1. Let A, B and C be the points $(0,0,1),(0,1,0)$ and $(1,0,0)$ in \mathbb{R}^{3}.

Find the correct statement.
(a) The vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$ are parallel.
(b) The points A, B and C are collinear.
(c) There is no plane containing the points A, B and C.
(d) The triangle with vertices A, B and C is equilateral.
2. Let $A=(1,2,3), B=(2,3,3), C=(1,3,4)$ and $D=(2,4,4)$ be points in \mathbb{R}^{3}.

Find the correct statement.
(a) The quadrilateral $A B D C$ is a parallelogram.
(b) The points A, B, C and D are not coplanar.
(c) The quadrilateral $A B C D$ is a rectangle.
(d) The points A, B, C and D are collinear.
3. Consider the line $\ell:\{x=y=z\}$ and the plane $\pi:\{x+y+z=3\}$.

Find the correct statement.
(a) $\ell \| \pi$.
(b) $\ell \perp \pi$.
(c) $\ell \cap \pi=\emptyset$.
(d) $\ell \subset \pi$.
4. Let $r:\{x=y+1=z+2\}$ and $s:\{2 x=2 y+2=3 z+2\}$ be two lines in S_{3}.

Find the correct statement.
(a) The line s is orthogonal to the plane $x-y=0$.
(b) The two lines are coplanar.
(c) The two lines are skew.
(d) The line r is orthogonal to the plane $y+1-x=0$.
5. Consider the line $r:\{x-y=z+2 y+3=0\}$ and the family of planes $\pi_{h}:\{x+y+h z=0\}$, where $h \in \mathbb{R}$ is a real parameter.
Find the correct statement.
(a) The line r and the plane π_{h} gave non-empty intersection for all values of h.
(b) The line r and the plane π_{h} have non-empty intersection if $h \neq 1$.
(c) The line r is contained in the plane π_{h} if $h=1$.
(d) The line r and the plane π_{h} are parallel for all values of h.
6. Consider the line

$$
r:\left\{\begin{array}{l}
x=2+t \\
y=2-t \\
z=t
\end{array}\right.
$$

Which of the following statements is true?
(a) There are infinitely many planes containing r and the point $(2,2,2)$.
(b) There are infinitely many planes containing the point $(2,2,2)$ and perpendicular to r.
(c) There are infinitely many planes containing r and the two points $(2,2,2)$ and $(2,2,0)$.
(d) There are infinitely many planes containing r and the point $(2,2,0)$.
7. Consider the lines

$$
r:\left\{\begin{array}{l}
x=2+t \\
y=t \\
z=4 t-3
\end{array} \quad \text { and } \quad s_{h}:\left\{\begin{array}{l}
x-y=0 \\
3 x+y-z=h,
\end{array} \quad \text { with } h \in \mathbb{R} .\right.\right.
$$

Find the correct statement.
(a) The lines r and s_{h} are parallel for infinitely many values of $h \in \mathbb{R}$.
(b) When $h=-1$, the two lines meet in the point $P=(3,1,1)$.
(c) The lines r and s_{h} are skew for infinitely many values of $h \in \mathbb{R}$.
(d) The lines r and s_{h} are perpendicular for infinitely many values of $h \in \mathbb{R}$.
8. Consider the lines r : $\{z-1=x+y-2=0\}$ and $s:\{x-2=y+z-4=0\}$, and let $d=d(r, s)$ be the distance between them.

Find the correct statement.
(a) $0<d \leq \sqrt{3}$.
(b) $\sqrt{3}<d \leq 2 \sqrt{3}$.
(c) $2 \sqrt{3}<d \leq 3 \sqrt{3}$.
(d) $3 \sqrt{3}<d \leq 4 \sqrt{3}$.
9. Consider the lines

$$
r:\left\{\begin{array}{l}
x+y=1 \\
y=2
\end{array} \quad \text { ed } \quad s:\left\{\begin{array}{l}
x=-3 \\
y=3 z
\end{array}\right.\right.
$$

Which of the following statements is true?
(a) There exists a plane that contains r and s.
(b) There exists a plane that contains r and is orthogonal to s.
(c) There exists a plane that contains r and is parallel to s.
(d) There exists a plane that contains s and is orthogonal to r.
10. Consider the three planes

$$
\alpha: z=0, \quad \beta: y-z=0, \quad \gamma: y+z=0 .
$$

Which one of the following statements is true?
(a) α, β and γ only share a unique common point.
(b) α, β and γ have empty intersection.
(c) α, β and γ share a common line.
(d) α, β and γ are parallel to each other.
11. Consider the lines

$$
r:\left\{\begin{array}{l}
x+z=0 \\
2 x+y+z=0
\end{array} \quad \text { and } \quad s:\left\{\begin{array}{l}
x=1-t \\
y=-1+t \\
z=1-t
\end{array}\right.\right.
$$

Which of the following statements is true?
(a) The distance from r to s is $\sqrt{2}$.
(b) The distance from the origin to both lines is 0 .
(c) The distance from r to s is $\sqrt{3}$.
(d) The distance from r to s is $\sqrt{6}$.
12. Let $\vec{\imath}, \vec{\jmath}, \vec{k}$ be the unit vectors of the coordinate axes in \mathbb{R}^{3}, and consider the planes

$$
\pi_{1}: 2 x-y-3 z-6=0 \quad \text { and } \quad \pi_{2}: x+y+2 z-4=0 .
$$

Find the correct statement.
(a) $\pi_{1} \cap \pi_{2}$ is a line parallel to the vector $\vec{\imath}-7 \vec{\jmath}+3 \vec{k}$.
(b) $\pi_{1} \cap \pi_{2}=\emptyset$.
(c) The point $P=(1,1,1)$ belongs to the line $\pi_{1} \cap \pi_{2}$.
(d) $\pi_{1} \cap \pi_{2}$ is orthogonal to the vector $\vec{\imath}-7 \vec{\jmath}+3 \vec{k}$.
13. Given the line $r: x-y=x+y-z=0$, find the correct statement.
(a) r passes through the point $(1,1,0)$.
(b) r is contained in the plane $z=0$.
(c) r is contained in the plane $2 x+z=0$.
(d) r has direction vector parallel to the vector having coordinates $(1,1,2)$.
14. The points of the line ℓ given by parametric equations $\ell: P_{0}+t \vec{v}$ satisfy Cartesian equations

$$
\left\{\begin{array}{l}
x+z=1 \\
x+y=0
\end{array}\right.
$$

Which of the following statements is true?
(a) $P_{0}=(1,0,0)$ and $\vec{v}=\vec{\imath}+\vec{k}$.
(b) $P_{0}=(0,0,1)$ and $\vec{v}=\vec{\imath}-\vec{\jmath}-\vec{k}$.
(c) $P_{0}=(0,0,0)$ and $\vec{v}=\vec{\imath}+\vec{\jmath}+\vec{k}$.
(d) $P_{0}=(1,1,0)$ and $\vec{v}=\overrightarrow{0}$.

