Linear algebra and geometry a.y. 2023-2024
 Mixed quizzes on vectors

1. Let $\vec{\imath}, \vec{\jmath}, \vec{k}$ be the unit vectors of a coordinate systems in S_{3}, and let $s \in \mathbb{R}$ be a parameter. Consider the vectors

$$
\vec{u}_{s}=s \vec{\imath}+3 \vec{\jmath}-\vec{k}, \quad \vec{v}=\vec{\imath}-\vec{\jmath}+\vec{k}, \quad \vec{w}=2 \vec{\imath}+\vec{\jmath}-\vec{k} .
$$

Which of the following statements is true?
(a) There exists $s \in \mathbb{R}$ such that $\vec{u}_{s}, \vec{v}, \vec{w}$ are coplanar.
(b) The vectors \vec{u}_{s} and \vec{v} are orthogonal for all $s \in \mathbb{R}$.
(c) The module of $\vec{u}_{s} \cdot(\vec{v} \times \vec{w})$ is 6 for at least one value of $s \in \mathbb{R}$.
(d) The module of $\vec{u}_{s} \cdot(\vec{v} \times \vec{w})$ is 1 for at least one value of $s \in \mathbb{R}$.
2. Consider the points

$$
A=(1,1,1), \quad B=(3,3,7), \quad C=(0,3,-2), \quad D=(2,3,3)
$$

Which of the following statements is true?
(a) None of the other statements is true.
(b) The points A, B, C, D are coplanar.
(c) The points A, B, D are collinear.
(d) The area of the triangle whose vertices are B, C, D is $\frac{1}{2} \sqrt{91}$.
3. Let $\vec{\imath}, \vec{\jmath}, \vec{k}$ be the unit vectors of a coordinate systems in S_{3}. Consider the vectors

$$
\vec{v}=\vec{\imath}+\vec{\jmath}, \quad \vec{w}=\vec{\imath}-\vec{\jmath}+2 \vec{k} .
$$

Which of the following statements is true?
(a) The equation $\vec{x} \times \vec{v}=\vec{w}$ has a unique solution.
(b) There exist infinitely many vectors \vec{x} such that $\vec{x} \times \vec{v}=\vec{w}$.
(c) There do not exist vectors \vec{x} such that $\vec{x} \times \vec{v}=\vec{w}$.
(d) None of the other statements is true.
4. Let $\vec{\imath}, \vec{\jmath}, \vec{k}$ be the unit vectors of a coordinate systems in S_{3}. Consider the vectors

$$
\vec{v}_{\alpha}=\alpha \vec{\imath}+\vec{\jmath}+\alpha \vec{k}, \quad \vec{w}=\vec{\imath}-\vec{\jmath}+2 \vec{k},
$$

where $\alpha \in \mathbb{R}$ is a real parameter. Which of the following statements is true?
(a) None of the other statements is true.
(b) There exists $\alpha \in \mathbb{R}$ such that \vec{v}_{α} and \vec{w} are orthogonal.
(c) For all $\alpha \in \mathbb{R}$ the angle formed by \vec{v}_{α} and \vec{w} is acute.
(d) For all $\alpha \in \mathbb{R}$ the angle formed by \vec{v}_{α} and \vec{w} is obtuse.
5. In the space of applied vectors in S_{3} consider

$$
\vec{u}=\vec{\imath}+2 \vec{\jmath}-\vec{k} \quad \text { and } \quad \vec{v}=2 \vec{\imath}-\vec{\jmath}+\vec{k} .
$$

Find the correct statement.
(a) $\vec{u} \times \vec{v}$ is orthogonal to the vector $-\vec{\imath}+3 \vec{\jmath}+5 \vec{k}$.
(b) $\vec{u} \times \vec{v}$ is parallel to the vector $2 \vec{\imath}-\vec{\jmath}+\vec{k}$.
(c) $\vec{u} \times \vec{v}$ is orthogonal to the vector $2 \vec{\imath}+4 \vec{\jmath}-2 \vec{k}$.
(d) $\vec{u} \times \vec{v}$ forms an obtuse angle with the vector $\vec{\jmath}-\vec{k}$.
6. In the space of applied vectors, consider a nonzero vector \vec{v}.

Which of the following statements is true?
(a) For all $\vec{w} \neq \overrightarrow{0}$ the vector $\vec{w} \times \vec{v}$ is not parallel to \vec{v}.
(b) The equation $\vec{x} \times \vec{v}=\vec{w}$ has solutions for all \vec{w}.
(c) There exists a vector \vec{w} not parallel to \vec{v} such that $(\vec{w} \times \vec{v}) \times \vec{v}=\overrightarrow{0}$.
(d) There exists a vector \vec{w} such that the equation $\vec{x} \times \vec{v}=\vec{w}$ has solutions.
7. In the space of applied vectors consider the vectors

$$
\vec{u}=2 \vec{\imath}, \quad \vec{v}=6 \vec{\imath}-\vec{\jmath}, \quad \vec{w}=\vec{\jmath}-3 \vec{k} .
$$

Find the correct statement.
(a) \vec{u}, \vec{v} and \vec{w} are not coplanar.
(b) \vec{w} is orthogonal to $\vec{u} \times \vec{v}$.
(c) \vec{w} is orthogonal to $\vec{u}+\vec{v}$.
(d) None of the other statements is true.
8. For all values of the parameter $t \in \mathbb{R}$, consider the points in S_{3} :

$$
P=(1,2,3), \quad Q=(0,0, t), \quad R=(1,-1, t), \quad S=(1,1, t)
$$

Which of the following statements is true?
(a) P, Q, R, S are the vertices of a square whose area is $|t-3|$ for infinitely many values of t.
(b) P, Q, R, S are the vertices of a tetrahedron whose volume is $|2 t-6|$ for infinitely many values of t.
(c) P, Q, R, S are the vertices of a tetrahedron whose volume is $\left|\frac{t}{3}-1\right|$ for infinitely many values of t.
(d) P, Q, R, S are coplanar for infinitely many values of the parameter t.
9. Let $\vec{\imath}, \vec{\jmath}, \vec{k}$ be the unit vectors of a coordinate systems in S_{3}, and consider

$$
\vec{u}=\vec{\imath}-2 \vec{\jmath}+3 \vec{k} \quad \text { and } \quad \vec{v}=\vec{\jmath}-\vec{k} .
$$

Which of the following statements is true?
(a) The length of the cross product of \vec{u} and \vec{v} equals $\sqrt{3}$.
(b) The area of the triangle defined by the vectors $2 \vec{u}$ and $2 \vec{v}$ is $\sqrt{3}$.
(c) The vectors \vec{u} and $\vec{u}+\vec{v}$ are orthogonal.
(d) The cosine of the angle formed by $2 \vec{u}$ and $3 \vec{v}$ is $\sqrt{3} / 2$.
10. Let $\vec{\imath}, \vec{\jmath}, \vec{k}$ be the unit vectors of a coordinate systems in S_{3}, and consider the three orthogonal unit vectors

$$
\vec{u}=\frac{\sqrt{2}}{2} \vec{\imath}+\frac{\sqrt{2}}{2} \vec{\jmath}, \quad \vec{v}=\frac{\sqrt{2}}{2} \vec{\imath}-\frac{\sqrt{2}}{2} \vec{\jmath}, \quad \vec{w}=-\vec{k}
$$

and the vector $\vec{r}=2 \vec{\imath}+2 \vec{\jmath}+4 \vec{k}$.
Which of the following statements is true?
(a) The vector \vec{r} is orthogonal to the vector \vec{u}.
(b) The length of the cross product $\vec{u} \times \vec{v}$ is $1 / 2$.
(c) None of the other statements is true.
(d) $\vec{r}=2 \sqrt{2} \vec{u}-4 \vec{w}$.

Solutions

1. (c)
2. (a)
3. (b)
4. (b)
5. (c)
6. (d)
7. (a)
8. (c)
9. (a)
10. (d)
