Linear algebra and geometry a.y. 2023-2024 Mixed quizzes on matrices and linear systems

1. Consider the linear system AX = B where

$$A = \begin{pmatrix} -1 & 3 & k \\ -1 & 3 & 0 \\ 0 & -1 & 0 \end{pmatrix} \quad e \quad B = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},$$

and $k \in \mathbb{R}$ is a parameter.

Find the correct statement.

- (a) The system has a unique solution for a unique value of $k \in \mathbb{R}$.
- (b) The system has a unique solution for all values of $k \in \mathbb{R}$.
- (c) None of the other statements is correct.
- (d) There are no values of k such that the system has ∞^1 solutions.
- 2. Consider the linear system

$$\begin{cases} 2x + y - z = 1\\ x + y - z = 0 \end{cases}$$

Find the correct statement.

- (a) The system has ∞^2 solutions.
- (b) (1,0,1) is a solution.
- (c) (-1, 1, 0) is a solution.
- (d) If z = 0, the system has no solutions.
- 3. Which of the following statements is true?
 - (a) If $A \in \mathbb{R}^{m,n}$ is such that the system AX = B is compatible for all $B \in \mathbb{R}^{m,1}$, then $m \leq n$.
 - (b) For any choice of positive integers m, n and $A \in \mathbb{R}^{m,n}$ the matrix equation $AX = {}^{t}AX$ has solution(s).
 - (c) There exists a nonzero $B \in \mathbb{R}^{m,1}$ such that the system AX = B is compatible for all $A \in \mathbb{R}^{m,n}$.
 - (d) None of the other statements is true.

4. Let $x \in \mathbb{R}$ and consider the matrix

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & x \end{array}\right)$$

Find the true statement.

- (a) A is invertible for all values of x.
- (b) $\operatorname{rk}(A) = 2$ for all values of x.
- (c) det(A) = 0 for finitely many values of x.
- (d) rk(A) = 3 for finitely many values of x.

5. Let $A \in \mathbb{R}^{3,5}$ such that $\operatorname{rk}(A) = 3$. Which of the following statements is true?

- (a) The system AX = 2A has infinitely many solutions.
- (b) The system ${}^{t}\!AX = 3{}^{t}\!A$ has infinitely many solutions.
- (c) The system AX = 4A has a unique solution.
- (d) None of the other statements is true.
- 6. Let $A = (a_{ij}) \in \mathbb{R}^{n,n}$ be an upper triangular matrix such that $\det(A) \neq 0$. Which of the following statements is true?
 - (a) A^{-1} is not necessarily upper triangular.
 - (b) None of the other statements is true.
 - (c) A^{-1} is lower triangular.
 - (d) A^{-1} is upper triangular and the entry (i, i) of A^{-1} equals $1/a_{ii}$.
- 7. Let $A \in \mathbb{R}^{3,3}$ be a 3×3 matrix, not symmetric.

Which of the following statements is true?

- (a) $\det(A {}^{t}A) \neq 0.$
- (b) $\det(A {}^{t}A) = 0.$
- (c) $rk(A {}^{t}A) = 1.$
- (d) $A {}^{t}\!A = 0_{3,3}$.

8. Consider the matrix

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Which of the following statements is true?

- (a) $(3A)^n = 3^n 2^{n-1}A$ (b) $(3A)^n = 3^n A$
- (c) $(3A)^n = 3^{n+1}A$
- (d) $(3A)^n = 3^{n-1}A$

9. Consider the matrices

$$E = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} \in \mathbb{R}^{1,4}, \quad F = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} \in \mathbb{R}^{4,1}.$$

Let A be the product $F \cdot E$.

Which of the following statements about the linear system AX = B is true?

- (a) The system AX = B with 4 equations in 4 variables has no solutions for any $B \in \mathbb{R}^{4,1}$.
- (b) The system AX = B with 4 equations in 4 variables is compatible for all $B \in \mathbb{R}^{4,1}$.
- (c) The system AX = B with 4 equations in 4 variables is compatible if and only if $B = \lambda F$, with $\lambda \in \mathbb{R}$.
- (d) If AX = B with 4 equations in 4 variables is compatible, then it has a unique solution.
- 10. Consider the matrices

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 1 \end{pmatrix}.$$

Which of the following statements is true?

- (a) There exist infinitely many matrices $X \in \mathbb{R}^{3,2}$ such that AX = B.
- (b) There exists a unique matrix $X \in \mathbb{R}^{3,2}$ such that AX = B.
- (c) There exist exactly two matrices $X, X' \in \mathbb{R}^{3,2}$ such that AX = AX' = B.
- (d) There do not exist matrices $X \in \mathbb{R}^{3,2}$ such that AX = B.

11. Let $A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ and let $B \in \mathbb{R}^{2,2}$ be an invertible matrix. Find the true statement.

(a)	The matrices BA and	$d \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$\binom{8}{8}$	are row equivalent.
(b)	The matrices BA and	$d \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{array}{c} 0 \\ 0 \end{array}$	8 8	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	are row equivalent.
(c)	The matrices BA and		8 8	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	are row equivalent.
(d)	The matrices BA and	$d\binom{8}{8}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	are row equivalent.

12. Let A_{α} be the family of matrices:

$$A_{\alpha} = \left(\begin{array}{ccc} 2 & 2 & 2\\ 0 & \alpha & 0\\ 0 & 0 & \alpha \end{array}\right),$$

with $\alpha \in \mathbb{R}$ a real parameter.

Find the correct statement.

- (a) $\operatorname{rk}(A_{\alpha}) = 2$ for some values of $\alpha \in \mathbb{R}$.
- (b) $\operatorname{rk}(A_{\alpha}) = 1$ for some values of $\alpha \in \mathbb{R}$.
- (c) A_{α} is symmetric for $\alpha = 2$.
- (d) A_{α} is invertible for all values of $\alpha \in \mathbb{R}$.
- 13. It is known that the linear system

$$A\begin{pmatrix}x\\y\end{pmatrix} = B$$

has infinitely many solutions when $B = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Find the correct statement.

- (a) A is invertible.
- (b) The rank of A is zero.
- (c) The complete matrix (A | B) is invertible.
- (d) The matrix A and the complete matrix (A | B) have the same rank.

14. If the linear system AX = B with n equations in n unknowns has at least two solutions, then

- (a) $\det(A) = \det(A^2)$.
- (b) rk(A) = n 1.
- (c) rk(A) = 0.
- (d) $det(A) \neq 0$.

15. Consider the following linear system in the unknowns x, y, z:

$$\begin{cases} x + 2y + 3z = 2\\ x + y + 2z = 1\\ 2x + y + 3z = 1 \end{cases}$$

Find the true statement.

- (a) The system has a unique solution.
- (b) The system has ∞^2 solutions.
- (c) The general solution of the system has the form $\{x = -t, y = 1 t, z = t\}, t \in \mathbb{R}$.
- (d) The general solution of the system has the form $\{x = t, y = 1 t, z = t\}, t \in \mathbb{R}$.

16. Let $M = \begin{pmatrix} 0 & 2 & 2 & 0 \end{pmatrix}$ and $N = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$. Let S be the homogeneous linear system whose matrix of coefficients is $N \cdot M$. Which of the following statements is true?

- (a) S admits ∞^4 solutions.
- (b) S admits ∞^1 solutions.
- (c) S admits ∞^2 solutions.
- (d) S admits ∞^3 solutions.
- 17. Let A be a real $n \times n$ matrix. If the homogeneous linear system AX = 0 in n unknowns has a nonzero solution, which of the following statements is true?
 - (a) $\det(A) = \det(A^2)$.
 - (b) rk(A) = n.
 - (c) A is invertible.
 - (d) None of the other statements is true.

18. For all $k \in \mathbb{R}$, let A_k be the matrix

$$A_k = \left(\begin{array}{rrr} k & 2 & 3\\ 0 & 1 & 2\\ -1 & 0 & 1 \end{array}\right)$$

Which of the following statements is true?

- (a) $det(A_k) \neq 0$ for all values of k.
- (b) $rk(A_k) = 2$ for two distinct values of k.
- (c) None of the other statements is true.
- (d) $\operatorname{rk}(A_k) = 2$ for a unique value of k.

19. Let A and B be the following 2×2 matrices:

$$A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Find the true statement.

- (a) AB is the zero matrix
- (b) rk(A+B) = 2
- (c) A B is skew-symmetric
- (d) $\operatorname{rk}(BA) = 0$

20. Let $A \in \mathbb{R}^{3,3}$ be a symmetric matrix. Then

- (a) rk(A) = 3
- (b) $A + A^2$ is also symmetric
- (c) $\det(A {}^{t}A) \neq 0$
- (d) $\operatorname{rk}(A {}^{t}A) = 1$

21. Let $A \in \mathbb{R}^{3,3}$ be any matrix. Then

- (a) If (1, 1, 1) and (1, 2, 3) are solutions of the linear system $AX = 0_{3,1}$, then (2, 3, 4) is also a solution of $AX = 0_{3,1}$.
- (b) If det(A) $\neq 0$, then the linear system AX = B has infinitely many solutions for some $B \in \mathbb{R}^{3,1}$
- (c) If $det(A) \neq 0$, then the linear system AX = B always has infinitely many solutions
- (d) If (1,1,1) and (1,2,3) are solutions of the linear system AX = B, (0,1,2) is also a solution of the system AX = B, with $B \neq 0_{3,1}$