Linear algebra and geometry a.y. 2023-2024 Mixed quizzes on affine geometry: lines and planes, distances

- 1. Let A, B and C be the points (0,0,1), (0,1,0) and (1,0,0) in \mathbb{R}^3 . Find the correct statement.
 - (a) The vectors \overrightarrow{AB} and \overrightarrow{AC} are parallel.
 - (b) The points A, B and C are collinear.
 - (c) There is no plane containing the points A, B and C.
 - (d) The triangle with vertices A, B and C is equilateral.
- 2. Let A = (1, 2, 3), B = (2, 3, 3), C = (1, 3, 4) and D = (2, 4, 4) be points in \mathbb{R}^3 . Find the correct statement.
 - (a) The quadrilateral ABDC is a parallelogram.
 - (b) The points A, B, C and D are not coplanar.
 - (c) The quadrilateral ABCD is a rectangle.
 - (d) The points A, B, C and D are collinear.
- 3. Consider the line ℓ : $\{x = y = z\}$ and the plane π : $\{x + y + z = 3\}$. Find the correct statement.
 - (a) $\ell \parallel \pi$.
 - (b) $\ell \perp \pi$.
 - (c) $\ell \cap \pi = \emptyset$.
 - (d) $\ell \subset \pi$.
- 4. Let $r : \{x = y + 1 = z + 2\}$ and $s : \{2x = 2y + 2 = 3z + 2\}$ be two lines in S_3 . Find the correct statement.
 - (a) The line s is orthogonal to the plane x y = 0.
 - (b) The two lines are coplanar.
 - (c) The two lines are skew.
 - (d) The line r is orthogonal to the plane y + 1 x = 0.

- 5. Consider the line $r : \{x y = z + 2y + 3 = 0\}$ and the family of planes $\pi_h : \{x + y + hz = 0\}$, where $h \in \mathbb{R}$ is a real parameter. Find the correct statement.
 - (a) The line r and the plane π_h gave non-empty intersection for all values of h.
 - (b) The line r and the plane π_h have non-empty intersection if $h \neq 1$.
 - (c) The line r is contained in the plane π_h if h = 1.
 - (d) The line r and the plane π_h are parallel for all values of h.
- 6. Consider the line

$$r: \left\{ \begin{array}{l} x = 2 + t \\ y = 2 - t \\ z = t \end{array} \right.$$

Which of the following statements is true?

- (a) There are infinitely many planes containing r and the point (2, 2, 2).
- (b) There are infinitely many planes containing the point (2, 2, 2) and perpendicular to r.
- (c) There are infinitely many planes containing r and the two points (2, 2, 2) and (2, 2, 0).
- (d) There are infinitely many planes containing r and the point (2, 2, 0).

7. Consider the lines

$$r: \begin{cases} x=2+t\\ y=t\\ z=4t-3 \end{cases} \quad \text{and} \quad s_h: \begin{cases} x-y=0\\ 3x+y-z=h, \end{cases} \text{ with } h \in \mathbb{R}.$$

Find the correct statement.

- (a) The lines r and s_h are parallel for infinitely many values of $h \in \mathbb{R}$.
- (b) When h = -1, the two lines meet in the point P = (3, 1, 1).
- (c) The lines r and s_h are skew for infinitely many values of $h \in \mathbb{R}$.
- (d) The lines r and s_h are perpendicular for infinitely many values of $h \in \mathbb{R}$.

8. Consider the lines r: {z - 1 = x + y - 2 = 0} and s: {x - 2 = y + z - 4 = 0}, and let d = d(r, s) be the distance between them.

Find the correct statement.

- (a) $0 < d \le \sqrt{3}$.
- (b) $\sqrt{3} < d \le 2\sqrt{3}$.
- (c) $2\sqrt{3} < d \le 3\sqrt{3}$.
- (d) $3\sqrt{3} < d \le 4\sqrt{3}$.
- 9. Consider the lines

$$r: \left\{ \begin{array}{l} x+y=1\\ y=2 \end{array} \right. \qquad \text{ed} \qquad s: \left\{ \begin{array}{l} x=-3\\ y=3z \end{array} \right.$$

Which of the following statements is true?

- (a) There exists a plane that contains r and s.
- (b) There exists a plane that contains r and is orthogonal to s.
- (c) There exists a plane that contains r and is parallel to s.
- (d) There exists a plane that contains s and is orthogonal to r.
- 10. Consider the three planes

$$\alpha : z = 0, \quad \beta : y - z = 0, \quad \gamma : y + z = 0.$$

Which one of the following statements is true?

- (a) α , β and γ only share a unique common point.
- (b) α , β and γ have empty intersection.
- (c) α , β and γ share a common line.
- (d) α , β and γ are parallel to each other.

11. Consider the lines

$$r: \left\{ \begin{array}{l} x+z=0\\ 2x+y+z=0 \end{array} \right. \text{ and } s: \left\{ \begin{array}{l} x=1-t\\ y=-1+t\\ z=1-t \end{array} \right. \right.$$

Which of the following statements is true?

- (a) The distance from r to s is $\sqrt{2}$.
- (b) The distance from the origin to both lines is 0.
- (c) The distance from r to s is $\sqrt{3}$.
- (d) The distance from r to s is $\sqrt{6}$.

12. Let $\vec{i}, \vec{j}, \vec{k}$ be the unit vectors of the coordinate axes in \mathbb{R}^3 , and consider the planes

 $\pi_1: 2x - y - 3z - 6 = 0$ and $\pi_2: x + y + 2z - 4 = 0$.

Find the correct statement.

- (a) $\pi_1 \cap \pi_2$ is a line parallel to the vector $\vec{i} 7\vec{j} + 3\vec{k}$.
- (b) $\pi_1 \cap \pi_2 = \emptyset$.
- (c) The point P = (1, 1, 1) belongs to the line $\pi_1 \cap \pi_2$.
- (d) $\pi_1 \cap \pi_2$ is orthogonal to the vector $\vec{i} 7\vec{j} + 3\vec{k}$.

13. Given the line r: x - y = x + y - z = 0, find the correct statement.

- (a) r passes through the point (1, 1, 0).
- (b) r is contained in the plane z = 0.
- (c) r is contained in the plane 2x + z = 0.
- (d) r has direction vector parallel to the vector having coordinates (1, 1, 2).

14. The points of the line ℓ given by parametric equations $\ell : P_0 + t \vec{v}$ satisfy Cartesian equations

$$\begin{cases} x+z=1\\ x+y=0 \end{cases}$$

Which of the following statements is true?

(a) $P_0 = (1, 0, 0)$ and $\vec{v} = \vec{i} + \vec{k}$. (b) $P_0 = (0, 0, 1)$ and $\vec{v} = \vec{i} - \vec{j} - \vec{k}$. (c) $P_0 = (0, 0, 0)$ and $\vec{v} = \vec{i} + \vec{j} + \vec{k}$. (d) $P_0 = (1, 1, 0)$ and $\vec{v} = \vec{0}$.