## Linear algebra and geometry a.y. 2024-2025

## Worksheet 15: exercises on chapters 22–24 from the lecture notes

(Some of these exercises come from the books by [Schlesinger], [Baldovino-Lanza], [Sernesi], [Leon])

1. Consider the following pencil of conics:

$$C_t$$
:  $x^2 + (1-t)y^2 + 2tx - 2(1-t)y + 2 - t = 0$ ,

and find the values of the parameter t such that  $C_t$  is a

- (a) parabola;
- (b) hyperbola;
- (c) ellipse;
- (d) circle;
- (e) degenerate conic.

2. Classify the following conics:

- (a)  $2x^2 + 2xy + x + 5y 10 = 0$ ;
- (b)  $3x^2 8xy 3y^2 + 10 = 0$ ;
- (c)  $9x^2 + 16y^2 + 24xy 40x + 30y = 0$ ;
- (d)  $3x^2 + 2xy + 3y^2 + 2\sqrt{2}x 2\sqrt{2}y = 0$ .

3. Find all degenerate conics in the family

$$\mathcal{F}: 2\alpha x^2 + 2y^2 + 4\alpha x + 2y + 2\alpha = 0,$$

where  $\alpha \in \mathbb{R}$  is a real parameter.

4. Describe the conics in the family

$$x^2 - 4xy + y^2 + 7h^2 + 1 = 0$$

as the parameter  $h \in \mathbb{R}$  varies.

- 5. Write down the equation of the sphere with center in the point C = (0, 1, 1) and tangent to the plane x + y + z = -1.
- 6. Find the values of the real parameter k such that the plane of equation x 2y z = k is tangent to the sphere  $x^2 + y^2 + z^2 4y + 6z + 8 = 0$ .
- 7. Write the equation of the circle with center in the point C = (1, 1, 1), lying on a plane parallel to  $\pi : \{2x 3y + z + 2 = 0\}$ , and with radius 3.
- 8. Write the equation of the circle passing through the points O = (0,0,0), P = (2,0,0) and R = (0,1,0).

1

## Solutions.

- 1. (a) Never;
  - (b) t > 1;
  - (c)  $t < 1, t \neq -1;$
  - (d) t = 0 (imaginary circle);
  - (e)  $t = \pm 1$ .
- 2. (a) Two non parallel lines meeting in a point;
  - (b) (equilateral) hyperbola;
  - (c) parabola;
  - (d) ellipse.
- 3.  $y^2 + y = 0$  and  $x^2 3y^2 + 2x 3y + 1 = 0$ .
- 4. The conic is a hyperbola for all values of  $h \in \mathbb{R}$ .

5. 
$$x^2 + y^2 + z^2 - 2y - 2z - 1 = 0$$

6. 
$$k = -1 \pm \sqrt{30}$$

7. 
$$\begin{cases} x^2 + y^2 + z^2 - 2x - 2y - 2z - 6 = 0\\ 2x - 3y + z = 0 \end{cases}$$

$$8. \ x^2 + y^2 - 2x - y = 0$$

Please note. Remember that in general there might be more than one technique to solve the same exercise. If you find a typo, or something that you do not understand, let me know!