## Linear algebra and geometry a.y. 2024-2025

## Mixed quizzes on linear maps, associated matrices, diagonalization

1. Let A, B be two  $n \times n$  matrices such that 0 < rk(A) < rk(B) = n.

Find the true statement.

- (a)  $\operatorname{rk}(AB) = n\operatorname{rk}(B)$
- (b) AB is invertible
- (c)  $\det(AB) = \det(A)$
- (d)  $\lambda = 0$  is not an eigenvalue of AB
- 2. Let  $A = \begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}$ .

Find the true statement.

- (a)  $A^2 = A^3$
- (b)  $\lambda = 4$  is not an eigenvalue of  $A^2$
- (c) (1,1) is an eigenvector of A
- (d)  $\det(A^3) = 8$
- 3. Let  $A \in \mathbb{R}^{4,5}$  and  $B \in \mathbb{R}^{5,4}$  be two matrices, and consider the endomorphism  $f : \mathbb{R}^5 \to \mathbb{R}^5$  associated to the product BA.

Find the true statement.

- (a) f is not an isomorphism
- (b) f is injective but not surjective
- (c)  $\det(BA) \neq 0$
- (d) None of the other statements is true.
- 4. Consider the linear map f(x, y, z) = (x + y + z, 0, 0).

Find the true statement.

- (a) f is surjective
- (b) f is not injective
- (c) (1,1,1) is sent by f into a multiple of itself.
- (d)  $\dim \operatorname{Ker}(f) = 3$

- 5. Consider the linear map  $f: \mathbb{R}^4 \to \mathbb{R}^2$  defined by f(x, y, z, t) = (x + y, z + t). Find the true statement.
  - (a) f is injective
  - (b) f is surjective
  - (c)  $f^{-1}(2,2) = \{(1,1,1,1)\}$
  - (d)  $(1, 1, 1, 1) \in \text{Ker}(f)$
- 6. Let  $\mathbb{R}[x]_3$  be the vector space of polynomials in the variable x with real coefficients and degree  $\leq 3$  and consider the linear map  $f: \mathbb{R}[x]_3 \longrightarrow \mathbb{R}[x]_3$  such that

$$f(p(x)) = p(0)x^2.$$

Find the true statement.

- (a) f is injective
- (b) f is an isomorphism
- (c)  $\dim(\operatorname{Ker}(f)) = 2$
- (d)  $\dim(\operatorname{Im}(f)) = 1$
- 7. Let A be an  $n \times n$  matrix having eigenvalue  $\lambda = 1$  with algebraic multiplicity  $m_a(1) = n$ . Find the true statement.
  - (a) A power of  $A I_n$  is the zero matrix.
  - (b) A is not invertible
  - (c) A power of  $A + I_n$  is the zero matrix
  - (d)  $A I_n$  is invertible
- 8. Consider the linear map  $f: \mathbb{R}^2 \to \mathbb{R}^2$  defined by f(1,2) = (2,1) and f(2,1) = (1,2). Find the true statement.
  - (a) f is not surjective
  - (b)  $f^{-1}(3,3) = \{(1,1)\}$
  - (c) f is injective
  - (d)  $\{(0,-1),(1,0)\}$  is a set of generators of  $\operatorname{Ker}(f)$

9. Let  $\mathbb{R}[x]_2$  be the vector space of polynomials in x, with real coefficients and degree  $\leq 2$ . Define the endomorphism  $f: \mathbb{R}_2[x] \to \mathbb{R}_2[x]$  as:

$$f(ax^2 + bx + c) = cx^2 - b,$$

and let  $M_{\mathcal{B}}^{\mathcal{B}}(f)$  be the matrix associated to f with respect to the basis  $\mathcal{B}=(x^2,x,1)$  (both in the domain and codomain).

Which of the following statements is true?

(a) 
$$M_{\mathcal{B}}^{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

(b) 
$$M_{\mathcal{B}}^{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & -1 & 0 \end{pmatrix}$$

(c) 
$$M_{\mathcal{B}}^{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ 1 & -1 & 0 \end{pmatrix}$$

(d) 
$$M_{\mathcal{B}}^{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

- 10. Let f be an endomorphism  $f: \mathbb{R}^3 \to \mathbb{R}^3$  such that f(1,1,0) = f(1,0,1) = (0,1,1). Which of the following statements is true?
  - (a) None of the other statements is true.
  - (b) f is surjective.
  - (c)  $\dim(\operatorname{Ker} f) \geq 1$ .
  - (d) f is injective.
- 11. Let  $\vec{w} \in \mathbb{R}^3$  be a unit vector. Consider the endomorphism  $f: \mathbb{R}^3 \to \mathbb{R}^3$  defined by:

$$f(\vec{v}) = \vec{v} - (\vec{v} \cdot \vec{w}) \vec{w}.$$

Which of the following statements is true?

- (a) f is neither injective nor surjective.
- (b) f is surjective.
- (c) f is injective.
- (d)  $\vec{w}$  does not belong to Ker(f).

12. Let  $f: \mathbb{R}^4 \to \mathbb{R}^4$  be an endomorphism with characteristic polynomial

$$p_f(t) = (t^2 - 7)(t^2 - 4t).$$

Which of the following statements is true?

- (a)  $\dim(\operatorname{Ker}(f)) = 2$
- (b)  $\dim(\operatorname{Im}(f)) = 4$
- (c) f is injective
- (d)  $\dim(\operatorname{Im}(f)) = 3$

13. Given a linear map  $f: \mathbb{R}^4 \to \mathbb{R}^2$ , which of the following statements is surely false?

- (a)  $\dim \operatorname{Ker}(f) = 2$ .
- (b) f is surjective.
- (c)  $\dim \operatorname{Ker}(f) = 1$ .
- (d) The matrix associated to f has rank 2.

14. Consider the endomorphism  $f: \mathbb{R}^3 \to \mathbb{R}^3$  defined by:

$$f(x, y, z) = (x + z, 2y, x + z).$$

Which of the following statements is true?

- (a) f is an isomorphism.
- (b) f is diagonalizable.
- (c) f is not simple.
- (d) All eigenspaces of f have dimension 1.

15. Given the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix},$$

which of the following statements is true?

- (a) The characteristic polynomial of A is  $-t^3 + 6t^2$ .
- (b) The characteristic polynomial of A is  $-t^3 + 6t$ .
- (c) The characteristic polynomial of A is  $-t^3 + 6$ .
- (d) The characteristic polynomial of A is  $t^3 + 6t^2$ .

- 16. Given the endomorphism  $f: \mathbb{R}^3 \to \mathbb{R}^3$  with characteristic polynomial  $-(t-1)t^2$ , which of the following statements is true?
  - (a) If the image of f has dimension 1, then f is diagonalizable.
  - (b) f has 3 linearly independent eigenvectors.
  - (c) 4 is an eigenvalue of f.
  - (d) If  $\dim(\text{Ker}(f)) = 1$ , then f is diagonalizable.
- 17. Let  $V = \{(x, y, z) \in \mathbb{R}^3 : x + y z = 0\}$  and let  $f : \mathbb{R}^3 \to \mathbb{R}^3$  be an endomorphism such that V = Ker(f) and 1 is an eigenvalue of f.

Which of the following statements is true?

- (a) f has 3 distinct eigenvalues.
- (b)  $\dim(\operatorname{Im}(f)) = 2$ .
- (c) f is diagonalizable.
- (d) The characteristic polynomial of f could be  $-t(t-1)^2$ .
- 18. Let g be an endomorphism of  $\mathbb{R}^3$  and let

$$M_{\mathcal{C}}^{\mathcal{C}}(g) = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 4 & 1 \\ 5 & 0 & 3 \end{array}\right)$$

be the matrix associated to g with respect to the canonical basis  $\mathcal{C} = (e_1, e_2, e_3)$  of  $\mathbb{R}^3$ . Which of the following statements is true?

- (a)  $e_1$  is an eigenvector of g.
- (b)  $e_3$  is an eigenvector of g.
- (c) None of the other statements is true.
- (d)  $e_2$  is an eigenvector of g.