivo e G è ciclico, allora anche H lo è.
- 3. Sia D il sottoinsieme delle matrici diagonali in $GL_2(\mathbb{R})$.
 - (a) Dimostrare che D è un sottogruppo, isomorfo al gruppo moltiplicativo $\mathbb{R}^* \times \mathbb{R}^*$.
 - (b) Per ogni $P \in GL_2(\mathbb{R})$, sia φ_P il coniugio rispetto a P; per quali P vale che $\varphi_P(D) \not\subseteq D$?
- 4. In S_n si consideri la permutazione $\sigma = (1 \ 2 \ 3 \dots n 1 \ n)$. Sia

$$\tau = \begin{cases} \begin{pmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ n & n-1 & n-2 & \dots & 2 & 1 \end{pmatrix} & \text{se } n \text{ è pari,} \\ \begin{pmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ 1 & n & n-1 & \dots & 3 & 2 \end{pmatrix} & \text{se } n \text{ è dispari.} \end{cases}$$

- (a) Dimostrare che $\operatorname{ord}(\sigma) = n$ e $\operatorname{ord}(\tau) = 2$.
- (b) Verificare che $\sigma \tau \sigma = \tau$ e dedurne che $\tau \sigma = \sigma^{n-1} \tau$.
- (c) Mostrare che $\langle \sigma, \tau \rangle$ è un sottogruppo di S_n , isomorfo al gruppo Δ_n .
- 5. Si consideri il gruppo diedrale Δ_n e siano $R, D_i \in \Delta_n$ la rotazione di $2\pi/n$ radianti in senso antiorario e la riflessione rispetto all'asse di simmetria per il vertice P_i rispettivamente. Calcolare l'ordine di ogni elemento di Δ_7 , Δ_8 e Δ_9 .
- 6. Siano $G \in H$ gruppi e $\varphi \in \text{Hom}(G, H)$ un omomorfismo.
 - (a) Dimostrare che se $g \in G$ allora $\operatorname{ord}(\varphi(g)) | \operatorname{ord}(g)$.
 - (b) Dimostrare che se φ è iniettivo, allora $\operatorname{ord}(\varphi(g)) = \operatorname{ord}(g)$

- 7. Calcolare gli ordini di tutti gli elementi di Δ_6 , A_4 , Δ_{12} , S_4 e verificare che $\Delta_6 \ncong A_4$ e $\Delta_{12} \ncong S_4$.
- 8. Si consideri il gruppo diedrale Δ_6 , $R \in \Delta_6$ la rotazione di $\pi/3$ radianti in senso antiorario e D_i la riflessione rispetto all'asse di simmetria passante per il vertice P_i dell'esagono.
 - (a) Determinare tutte le classi laterali destre di Δ_6 rispetto a $< D_i >$ e rispetto a $< R^2 >$.
 - (b) Determinare tutte le classi laterali sinistre di Δ_6 rispetto a $\langle D_i \rangle$ e rispetto a $\langle R^2 \rangle$.
 - (c) Determinare un elemento $g \in \Delta_6$ tale che $g < D_i > \neq < D_i > g$.
 - (d) Verificare che per ogni elemento $g \in \Delta_6$ risulta $g < R^2 > = < R^2 > g$: è vero o falso che $< R^2 >$ è normale in Δ_6 ?
- 9. Sia G un gruppo. Dimostrare che l'applicazione

$$\varphi \colon G \to G$$
$$g \mapsto g^2$$

è un omomorfismo se e solo se G è abeliano. Nel caso in cui G sia abeliano, stabilire se φ è un automorfismo.

- 10. Sia G un gruppo abeliano d'ordine n e sia m coprimo con n. Dimostrare che l'applicazione $\varphi \colon G \to G$ tale che $g \mapsto g^m$ è un automorfismo.
- 11. Siano G e H gruppi finiti aventi ordini primi fra loro. Dimostrare che Hom(G, H) contiene solo un elemento, descrivendolo.
- 12. Siano L e U i sottogruppi di $GL_2(\mathbb{R})$ rispettivamente delle matrici triangolari inferiori e superiori. Dimostrare che L e U non sono sottogruppi normali di $GL_2(\mathbb{R})$.
- 13. Dimostrare che $SL_n(\mathbb{R})$ è sottogruppo normale di $GL_n(\mathbb{R})$.
- 14. Sia G un gruppo e sia $H = \langle g^2 \mid g \in G \rangle$. Dimostrare che H è sottogruppo normale di G.
- 15. Sia G un gruppo.
 - (a) Dimostrare che se $H \subseteq Z(G)$ è un sottogruppo, allora è normale in G.
 - (b) Verificare che se $H \triangleleft G$ è un sottogruppo normale e |H| = 2, allora $H \subseteq Z(G)$.

- 16. Sia G un gruppo.
 - (a) Si consideri il morfismo

$$\psi \colon G \to G$$
$$g \mapsto g^{-1}$$

e si dimostri che, per ogni $g \in G$ e per ogni sottogruppo H < G, risulta $\psi(gH) = Hg^{-1}$.

(b) Sia $g \in G$ un elemento fissato, e si consideri il morfismo

$$\varphi_g \colon G \to G$$

$$x \mapsto gxg^{-1}.$$

Dimostrare che per ogni $g \in G$ e per ogni sottogruppo H < G risulta $\varphi_q(Hg) = gH$.

- 17. Sia G un gruppo e H < G un sottogruppo. Per ogni $g \in G$ definiamo il sottogruppo coniugato rispetto a g come gHg^{-1} .
 - (a) Dimostrare che gHg^{-1} è un sottogruppo di G.
 - (b) Verificare che se H è normale in G allora $H = gHg^{-1}$.
 - (c) Si consideri

$$Core_G(H) = \bigcap_{g \in G} gHg^{-1}$$
:

verificare che $Core_G(H)$ è sottogruppo normale di G contenuto in H.

- (d) Dimostrare che se N è un sottogruppo normale di G e $N \subseteq H$, allora $N \subseteq Core_G(H)$.
- 18. Siano $G \in G'$ gruppi e $\varphi \in \text{Hom}(G, G')$ un omomorfismo.
 - (a) Dimostrare che se $H' \lhd G'$ è un sottogruppo normale, allora $\varphi^{-1}(H') \lhd G$ è sottogruppo normale
 - (b) Dimostrare che se $H \lhd G$ è un sottogruppo normale e φ è un epimorfismo, allora $\varphi(H) \lhd G'$ è sottogruppo normale.
- 19. Sia G un gruppo. Si definisce commutatore di due elementi $a, b \in G$ l'elemento

$$[a,b] := aba^{-1}b^{-1}.$$

Sia $[G,G]=<[a,b]\mid a,b\in G>$ il sottogruppo generato da tutti i commutatori degli elementi di G.

- (a) Dimostrare che [G, G] è un sottogruppo normale.
- (b) Dimostrare che G/[G,G] è abeliano.
- (c) Sia $H \triangleleft G$ un sottogruppo normale: dimostare che G/H è abeliano se e solo se $[G,G] \subseteq H$.
- **N.B.** Ricordate che in generale il metodo per risolvere un esercizio non è unico. Se qualche cosa non vi è chiara, e/o se pensate di aver trovato un errore di stampa, fatemi sapere!