1. Let $q(x, y)=x^{2}-8 x y-y^{2}$ be a quadratic form.

Which of the following statements is true?
(a) $q$ is positive definite.
(b) The matrix associated to $q$ is $\left(\begin{array}{cc}1 & -4 \\ -4 & -1\end{array}\right)$.
(c) $q$ is negative definite.
(d) The matrix associated to $q$ is $\left(\begin{array}{cc}-1 & -4 \\ -4 & 1\end{array}\right)$.
2. Given the polynomial

$$
p(t)=\left(t^{2}+t+1\right)\left(t^{2}-2 t+1\right)
$$

which of the following statements is true?
(a) There exists a symmetric positive definite matrix $A \in \mathbb{R}^{4,4}$ having $p(t)$ as characteristic polynomial.
(b) If a matrix $A$ has $p(t)$ as characteristic polynomial, then $A$ has a 3-dimensional eigenspace.
(c) None of the other statements is true.
(d) There is no real symmetric matrix whose characteristic polynomial is $p(t)$.
3. Consider the quadratic form

$$
q(x, y, z)=(x, y, z)\left(\begin{array}{rrr}
-1 & 1 & 1 \\
1 & -1 & -1 \\
1 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Which of the following statements is true?
(a) The matrix associated to $q(x, y, z)$ has nonzero determinant.
(b) There exists $(0,0,0) \neq(a, b, c) \in \mathbb{R}^{3}$ such that $q(a, b, c)=0$.
(c) $q(x, y, z)$ is positive definite.
(d) $Q(x, y)=q(x, y, y)$ is positive definite.
4. Let $A$ be a real symmetric $5 \times 5$ matrix with zero trace and zero determinant.

Which of the following statements is true?
(a) 0 is an eigenvalue of $A$.
(b) $A$ is (positive or negative) definite.
(c) $A$ is (positive or negative) semidefinite.
(d) None of the other statements is true.
5. Let $A$ be a real $3 \times 3$ symmetric matrix having an eigenvalue equal to 1 . If the eigenspace $E_{A}(1)$ relative to the eigenvalue 1 is the set of vectors $(x, y, z)$ such that $x+y-z=0$, which of the following statements is true?
(a) $A$ is not diagonalizable.
(b) $(1,1,-1)$ is an eigenvector of $A$ relative to the eigenvalue 1 .
(c) $(1,1,-1)$ is not an eigenvector of $A$.
(d) $(1,1,-1)$ is an eigenvector of $A$ relative to an eigenvalue different from 1 .
6. Consider the quadratic form with real coefficients

$$
q(x, y, z)=10 x^{2}+4 y^{2}+4 y z+z^{2} .
$$

Which of the following statements is true?
(a) There exists $(a, b, c) \in \mathbb{R}^{3}$ such that $q(a, b, c)>0$.
(b) None of the other statements is true.
(c) There is no $(a, b, c) \in \mathbb{R}^{3}$ with $(a, b, c) \neq(0,0,0)$ such that $q(a, b, c)=0$.
(d) For all $(a, b, c) \in \mathbb{R}^{3}, q(a, b, c) \leq 0$.
7. Given the quadratic form

$$
f(x, y)=(x, y) A\binom{x}{y}=x^{2}-3 x y+8 y^{2}
$$

which of the following statements is true?
(a) The determinant of the matrix $A$ is a negative number.
(b) There exists $(a, b) \in \mathbb{R}^{2}$ such that $f(a, b)<0$.
(c) If $x y \neq 0$, then $f(x, y)>0$.
(d) The determinant of the matrix $A$ cannot be computed.
8. Consider the quadratic form

$$
q(x, y, z)=(x, y, z) B\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=-x^{2}+2 y^{2}+2 x z+z^{2}
$$

Which of the following statements is true?
(a) The matrix $B$ admits both positive and negative eigenvalues.
(b) $q(x, y, x+y)=0$.
(c) $q(y+z, y, z)=0$.
(d) The matrix $B$ has rank 2 .
9. Let $h$ be a real parameter, and consider in the Euclidean plane the family of conics described by the equation

$$
x^{2}+12 x y+11 y^{2}+h-1=0 .
$$

Which of the following statements is true?
(a) $\mathcal{C}_{h}$ is a parabola, for all values of $h$.
(b) $\mathcal{C}_{h}$ is an ellipse, for all values of $h$.
(c) When $h=1$, the conic is degenerate.
(d) None of the other statements is true.
10. In the Euclidean plane with a fixed coordinate system $O x y$, consider the conic $\mathcal{C}$ of equation $2 x^{2}+5 y^{2}-2 x y=0$.

Which of the following statements is true?
(a) $\mathcal{C}$ is a double line.
(b) $\mathcal{C}$ is a parabola.
(c) $\mathcal{C}$ is non degenerate.
(d) $\mathcal{C}$ is the union of two lines.
11. Find the negative definite quadratic form.
(a) $x^{2}+y^{2}-100 x y$.
(b) $y^{2}-x^{2}-100 x y$.
(c) $2 x y-3 x^{2}-2 y^{2}$.
(d) $-2 x^{2}-y^{2}-6 x y$.
12. Consider the family of conics described by the equation

$$
x^{2}+k x y+y^{2}+k x-1=0,
$$

where $k \in \mathbb{R}$ is a real parameter.
Find the true statement.
(a) There exists precisely two values of $k$ such that the equation represents a hyperbola.
(b) There is no value of $k$ such that the equation represents a degenerate conic.
(c) There is no value of $k$ such that the equation represents a parabola.
(d) None of the other statements is true.
13. Let $A=\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right)$, and let $p_{A}(t)$ be its characteristic polynomial.

Find the true statement.
(a) $p_{A}(t)=t^{4}+t^{3}+t^{2}+t+1$.
(b) $p_{A}(t)=t^{4}+t^{3}+t$.
(c) $p_{A}(t)=t^{4}-4 t^{3}$.
(d) $p_{A}(t)=-t^{4}+t^{3}+t^{2}+t$.
14. Let

$$
A=\left(\begin{array}{ccc}
1 & 2 & 0 \\
2 & 4 & 0 \\
0 & 0 & 10
\end{array}\right) \in \mathbb{R}^{3,3} .
$$

Which of the following statements is true?
(a) $A$ is positive semidefinite.
(b) $A$ does not have positive eigenvalues.
(c) $A$ does not have a 0 eigenvalue.
(d) None of the other statements is true.

