1. Let A, B be two $n \times n$ matrices such that $0<\operatorname{rk}(A)<\operatorname{rk}(B)=n$.

Find the true statement.
(a) $\operatorname{rk}(A B)=n \operatorname{rk}(B)$
(b) $A B$ is invertible
(c) $\operatorname{det}(A B)=\operatorname{det}(A)$
(d) $\lambda=0$ is not an eigenvalue of $A B$
2. Let $A=\left(\begin{array}{ll}1 & 0 \\ 3 & 2\end{array}\right)$.

Find the true statement.
(a) $A^{2}=A^{3}$
(b) $\lambda=4$ is not an eigenvalue of A^{2}
(c) $(1,1)$ is an eigenvector of A
(d) $\operatorname{det}\left(A^{3}\right)=8$
3. Let $A \in \mathbb{R}^{4,5}$ and $B \in \mathbb{R}^{5,4}$ be two matrices, and consider the endomorphism $f: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ associated to the product $B A$.
Find the true statement.
(a) f is not an isomorphism
(b) f is injective but not surjective
(c) $\operatorname{det}(B A) \neq 0$
(d) None of the other statements is true.
4. Consider the linear map $f(x, y, z)=(x+y+z, 0,0)$.

Find the true statement.
(a) f is surjective
(b) f is not injective
(c) $(1,1,1)$ is sent by f into a multiple of itself.
(d) $\operatorname{dim} \operatorname{Ker}(f)=3$
5. Consider the linear map $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ defined by $f(x, y, z, t)=(x+y, z+t)$.

Find the true statement.
(a) f is injective
(b) f is surjective
(c) $f^{-1}(2,2)=\{(1,1,1,1)\}$
(d) $(1,1,1,1) \in \operatorname{Ker}(f)$
6. Let $\mathbb{R}[x]_{3}$ be the vector space of polynomials in the variable x with real coefficients and degree ≤ 3 and consider the linear map $f: \mathbb{R}[x]_{3} \longrightarrow \mathbb{R}[x]_{3}$ such that

$$
f(p(x))=p(0) x^{2}
$$

Find the true statement.
(a) f is injective
(b) f is an isomorphism
(c) $\operatorname{dim}(\operatorname{Ker}(f))=2$
(d) $\operatorname{dim}(\operatorname{Im}(f))=1$
7. Let A be an $n \times n$ matrix having eigenvalue $\lambda=1$ with algebraic multiplicity $m_{a}(1)=n$.

Find the true statement.
(a) A power of $A-I_{n}$ is the zero matrix.
(b) A is not invertible
(c) A power of $A+I_{n}$ is the zero matrix
(d) $A-I_{n}$ is invertible
8. Consider the linear map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f(1,2)=(2,1)$ and $f(2,1)=(1,2)$. Find the true statement.
(a) f is not surjective
(b) $f^{-1}(3,3)=\{(1,1)\}$
(c) f is injective
(d) $\{(0,-1),(1,0)\}$ is a set of generators of $\operatorname{Ker}(f)$
9. Let $\mathbb{R}[x]_{2}$ be the vector space of polynomials in x, with real coefficients and degree ≤ 2. Define the endomorphism $f: \mathbb{R}_{2}[x] \rightarrow \mathbb{R}_{2}[x]$ as:

$$
f\left(a x^{2}+b x+c\right)=c x^{2}-b,
$$

and let $M_{\mathcal{B}}^{\mathcal{B}}(f)$ be the matrix associated to f with respect to the basis $\mathcal{B}=\left(x^{2}, x, 1\right)$ (both in the domain and codomain).
Which of the following statements is true?
(a) $M_{\mathcal{B}}^{\mathcal{B}}(f)=\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right)$
(b) $M_{\mathcal{B}}^{\mathcal{B}}(f)=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 0\end{array}\right)$
(c) $M_{\mathcal{B}}^{\mathcal{B}}(f)=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & 0\end{array}\right)$
(d) $M_{\mathcal{B}}^{\mathcal{B}}(f)=\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$
10. Let f be an endomorphism $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $f(1,1,0)=f(1,0,1)=(0,1,1)$.

Which of the following statements is true?
(a) None of the other statements is true.
(b) f is surjective.
(c) $\operatorname{dim}(\operatorname{Ker} f) \geq 1$.
(d) f is injective.
11. Let $\vec{w} \in \mathbb{R}^{3}$ be a unit vector. Consider the endomorphism $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by:

$$
f(\vec{v})=\vec{v}-(\vec{v} \cdot \vec{w}) \vec{w} .
$$

Which of the following statements is true?
(a) f is neither injective nor surjective.
(b) f is surjective.
(c) f is injective.
(d) \vec{w} does not belong to $\operatorname{Ker}(f)$.
12. Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be an endomorphism with characteristic polynomial

$$
p_{f}(t)=\left(t^{2}-7\right)\left(t^{2}-4 t\right) .
$$

Which of the following statements is true?
(a) $\operatorname{dim}(\operatorname{Ker}(f))=2$
(b) $\operatorname{dim}(\operatorname{Im}(f))=4$
(c) f is injective
(d) $\operatorname{dim}(\operatorname{Im}(f))=3$
13. Given a linear map $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$, which of the following statements is surely false?
(a) $\operatorname{dim} \operatorname{Ker}(f)=2$.
(b) f is surjective.
(c) $\operatorname{dim} \operatorname{Ker}(f)=1$.
(d) The matrix associated to f has rank 2 .
14. Consider the endomorphism $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by:

$$
f(x, y, z)=(x+z, 2 y, x+z) .
$$

Which of the following statements is true?
(a) f is an isomorphism.
(b) f is diagonalizable.
(c) f is not simple.
(d) All eigenspaces of f have dimension 1 .
15. Given the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right),
$$

which of the following statements is true?
(a) The characteristic polynomial of A is $-t^{3}+6 t^{2}$.
(b) The characteristic polynomial of A is $-t^{3}+6 t$.
(c) The characteristic polynomial of A is $-t^{3}+6$.
(d) The characteristic polynomial of A is $t^{3}+6 t^{2}$.
16. Given the endomorphism $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with characteristic polynomial $-(t-1) t^{2}$, which of the following statements is true?
(a) If the image of f has dimension 1 , then f is diagonalizable.
(b) f has 3 linearly independent eigenvectors.
(c) 4 is an eigenvalue of f.
(d) If $\operatorname{dim}(\operatorname{Ker}(f))=1$, then f is diagonalizable.
17. Let $V=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y-z=0\right\}$ and let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be an endomorphism such that $V=\operatorname{Ker}(f)$ and 1 is an eigenvalue of f.
Which of the following statements is true?
(a) f has 3 distinct eigenvalues.
(b) $\operatorname{dim}(\operatorname{Im}(f))=2$.
(c) f is diagonalizable.
(d) The characteristic polynomial of f could be $-t(t-1)^{2}$.
18. Let g be an endomorphism of \mathbb{R}^{3} and let

$$
M_{\mathcal{C}}^{\mathcal{C}}(g)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 4 & 1 \\
5 & 0 & 3
\end{array}\right)
$$

be the matrix associated to g with respect to the canonical basis $\mathcal{C}=\left(e_{1}, e_{2}, e_{3}\right)$ of \mathbb{R}^{3}.
Which of the following statements is true?
(a) e_{1} is an eigenvector of g.
(b) e_{3} is an eigenvector of g.
(c) None of the other statements is true.
(d) e_{2} is an eigenvector of g.

