Linear algebra and geometry a.y. 2023-2024
 Mixed quizzes on vector spaces

1. In \mathbb{R}^{4}, define the following vector subspaces:

$$
\begin{aligned}
W_{1} & =\left\{(x, y, z, t) \in \mathbb{R}^{4} \mid x+y+z+t=0\right\} \\
W_{2} & =\left\{(x, y, z, t) \in \mathbb{R}^{4} \left\lvert\,\left\{\begin{array}{l}
x-y=0 \\
z+t=0
\end{array}\right\} .\right.\right.
\end{aligned}
$$

Which of the following statements is true?
(a) $\operatorname{dim}\left(W_{1}+W_{2}\right)=4$.
(b) $\operatorname{dim}\left(W_{1}+W_{2}\right)=3$.
(c) $\operatorname{dim}\left(W_{1}+W_{2}\right)=2$.
(d) $\operatorname{dim}\left(W_{1}+W_{2}\right)=1$.
2. Let $\mathcal{C}=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ be the canonical basis of \mathbb{R}^{4}, and define the subspace

$$
V=\mathcal{L}\left(e_{2}+e_{3},-e_{1}+e_{3},-e_{1}-e_{2}\right)
$$

The dimension of V is
(a) 3
(b) 1
(c) 2
(d) 4
3. Let $\mathcal{C}=\left(e_{1}, e_{2}, e_{3}\right)$ be the canonical basis of \mathbb{R}^{3}, and consider the vectors

$$
v_{1}=e_{1}+e_{2}+e_{3}, \quad v_{2}=-3 e_{2}, \quad v_{3}=2 e_{1}+5 e_{2}+2 e_{3}, \quad v_{4}=e_{3}-e_{1}
$$

Find the true statement.
(a) The set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis of \mathbb{R}^{3}.
(b) The set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ generates \mathbb{R}^{3}.
(c) The set $\left\{v_{1}, v_{3}\right\}$ generates \mathbb{R}^{3}.
(d) The set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent in \mathbb{R}^{3}.
4. Let $\mathbb{R}[x]_{3}$ be the vector space of polynomials in the variable x, with real coefficients and degree ≤ 3, and consider the vectors

$$
v_{1}=1+x, \quad v_{2}=1+x^{2}, \quad v_{3}=x+x^{2}, \quad v_{4}=x^{3} .
$$

Find the true statement.
(a) The set $\left\{v_{1}, v_{2}\right\}$ generates $\mathbb{R}[x]_{3}$.
(b) The set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis of $\mathbb{R}[x]_{3}$.
(c) The set $\left\{v_{1}+v_{2}, v_{3}+v_{4}\right\}$ is a basis of $\mathbb{R}[x]_{3}$.
(d) The set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent.
5. Define the following subsets of $\mathbb{R}^{2,2}$:

$$
V=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & d
\end{array}\right) \right\rvert\, a, b, d \in \mathbb{R}\right\} \quad \text { and } \quad W=\left\{\left.\left(\begin{array}{cc}
c & 0 \\
0 & c
\end{array}\right) \right\rvert\, c \in \mathbb{R}\right\} .
$$

Find the true statement.
(a) The matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ form a basis of W
(b) W is not a vector subspace of V
(c) $\operatorname{dim}(V)=\operatorname{dim}(W)=3$
(d) $\operatorname{dim}(V \cap W)=1$
6. Let $\mathbb{R}^{2,2}$ denote the vector space of 2×2 matrices with real entries. Which of the following subsets of $\mathbb{R}^{2,2}$ is a vector subspace?
(a) The set of matrices in $\mathbb{R}^{2,2}$ with determinant equal to 0 .
(b) The set of matrices in $\mathbb{R}^{2,2}$ such that the sum of all entries is 0 .
(c) The set of matrices in $\mathbb{R}^{2,2}$ such that the product of the entries in the first column is 0 .
(d) The set of matrices in $\mathbb{R}^{2,2}$ such that the product of the entries on the main diagonal is 0.
7. Let $U \subseteq \mathbb{R}^{4}$ be a vector subspace of dimension 2 .

Which of the following statements is true?
(a) There exists a subspace V of dimension 3 such that $\operatorname{dim}(U \cap V)=2$.
(b) There exists a subspace V of dimension 2 that does not intersect U.
(c) For all subspaces V of dimension 3, one has $\operatorname{dim}(U \cap V)=1$.
(d) None of the other statements is true.
8. Given the basis $\mathcal{B}=((1,2,3),(1,0,1),(0,1,2))$ of \mathbb{R}^{3} and the vector $v=(3,1,3)$, which of the following statements is true?
(a) The vector v is not a linear combination of the elements of \mathcal{B}.
(b) The components of v in the basis \mathcal{B} are $[v]_{\mathcal{B}}=(1,-1,1)$.
(c) The components of v in the basis \mathcal{B} are $[v]_{\mathcal{B}}=(3,1,3)$.
(d) The components of v in the basis \mathcal{B} are $[v]_{\mathcal{B}}=(1,2,-1)$.
9. In \mathbb{R}^{4}, define the following vector subspaces:

$$
\begin{gathered}
V=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x+y+z-w=x+3 y=0\right\} \\
W=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid 2 y-z+w=x=0\right\}
\end{gathered}
$$

Which of the following statements is true?
(a) The vector $(0,0,1,0)$ is a basis of $V \cap W$.
(b) $V+W=\mathbb{R}^{4}$.
(c) $\operatorname{dim}(V \cap W)=2$.
(d) $V \cup W$ is contained in a vector subspace in \mathbb{R}^{4} of dimension 3 .
10. Let $h \in \mathbb{R}$ and consider the elements of $\mathbb{R}[x]_{2}$:

$$
p_{1}(x)=x^{2}+h x, \quad p_{2}(x)=x+h, \quad p_{3}(x)=h x^{2}+1
$$

Which of the following statements is true?
(a) When $h=0,\left(p_{1}, p_{2}, p_{3}\right)$ is not a basis of $\mathbb{R}[x]_{2}$.
(b) $\left\{p_{1}, p_{2}, p_{3}\right\}$ is a set of linearly dependent polynomials for all $h \in \mathbb{R}$.
(c) There exists a value of h such that the vector subspace generated by $\left\{p_{1}, p_{2}, p_{3}\right\}$ has dimension 2.
(d) When $h=-1,\left\{p_{1}, p_{2}, p_{3}\right\}$ is a set of linearly independent polynomials.
11. Which of the following subsets in $\mathbb{R}[x]_{3}$ is a vector subspace?
(a) The set $\left\{p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} \in \mathbb{R}[x]_{3} \mid a_{0} a_{2}=0\right\}$.
(b) The set $\left\{p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} \in \mathbb{R}[x]_{3} \mid a_{0}+a_{1}+a_{2}+a_{3}=0\right\}$.
(c) The set $\left\{p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} \in \mathbb{R}[x]_{3} \mid a_{0} a_{3}=0\right\}$.
(d) The set $\left\{p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} \in \mathbb{R}[x]_{3} \mid a_{0} a_{3}-a_{1} a_{2}=0\right\}$.
12. In the vector space $\mathbb{R}^{2,2}$ of 2×2 matrices with real entries, consider the elements

$$
A_{1}=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right), \quad A_{3}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right), \quad A_{4}=\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)
$$

Which of the following statements is true?
(a) $A_{1}, A_{2}, A_{3}, A_{4}$ are linearly dependent.
(b) $\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ is a basis of $\mathbb{R}^{2,2}$.
(c) $\left\{A_{1}, A_{2}\right\}$ and $\left\{A_{3}, A_{4}\right\}$ generate the same vector subspace of $\mathbb{R}^{2,2}$.
(d) A_{1}, A_{2}, A_{3} generate a vector subspace of dimension 2 .
13. Let $h \in \mathbb{R}$ and let U be the vector subspace of \mathbb{R}^{3} generated by the vector $(h, 0, h)$. Let $V=\left\{(x, y, z) \in \mathbb{R}^{3}: x+3 y+z=0\right\}$.
Which of the following statements is true?
(a) $\operatorname{dim}(U \cap V)=1$ for all values of h.
(b) If $h=0$ then $U \cap V=\emptyset$.
(c) $\operatorname{dim}(U \cap V)=0$ for all values of h.
(d) $\operatorname{dim}(U)=1$ for all values of h.
14. Let $h \in \mathbb{R}$ and let U be the vector subspace of \mathbb{R}^{3} generated by the vectors $(h, 0,1)$ and $(1,0,1)$. Let $V=\left\{(x, y, z) \in \mathbb{R}^{3}: x+3 y=z=0\right\}$.
Which of the following statements is true?
(a) There exists a value of h such that $\operatorname{dim}(U \cap V)=1$.
(b) If $h=1$ then $U \cap V=\emptyset$.
(c) $\operatorname{dim}(U)=2$ for all values of h.
(d) $\operatorname{dim}(U+V)=2$ if and only if $h=1$.
15. Given the geometric vectors $\overrightarrow{v_{1}}=\vec{\imath}+\vec{\jmath}, \overrightarrow{v_{2}}=\vec{\imath}+2 \vec{\jmath}$, and $\overrightarrow{v_{3}}=2 \vec{\imath}+\vec{\jmath}$, find the correct statement.
(a) There exist $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ such that $\lambda_{1} \overrightarrow{v_{1}}+\lambda_{2} \overrightarrow{v_{2}}=\overrightarrow{v_{3}}$.
(b) $\mathcal{L}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right)=\mathbb{R}^{3}$.
(c) $\lambda \overrightarrow{v_{1}}+\overrightarrow{v_{2}}=\overrightarrow{v_{1}}$ for some value $\lambda \in \mathbb{R}$.
(d) The vectors $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right\}$ are linearly independent.

