Linear algebra and geometry a.y. 2024-2025

Worksheet 11: exercises on chapter 17 from the lecture notes

- 1. Let $v_1 = (1,0,0,0)$, $v_2 = (1,3,5,0)$, $v_3 = (3,2,-1,1)$, $v_4 = (1,1,0,0)$ be vectors in \mathbb{R}^4 , and $w_1 = (1,0,1)$, $w_2 = (1,1,0)$, $w_3 = (1,0,0)$ vectors in \mathbb{R}^3 .
 - (a) Check that the set $\mathcal{B} = (v_1, v_2, v_3, v_4)$ is a basis of \mathbb{R}^4 .
 - (b) Check that the set $\mathcal{D} = (w_1, w_2, w_3)$ is a basis of \mathbb{R}^3 .
 - (c) We know that there exists a unique linear map $f: \mathbb{R}^4 \to \mathbb{R}^3$ such that:

$$f(v_1) = w_1 + w_3$$

$$f(v_2) = -w_1 + w_2$$

$$f(v_3) = w_3$$

$$f(v_4) = 3w_1 + 2w_2 - w_3$$

Find the matrix $M_{\mathcal{D}}^{\mathcal{B}}(f)$ associated to f with respect to the bases \mathcal{B} and \mathcal{D} .

- (d) Then find the matrix $M_{\mathcal{C}'}^{\mathcal{C}}(f)$, where $\mathcal{C} = (e_1, e_2, e_3, e_4)$ and $\mathcal{C}' = (e_1', e_2', e_3')$ are the canonical bases of \mathbb{R}^4 and \mathbb{R}^3 respectively.
- 2. Let $\varphi: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear maps defined by

$$\varphi(x,y) = (y, x + y, x - y).$$

Find the matrix associated to φ with respect to the bases $\mathcal{B} = (u_1, u_2)$ of \mathbb{R}^2 and $\mathcal{D} = (v_1, v_2, v_3)$ of \mathbb{R}^3 , where:

$$u_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \quad v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

3. The linear map f defined by

$$f(p(x)) = p'(x) + p(0)$$

send the space of polynomials $\mathbb{R}[x]_2$ to $\mathbb{R}[x]_1$. Write down the matrix $M_{\mathcal{B}}^{\mathcal{C}}(f)$ with respect to the bases $\mathcal{C} = (1, x, x^2)$ and $\mathcal{B} = (2, 1 - x)$. Find the components of the polynomial $f(x^2 + 1)$ in the basis \mathcal{B} .

1

4. Let $g: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map defined by

$$g(x, y, z) = (x + y, x + y, z).$$

- (a) Write down the matrix $M_{\mathcal{C}}^{\mathcal{C}}(g)$ associated to g with respect to the canonical basis \mathcal{C} of \mathbb{R}^3 .
- (b) Find a basis and compute the dimension of Ker(g) and Im(g).
- (c) Prove that the set

$$\mathcal{B} = (b_1 = (1, 1, -1), b_2 = (1, 1, 0), b_3 = (1, -1, 0))$$

is a basis of \mathbb{R}^3 , then write down the matrix $M_{\mathcal{B}}^{\mathcal{C}}(g)$ associated to g with respect to the canonical basis in the domain and the basis \mathcal{B} in the codomain.

- (d) Find the matrices of change of basis from \mathcal{B} to the canonical basis \mathcal{C} and from \mathcal{C} to \mathcal{B} .
- 5. In the vector space $\mathbb{R}[x]_2$, consider the polynomials

$$p_1(x) = x^2 - 2x$$
, $p_2(x) = 1 + 2x$, $p_3(x) = 2 - x^2$,

$$q_1(x) = -1 + x$$
, $q_2(x) = -1 + x - x^2$, $q_3(x) = 2x + 2x^2$.

Show that $\mathcal{B} = (p_1, p_2, p_3)$ and $\mathcal{D} = (q_1, q_2, q_3)$ are two bases of $\mathbb{R}[x]_2$. Find the matrix of change of basis from \mathcal{B} to \mathcal{D} .

6. Let V and W be two vector spaces over \mathbb{R} ; V has $\dim_{\mathbb{R}} = 4$ and (v_1, v_2, v_3, v_4) , while W has $\dim_{\mathbb{R}} = 3$ and (w_1, w_2, w_3) . Find kernel and image of the linear map $\varphi : V \to W$ defined by:

$$\varphi(v_1) = w_1 + w_2,$$

$$\varphi(v_2) = w_1 - w_2 + w_3,$$

$$\varphi(v_3)=w_2,$$

$$\varphi(v_4) = w_1 + w_3.$$

Solutions.

- 1. (a) $\det \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 3 & 5 & 0 \\ 3 & 2 & -1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} = 5 \neq 0$, hence the v_i s are linearly independent, and since they are
 - (b) $\det \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = -1 \neq 0$, hence the w_i s are linearly independent, and since they are 3,

they are also generators;

(c)
$$M_{\mathcal{D}}^{\mathcal{B}}(f) = \begin{pmatrix} 1 & -1 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 1 & 0 & 1 & -1 \end{pmatrix};$$

(d)
$$M_{\mathcal{C}'}^{\mathcal{C}}(f) = \begin{pmatrix} 2 & 2 & -\frac{8}{5} & -\frac{53}{5} \\ 0 & 2 & -1 & -5 \\ 1 & 2 & -\frac{8}{5} & -\frac{43}{5} \end{pmatrix}$$
.

2.
$$M_{\mathcal{D}}^{\mathcal{B}}(\varphi) = \begin{pmatrix} -1 & -3 \\ 4 & 2 \\ -1 & 2 \end{pmatrix}$$

3.
$$M_{\mathcal{B}}^{\mathcal{C}}(f) = \begin{pmatrix} 1/2 & 1/2 & 1 \\ 0 & 0 & -2 \end{pmatrix};$$
 $[f(x^2+1)]_{\mathcal{B}} = (3/2, -2), \text{ indeed } f(x^2+1) = 2x+1 = (3/2)(2)-2(1-x).$

4. (a)
$$M_{\mathcal{C}}^{\mathcal{C}}(g) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix};$$

(b)
$$\text{Ker}(g) = \mathcal{L}((-1, 1, 0))$$
, so $\dim(\text{Ker}(g)) = 1$; $\text{Im}(g) = \mathcal{L}((1, 1, 0), (0, 0, 1))$, so $\dim(\text{Im}(g)) = 2$:

(c) det
$$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix} = 2 \neq 0$$
: the b_i s are 3 linearly independent vectors in \mathbb{R}^3 , hence they are a basis;

$$M_{\mathcal{B}}^{\mathcal{C}}(g) = \left(\begin{array}{ccc} 0 & 0 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right);$$

(d)
$$M_{\mathcal{C}}^{\mathcal{B}}(id_{\mathbb{R}^3}) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ -1 & 0 & 0 \end{pmatrix}, M_{\mathcal{B}}^{\mathcal{C}}(id_{\mathbb{R}^3}) = (M_{\mathcal{C}}^{\mathcal{B}}(id_{\mathbb{R}^3}))^{-1} = \begin{pmatrix} 0 & 0 & -1 \\ 1/2 & 1/2 & 1 \\ 1/2 & -1/2 & 0 \end{pmatrix}.$$

5. Since

$$\det\begin{pmatrix} 0 & -2 & 1\\ 1 & 2 & 0\\ 2 & 0 & -1 \end{pmatrix} = -6 \neq 0, \quad \det\begin{pmatrix} -1 & 1 & 0\\ -1 & 1 & -1\\ 0 & 2 & 2 \end{pmatrix} = -6 \neq 0,$$

both the polynomials p_i s and the q_j s are 4 linearly independent vectors in $\mathbb{R}[x]_3$, hence they are two bases;

$$M_{\mathcal{D}}^{\mathcal{B}}(id_{\mathbb{R}[x]_3}) = \begin{pmatrix} 3 & -4 & -5 \\ -3 & 3 & 3 \\ -1 & 3/2 & 1 \end{pmatrix}.$$

6. $\operatorname{Ker}(\varphi) = \mathcal{L}(v_2 + v_3 - v_4)$ has $\dim = 1$; $\operatorname{Im}(\varphi) = W$, that is, φ is surjective.

Please note. Remember that in general there might be more than one technique to solve the same exercise. If you find a typo, or something that you do not understand, let me know!