Linear algebra and geometry a.y. 2024-2025

Worksheet 13: exercises on chapter 20 from the lecture notes

1. On the vector space \mathbb{R}^3 , let us define the following map:

$$\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$$
$$(x,y) \mapsto \frac{x_1 y_1}{4} + \frac{x_2 y_2}{2} + \frac{x_3 y_3}{4} = x \star y$$

- (a) Verify that $x \star y$ defines an inner product on \mathbb{R}^3 .
- (b) Show that v = (1, 1, 1) and w = (-5, 1, 3) are orthogonal with respect to \star .
- (c) Compute the lengths of v and w with respect to \star .

2. Which of the following applications are inner products on \mathbb{R}^3 ?

- (a) $\alpha : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$, $\alpha(x, y) = x_1 y_2 + x_2 y_1 + x_3 y_3$;
- (b) $\beta: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$, $\beta(x,y) = x_1y_1 + x_2y_2$;
- (c) $\gamma : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$, $\gamma(x,y) = x_1 y_1 + x_2 y_2 + 3x_3 y_3$;
- (d) $\delta : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$, $\delta(x, y) = 2x_1y_1 x_2y_2 + x_3y_3$.
- 3. Use the Gram-Schmidt algorithm to find an orthonormal (with respect to the standard inner product) basis of the plane $\pi: \{x+y-z=0\}$ in \mathbb{R}^3 .
- 4. Use the Gram-Schmidt algorithm to find an orthonormal (with respect to the standard inner product) basis in \mathbb{R}^4 of the row space of the matrix

$$A = \left(\begin{array}{rrrr} 2 & 2 & 4 & 1 \\ -1 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 \end{array}\right).$$

5. Diagonalize the symmetric matrix

$$A = \left(\begin{array}{rrr} -2 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & -2 \end{array} \right),$$

finding an orthonormal diagonalizing basis.

6. Let $A \in \mathbb{R}^{n,n}$ be a symmetric matrix, and let $\lambda_1 \neq \lambda_2$ two of its eigenvalues. Let v_1 and v_2 be eigenvectors relative to the eigenvalues λ_1 and λ_2 respectively. Try to prove that $v_1 \perp v_2$ with respect to the standard inner product in \mathbb{R}^n .

1

Solutions.

- 1. (a) Let $x=(x_1,x_2,x_3),y=(y_1,y_2,y_3),z=(z_1,z_2,z_3)\in\mathbb{R}^3,\alpha\in\mathbb{R}$. The product \star satisfies the following properties:
 - it is commutative, because

$$x \star y = \frac{x_1 y_1}{4} + \frac{x_2 y_2}{2} + \frac{x_3 y_3}{4} = \frac{y_1 x_1}{4} + \frac{y_2 x_2}{2} + \frac{y_3 x_3}{4} = y \star x;$$

• it is distributive, because

$$(x+y) \star z = \frac{(x_1+y_1)z_1}{4} + \frac{(x_2+y_2)z_2}{2} + \frac{(x_3+y_3)z_3}{4}$$

$$= \frac{x_1z_1 + y_1z_1}{4} + \frac{x_2z_2 + y_2z_2}{2} + \frac{x_3z_3 + y_3z_3}{4}$$

$$= \frac{x_1z_1}{4} + \frac{x_2z_2}{2} + \frac{x_3z_3}{4} + \frac{y_1z_1}{4} + \frac{y_2z_2}{2} + \frac{y_3z_3}{4}$$

$$= (x \star z) + (y \star z);$$

• it is compatible with the scalar multiplication, because

$$\alpha(x \star y) = \alpha \left(\frac{x_1 y_1}{4} + \frac{x_2 y_2}{2} + \frac{x_3 y_3}{4}\right) = \frac{\alpha x_1 y_1}{4} + \frac{\alpha x_2 y_2}{2} + \frac{\alpha x_3 y_3}{4} = (\alpha x) \star y;$$

• it is positive definite, because

$$x \star x = \frac{x_1^2}{4} + \frac{x_2^2}{2} + \frac{x_3^2}{4} > 0$$
 per ogni $x \neq 0_{\mathbb{R}^3}$.

All in all, \star is an inner product on \mathbb{R}^3 .

- (b) $v \star w = -\frac{5}{4} + \frac{1}{2} + \frac{3}{4} = 0.$
- (c) $|v|_{\star} = 1$, $|w|_{\star} = 3$.
- 2. (a) No;
 - (b) no;
 - (c) yes;
 - (d) no.
- 3. An orthonormal basis of π is $\left(u_1 = (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}), u_2 = (-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}})\right)$.
- 4. An orthonormal basis is $\left(v_1 = \left(\frac{2}{5}, \frac{2}{5}, \frac{4}{5}, \frac{1}{5}\right), v_2 = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0\right), v_3 = \left(-\frac{3}{5\sqrt{2}}, -\frac{3}{5\sqrt{2}}, \frac{4}{5\sqrt{2}}, -\frac{4}{5\sqrt{2}}\right)\right)$.

5.
$${}^{t}PAP = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, where $P = \begin{pmatrix} -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \end{pmatrix}$.

6. By definition, we know that $Av_1 = \lambda_1 v_1$ and $A\lambda_2 = \lambda_2 v_2$, and that ${}^tA = A$. Moreover, once we identify the elements of \mathbb{R}^n with column matrices, the standard inner (dot) product is $v \cdot w = {}^tvw$, that is, row-column multiplication. Then

 $\lambda_1(v_1 \cdot v_2) = (\lambda_1 v_1) \cdot v_2 = Av_1 \cdot v_2 = {}^t(Av_1)v_2 = {}^tv_1{}^tAv_2 = {}^tv_1(Av_2) = {}^tv_1(\lambda_2 v_2) = \lambda_2(v_1 \cdot v_2)$

and thus $(\lambda_1 - \lambda_2)(v_1 \cdot v_2) = 0$. Since we know that $\lambda_1 \neq \lambda_2$, the only possibility is $v_1 \cdot v_2 = 0$, which is exactly what we wanted to prove.

Please note. Remember that in general there might be more than one technique to solve the same exercise. If you find a typo, or something that you do not understand, let me know!