Linear algebra and geometry a.y. 2023-2024 Mixed quizzes on vectors

1. Let $\vec{i}, \vec{j}, \vec{k}$ be the unit vectors of a coordinate systems in S_3 , and let $s \in \mathbb{R}$ be a parameter. Consider the vectors

$$\vec{u}_s = s\vec{\imath} + 3\vec{\jmath} - \vec{k}, \qquad \vec{v} = \vec{\imath} - \vec{\jmath} + \vec{k}, \qquad \vec{w} = 2\vec{\imath} + \vec{\jmath} - \vec{k}.$$

Which of the following statements is true?

- (a) There exists $s \in \mathbb{R}$ such that $\vec{u}_s, \vec{v}, \vec{w}$ are coplanar.
- (b) The vectors \vec{u}_s and \vec{v} are orthogonal for all $s \in \mathbb{R}$.
- (c) The module of $\vec{u}_s \cdot (\vec{v} \times \vec{w})$ is 6 for at least one value of $s \in \mathbb{R}$.
- (d) The module of $\vec{u}_s \cdot (\vec{v} \times \vec{w})$ is 1 for at least one value of $s \in \mathbb{R}$.
- 2. Consider the points

$$A = (1, 1, 1),$$
 $B = (3, 3, 7),$ $C = (0, 3, -2),$ $D = (2, 3, 3).$

Which of the following statements is true?

- (a) None of the other statements is true.
- (b) The points A, B, C, D are coplanar.
- (c) The points A, B, D are collinear.
- (d) The area of the triangle whose vertices are B, C, D is $\frac{1}{2}\sqrt{91}$.
- 3. Let $\vec{i}, \vec{j}, \vec{k}$ be the unit vectors of a coordinate systems in S_3 . Consider the vectors

$$\vec{v} = \vec{i} + \vec{j}, \qquad \vec{w} = \vec{i} - \vec{j} + 2\vec{k}.$$

Which of the following statements is true?

- (a) The equation $\vec{x} \times \vec{v} = \vec{w}$ has a unique solution.
- (b) There exist infinitely many vectors \vec{x} such that $\vec{x} \times \vec{v} = \vec{w}$.
- (c) There do not exist vectors \vec{x} such that $\vec{x} \times \vec{v} = \vec{w}$.
- (d) None of the other statements is true.

4. Let $\vec{i}, \vec{j}, \vec{k}$ be the unit vectors of a coordinate systems in S_3 . Consider the vectors

$$\vec{v}_{\alpha} = \alpha \vec{\imath} + \vec{\jmath} + \alpha \vec{k}, \qquad \vec{w} = \vec{\imath} - \vec{\jmath} + 2\vec{k},$$

where $\alpha \in \mathbb{R}$ is a real parameter. Which of the following statements is true?

- (a) None of the other statements is true.
- (b) There exists $\alpha \in \mathbb{R}$ such that \vec{v}_{α} and \vec{w} are orthogonal.
- (c) For all $\alpha \in \mathbb{R}$ the angle formed by \vec{v}_{α} and \vec{w} is acute.
- (d) For all $\alpha \in \mathbb{R}$ the angle formed by \vec{v}_{α} and \vec{w} is obtuse.
- 5. In the space of applied vectors in S_3 consider

$$\vec{u} = \vec{i} + 2\vec{j} - \vec{k}$$
 and $\vec{v} = 2\vec{i} - \vec{j} + \vec{k}$.

Find the correct statement.

- (a) $\vec{u} \times \vec{v}$ is orthogonal to the vector $-\vec{i} + 3\vec{j} + 5\vec{k}$.
- (b) $\vec{u} \times \vec{v}$ is parallel to the vector $2\vec{i} \vec{j} + \vec{k}$.
- (c) $\vec{u} \times \vec{v}$ is orthogonal to the vector $2\vec{i} + 4\vec{j} 2\vec{k}$.
- (d) $\vec{u} \times \vec{v}$ forms an obtuse angle with the vector $\vec{j} \vec{k}$.
- 6. In the space of applied vectors, consider a nonzero vector \vec{v} . Which of the following statements is true?
 - (a) For all $\vec{w} \neq \vec{0}$ the vector $\vec{w} \times \vec{v}$ is not parallel to \vec{v} .
 - (b) The equation $\vec{x} \times \vec{v} = \vec{w}$ has solutions for all \vec{w} .
 - (c) There exists a vector \vec{w} not parallel to \vec{v} such that $(\vec{w} \times \vec{v}) \times \vec{v} = \vec{0}$.
 - (d) There exists a vector \vec{w} such that the equation $\vec{x} \times \vec{v} = \vec{w}$ has solutions.
- 7. In the space of applied vectors consider the vectors

$$\vec{u} = 2\vec{i}, \qquad \vec{v} = 6\vec{i} - \vec{j}, \qquad \vec{w} = \vec{j} - 3\vec{k}.$$

Find the correct statement.

- (a) \vec{u}, \vec{v} and \vec{w} are not coplanar.
- (b) \vec{w} is orthogonal to $\vec{u} \times \vec{v}$.
- (c) \vec{w} is orthogonal to $\vec{u} + \vec{v}$.
- (d) None of the other statements is true.

8. For all values of the parameter $t \in \mathbb{R}$, consider the points in S_3 :

 $P = (1, 2, 3), \quad Q = (0, 0, t), \quad R = (1, -1, t), \quad S = (1, 1, t).$

Which of the following statements is true?

- (a) P, Q, R, S are the vertices of a square whose area is |t-3| for infinitely many values of t.
- (b) P, Q, R, S are the vertices of a tetrahedron whose volume is |2t 6| for infinitely many values of t.
- (c) P, Q, R, S are the vertices of a tetrahedron whose volume is $\left|\frac{t}{3} 1\right|$ for infinitely many values of t.
- (d) P, Q, R, S are coplanar for infinitely many values of the parameter t.
- 9. Let $\vec{i}, \vec{j}, \vec{k}$ be the unit vectors of a coordinate systems in S_3 , and consider

$$\vec{u} = \vec{i} - 2\vec{j} + 3\vec{k}$$
 and $\vec{v} = \vec{j} - \vec{k}$.

Which of the following statements is true?

- (a) The length of the cross product of \vec{u} and \vec{v} equals $\sqrt{3}$.
- (b) The area of the triangle defined by the vectors $2\vec{u}$ and $2\vec{v}$ is $\sqrt{3}$.
- (c) The vectors \vec{u} and $\vec{u} + \vec{v}$ are orthogonal.
- (d) The cosine of the angle formed by $2\vec{u}$ and $3\vec{v}$ is $\sqrt{3}/2$.
- 10. Let $\vec{i}, \vec{j}, \vec{k}$ be the unit vectors of a coordinate systems in S_3 , and consider the three orthogonal unit vectors

$$\vec{u} = \frac{\sqrt{2}}{2}\vec{\imath} + \frac{\sqrt{2}}{2}\vec{\jmath}, \qquad \vec{v} = \frac{\sqrt{2}}{2}\vec{\imath} - \frac{\sqrt{2}}{2}\vec{\jmath}, \qquad \vec{w} = -\vec{k}$$

and the vector $\vec{r} = 2\vec{\imath} + 2\vec{\jmath} + 4\vec{k}$.

Which of the following statements is true?

- (a) The vector \vec{r} is orthogonal to the vector \vec{u} .
- (b) The length of the cross product $\vec{u} \times \vec{v}$ is 1/2.
- (c) None of the other statements is true.
- (d) $\vec{r} = 2\sqrt{2}\vec{u} 4\vec{w}$.

Solutions

- 1. (c)
- 2. (a)
- 3. (b)
- 4. (b)
- 5. (c)
- 6. (d)
- 7. (a)
- 8. (c)
- 9. (a)
- 10. (d)