Linear algebra and geometry a.y. 2023-2024 Mixed quizzes on vector spaces

1. In \mathbb{R}^4 , define the following vector subspaces:

$$W_1 = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z + t = 0\}$$
$$W_2 = \{(x, y, z, t) \in \mathbb{R}^4 \mid \begin{cases} x - y = 0\\ z + t = 0 \end{cases}\}.$$

Which of the following statements is true?

- (a) $\dim(W_1 + W_2) = 4$. (b) $\dim(W_1 + W_2) = 3$. (c) $\dim(W_1 + W_2) = 2$.
- (d) $\dim(W_1 + W_2) = 1.$

2. Let $\mathcal{C} = (e_1, e_2, e_3, e_4)$ be the canonical basis of \mathbb{R}^4 , and define the subspace

$$V = \mathcal{L}(e_2 + e_3, -e_1 + e_3, -e_1 - e_2).$$

The dimension of V is

- (a) 3
- (b) 1
- (c) 2
- (d) 4

3. Let $\mathcal{C} = (e_1, e_2, e_3)$ be the canonical basis of \mathbb{R}^3 , and consider the vectors

 $v_1 = e_1 + e_2 + e_3,$ $v_2 = -3e_2,$ $v_3 = 2e_1 + 5e_2 + 2e_3,$ $v_4 = e_3 - e_1.$

Find the true statement.

- (a) The set $\{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3 .
- (b) The set $\{v_1, v_2, v_3, v_4\}$ generates \mathbb{R}^3 .
- (c) The set $\{v_1, v_3\}$ generates \mathbb{R}^3 .
- (d) The set $\{v_1, v_2, v_3\}$ is linearly independent in \mathbb{R}^3 .

4. Let $\mathbb{R}[x]_3$ be the vector space of polynomials in the variable x, with real coefficients and degree ≤ 3 , and consider the vectors

 $v_1 = 1 + x$, $v_2 = 1 + x^2$, $v_3 = x + x^2$, $v_4 = x^3$.

Find the true statement.

- (a) The set $\{v_1, v_2\}$ generates $\mathbb{R}[x]_3$.
- (b) The set $\{v_1, v_2, v_3, v_4\}$ is a basis of $\mathbb{R}[x]_3$.
- (c) The set $\{v_1 + v_2, v_3 + v_4\}$ is a basis of $\mathbb{R}[x]_3$.
- (d) The set $\{v_1, v_2, v_3\}$ is linearly dependent.
- 5. Define the following subsets of $\mathbb{R}^{2,2}$:

$$V = \left\{ \left(\begin{array}{cc} a & b \\ 0 & d \end{array} \right) \mid a, b, d \in \mathbb{R} \right\} \quad \text{and} \quad W = \left\{ \left(\begin{array}{cc} c & 0 \\ 0 & c \end{array} \right) \mid c \in \mathbb{R} \right\}.$$

Find the true statement.

- (a) The matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ form a basis of W
- (b) W is not a vector subspace of V
- (c) $\dim(V) = \dim(W) = 3$
- (d) $\dim(V \cap W) = 1$
- 6. Let $\mathbb{R}^{2,2}$ denote the vector space of 2×2 matrices with real entries. Which of the following subsets of $\mathbb{R}^{2,2}$ is a vector subspace?
 - (a) The set of matrices in $\mathbb{R}^{2,2}$ with determinant equal to 0.
 - (b) The set of matrices in $\mathbb{R}^{2,2}$ such that the sum of all entries is 0.
 - (c) The set of matrices in $\mathbb{R}^{2,2}$ such that the product of the entries in the first column is 0.
 - (d) The set of matrices in $\mathbb{R}^{2,2}$ such that the product of the entries on the main diagonal is 0.
- 7. Let $U \subseteq \mathbb{R}^4$ be a vector subspace of dimension 2.

Which of the following statements is true?

- (a) There exists a subspace V of dimension 3 such that $\dim(U \cap V) = 2$.
- (b) There exists a subspace V of dimension 2 that does not intersect U.
- (c) For all subspaces V of dimension 3, one has $\dim(U \cap V) = 1$.
- (d) None of the other statements is true.

- 8. Given the basis $\mathcal{B} = ((1,2,3), (1,0,1), (0,1,2))$ of \mathbb{R}^3 and the vector v = (3,1,3), which of the following statements is true?
 - (a) The vector v is not a linear combination of the elements of \mathcal{B} .
 - (b) The components of v in the basis \mathcal{B} are $[v]_{\mathcal{B}} = (1, -1, 1)$.
 - (c) The components of v in the basis \mathcal{B} are $[v]_{\mathcal{B}} = (3, 1, 3)$.
 - (d) The components of v in the basis \mathcal{B} are $[v]_{\mathcal{B}} = (1, 2, -1)$.

9. In \mathbb{R}^4 , define the following vector subspaces:

$$V = \left\{ (x, y, z, w) \in \mathbb{R}^4 \mid x + y + z - w = x + 3y = 0 \right\},$$
$$W = \left\{ (x, y, z, w) \in \mathbb{R}^4 \mid 2y - z + w = x = 0 \right\}.$$

Which of the following statements is true?

- (a) The vector (0, 0, 1, 0) is a basis of $V \cap W$.
- (b) $V + W = \mathbb{R}^4$.
- (c) $\dim(V \cap W) = 2$.
- (d) $V \cup W$ is contained in a vector subspace in \mathbb{R}^4 of dimension 3.

10. Let $h \in \mathbb{R}$ and consider the elements of $\mathbb{R}[x]_2$:

$$p_1(x) = x^2 + hx,$$
 $p_2(x) = x + h,$ $p_3(x) = hx^2 + 1.$

Which of the following statements is true?

- (a) When h = 0, (p_1, p_2, p_3) is not a basis of $\mathbb{R}[x]_2$.
- (b) $\{p_1, p_2, p_3\}$ is a set of linearly dependent polynomials for all $h \in \mathbb{R}$.
- (c) There exists a value of h such that the vector subspace generated by $\{p_1, p_2, p_3\}$ has dimension 2.
- (d) When h = -1, $\{p_1, p_2, p_3\}$ is a set of linearly independent polynomials.

11. Which of the following subsets in $\mathbb{R}[x]_3$ is a vector subspace?

- (a) The set $\{p(x) = a_0 + a_1x + a_2x^2 + a_3 \in \mathbb{R}[x]_3 \mid a_0a_2 = 0\}.$
- (b) The set $\{p(x) = a_0 + a_1x + a_2x^2 + a_3 \in \mathbb{R}[x]_3 \mid a_0 + a_1 + a_2 + a_3 = 0\}.$
- (c) The set $\{p(x) = a_0 + a_1x + a_2x^2 + a_3 \in \mathbb{R}[x]_3 \mid a_0a_3 = 0\}.$
- (d) The set $\{p(x) = a_0 + a_1x + a_2x^2 + a_3 \in \mathbb{R}[x]_3 \mid a_0a_3 a_1a_2 = 0\}.$

12. In the vector space $\mathbb{R}^{2,2}$ of 2×2 matrices with real entries, consider the elements

$$A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad A_4 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}.$$

Which of the following statements is true?

- (a) A_1, A_2, A_3, A_4 are linearly dependent.
- (b) (A_1, A_2, A_3, A_4) is a basis of $\mathbb{R}^{2,2}$.
- (c) $\{A_1, A_2\}$ and $\{A_3, A_4\}$ generate the same vector subspace of $\mathbb{R}^{2,2}$.
- (d) A_1, A_2, A_3 generate a vector subspace of dimension 2.

13. Let $h \in \mathbb{R}$ and let U be the vector subspace of \mathbb{R}^3 generated by the vector (h, 0, h). Let $V = \{(x, y, z) \in \mathbb{R}^3 : x + 3y + z = 0\}.$

Which of the following statements is true?

- (a) $\dim(U \cap V) = 1$ for all values of h.
- (b) If h = 0 then $U \cap V = \emptyset$.
- (c) $\dim(U \cap V) = 0$ for all values of h.
- (d) $\dim(U) = 1$ for all values of h.
- 14. Let $h \in \mathbb{R}$ and let U be the vector subspace of \mathbb{R}^3 generated by the vectors (h, 0, 1) and (1, 0, 1). Let $V = \{(x, y, z) \in \mathbb{R}^3 : x + 3y = z = 0\}$. Which of the following statements is true?
 - (a) There exists a value of h such that $\dim(U \cap V) = 1$.
 - (b) If h = 1 then $U \cap V = \emptyset$.
 - (c) $\dim(U) = 2$ for all values of h.
 - (d) $\dim(U+V) = 2$ if and only if h = 1.

15. Given the geometric vectors $\vec{v_1} = \vec{i} + \vec{j}$, $\vec{v_2} = \vec{i} + 2\vec{j}$, and $\vec{v_3} = 2\vec{i} + \vec{j}$, find the correct statement.

- (a) There exist $\lambda_1, \lambda_2 \in \mathbb{R}$ such that $\lambda_1 \vec{v_1} + \lambda_2 \vec{v_2} = \vec{v_3}$.
- (b) $\mathcal{L}(\vec{v_1}, \vec{v_2}, \vec{v_3}) = \mathbb{R}^3$.
- (c) $\lambda \vec{v_1} + \vec{v_2} = \vec{v_1}$ for some value $\lambda \in \mathbb{R}$.
- (d) The vectors $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ are linearly independent.