Linear algebra and geometry a.y. 2023-2024 Mixed quizzes on matrices and linear systems

1. Consider the linear system $A X=B$ where

$$
A=\left(\begin{array}{ccc}
-1 & 3 & k \\
-1 & 3 & 0 \\
0 & -1 & 0
\end{array}\right) \quad \text { e } \quad B=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

and $k \in \mathbb{R}$ is a parameter.
Find the correct statement.
(a) The system has a unique solution for a unique value of $k \in \mathbb{R}$.
(b) The system has a unique solution for all values of $k \in \mathbb{R}$.
(c) None of the other statements is correct.
(d) There are no values of k such that the system has ∞^{1} solutions.
2. Consider the linear system

$$
\left\{\begin{array}{l}
2 x+y-z=1 \\
x+y-z=0
\end{array}\right.
$$

Find the correct statement.
(a) The system has ∞^{2} solutions.
(b) $(1,0,1)$ is a solution.
(c) $(-1,1,0)$ is a solution.
(d) If $z=0$, the system has no solutions.
3. Which of the following statements is true?
(a) If $A \in \mathbb{R}^{m, n}$ is such that the system $A X=B$ is compatible for all $B \in \mathbb{R}^{m, 1}$, then $m \leq n$.
(b) For any choice of positive integers m, n and $A \in \mathbb{R}^{m, n}$ the matrix equation $A X={ }^{t} A X$ has solution(s).
(c) There exists a nonzero $B \in \mathbb{R}^{m, 1}$ such that the system $A X=B$ is compatible for all $A \in \mathbb{R}^{m, n}$.
(d) None of the other statements is true.
4. Let $x \in \mathbb{R}$ and consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & x
\end{array}\right)
$$

Find the true statement.
(a) A is invertible for all values of x.
(b) $\operatorname{rk}(A)=2$ for all values of x.
(c) $\operatorname{det}(A)=0$ for finitely many values of x.
(d) $\operatorname{rk}(A)=3$ for finitely many values of x.
5. Let $A \in \mathbb{R}^{3,5}$ such that $\operatorname{rk}(A)=3$. Which of the following statements is true?
(a) The system $A X=2 A$ has infinitely many solutions.
(b) The system ${ }^{t} A X=3^{t} A$ has infinitely many solutions.
(c) The system $A X=4 A$ has a unique solution.
(d) None of the other statements is true.
6. Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n, n}$ be an upper triangular matrix such that $\operatorname{det}(A) \neq 0$.

Which of the following statements is true?
(a) A^{-1} is not necessarily upper triangular.
(b) None of the other statements is true.
(c) A^{-1} is lower triangular.
(d) A^{-1} is upper triangular and the entry (i, i) of A^{-1} equals $1 / a_{i i}$.
7. Let $A \in \mathbb{R}^{3,3}$ be a 3×3 matrix, not symmetric.

Which of the following statements is true?
(a) $\operatorname{det}\left(A-{ }^{t} A\right) \neq 0$.
(b) $\operatorname{det}\left(A-{ }^{t} A\right)=0$.
(c) $\operatorname{rk}\left(A-{ }^{t} A\right)=1$.
(d) $A-{ }^{t} A=0_{3,3}$.
8. Consider the matrix

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Which of the following statements is true?
(a) $(3 A)^{n}=3^{n} 2^{n-1} A$
(b) $(3 A)^{n}=3^{n} A$
(c) $(3 A)^{n}=3^{n+1} A$
(d) $(3 A)^{n}=3^{n-1} A$
9. Consider the matrices

$$
E=\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right) \in \mathbb{R}^{1,4}, \quad F=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right) \in \mathbb{R}^{4,1}
$$

Let A be the product $F \cdot E$.
Which of the following statements about the linear system $A X=B$ is true?
(a) The system $A X=B$ with 4 equations in 4 variables has no solutions for any $B \in \mathbb{R}^{4,1}$.
(b) The system $A X=B$ with 4 equations in 4 variables is compatible for all $B \in \mathbb{R}^{4,1}$.
(c) The system $A X=B$ with 4 equations in 4 variables is compatible if and only if $B=\lambda F$, with $\lambda \in \mathbb{R}$.
(d) If $A X=B$ with 4 equations in 4 variables is compatible, then it has a unique solution.
10. Consider the matrices

$$
A=\left(\begin{array}{lll}
3 & 2 & 1 \\
1 & 1 & 1 \\
2 & 1 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 1
\end{array}\right)
$$

Which of the following statements is true?
(a) There exist infinitely many matrices $X \in \mathbb{R}^{3,2}$ such that $A X=B$.
(b) There exists a unique matrix $X \in \mathbb{R}^{3,2}$ such that $A X=B$.
(c) There exist exactly two matrices $X, X^{\prime} \in \mathbb{R}^{3,2}$ such that $A X=A X^{\prime}=B$.
(d) There do not exist matrices $X \in \mathbb{R}^{3,2}$ such that $A X=B$.
11. Let $A=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$ and let $B \in \mathbb{R}^{2,2}$ be an invertible matrix.

Find the true statement.
(a) The matrices $B A$ and $\left(\begin{array}{llll}0 & 0 & 0 & 8 \\ 0 & 0 & 0 & 8\end{array}\right)$ are row equivalent.
(b) The matrices $B A$ and $\left(\begin{array}{llll}0 & 0 & 8 & 0 \\ 0 & 0 & 8 & 0\end{array}\right)$ are row equivalent.
(c) The matrices $B A$ and $\left(\begin{array}{llll}0 & 8 & 0 & 0 \\ 0 & 8 & 0 & 0\end{array}\right)$ are row equivalent.
(d) The matrices $B A$ and $\left(\begin{array}{llll}8 & 0 & 0 & 0 \\ 8 & 0 & 0 & 0\end{array}\right)$ are row equivalent.
12. Let A_{α} be the family of matrices:

$$
A_{\alpha}=\left(\begin{array}{ccc}
2 & 2 & 2 \\
0 & \alpha & 0 \\
0 & 0 & \alpha
\end{array}\right)
$$

with $\alpha \in \mathbb{R}$ a real parameter.
Find the correct statement.
(a) $\operatorname{rk}\left(A_{\alpha}\right)=2$ for some values of $\alpha \in \mathbb{R}$.
(b) $\operatorname{rk}\left(A_{\alpha}\right)=1$ for some values of $\alpha \in \mathbb{R}$.
(c) A_{α} is symmetric for $\alpha=2$.
(d) A_{α} is invertible for all values of $\alpha \in \mathbb{R}$.
13. It is known that the linear system

$$
A\binom{x}{y}=B
$$

has infinitely many solutions when $B=\binom{1}{2}$.
Find the correct statement.
(a) A is invertible.
(b) The rank of A is zero.
(c) The complete matrix $(A \mid B)$ is invertible.
(d) The matrix A and the complete matrix $(A \mid B)$ have the same rank.
14. If the linear system $A X=B$ with n equations in n unknowns has at least two solutions, then
(a) $\operatorname{det}(A)=\operatorname{det}\left(A^{2}\right)$.
(b) $\operatorname{rk}(A)=n-1$.
(c) $\operatorname{rk}(A)=0$.
(d) $\operatorname{det}(A) \neq 0$.
15. Consider the following linear system in the unknowns x, y, z :

$$
\left\{\begin{array}{l}
x+2 y+3 z=2 \\
x+y+2 z=1 \\
2 x+y+3 z=1
\end{array}\right.
$$

Find the true statement.
(a) The system has a unique solution.
(b) The system has ∞^{2} solutions.
(c) The general solution of the system has the form $\{x=-t, y=1-t, z=t\}, t \in \mathbb{R}$.
(d) The general solution of the system has the form $\{x=t, y=1-t, z=t\}, t \in \mathbb{R}$.
16. Let $M=\left(\begin{array}{llll}0 & 2 & 2 & 0\end{array}\right)$ and $N=\binom{2}{0}$. Let \mathcal{S} be the homogeneous linear system whose matrix of coefficients is $N \cdot M$. Which of the following statements is true?
(a) \mathcal{S} admits ∞^{4} solutions.
(b) \mathcal{S} admits ∞^{1} solutions.
(c) \mathcal{S} admits ∞^{2} solutions.
(d) \mathcal{S} admits ∞^{3} solutions.
17. Let A be a real $n \times n$ matrix. If the homogeneous linear system $A X=0$ in n unknowns has a nonzero solution, which of the following statements is true?
(a) $\operatorname{det}(A)=\operatorname{det}\left(A^{2}\right)$.
(b) $\operatorname{rk}(A)=n$.
(c) A is invertible.
(d) None of the other statements is true.
18. For all $k \in \mathbb{R}$, let A_{k} be the matrix

$$
A_{k}=\left(\begin{array}{ccc}
k & 2 & 3 \\
0 & 1 & 2 \\
-1 & 0 & 1
\end{array}\right)
$$

Which of the following statements is true?
(a) $\operatorname{det}\left(A_{k}\right) \neq 0$ for all values of k.
(b) $\operatorname{rk}\left(A_{k}\right)=2$ for two distinct values of k.
(c) None of the other statements is true.
(d) $\operatorname{rk}\left(A_{k}\right)=2$ for a unique value of k.
19. Let A and B be the following 2×2 matrices:

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) .
$$

Find the true statement.
(a) $A B$ is the zero matrix
(b) $\operatorname{rk}(A+B)=2$
(c) $A-B$ is skew-symmetric
(d) $\operatorname{rk}(B A)=0$
20. Let $A \in \mathbb{R}^{3,3}$ be a symmetric matrix. Then
(a) $\operatorname{rk}(A)=3$
(b) $A+A^{2}$ is also symmetric
(c) $\operatorname{det}\left(A-{ }^{t} A\right) \neq 0$
(d) $\operatorname{rk}\left(A-{ }^{t} A\right)=1$
21. Let $A \in \mathbb{R}^{3,3}$ be any matrix. Then
(a) If $(1,1,1)$ and $(1,2,3)$ are solutions of the linear system $A X=0_{3,1}$, then $(2,3,4)$ is also a solution of $A X=0_{3,1}$.
(b) If $\operatorname{det}(A) \neq 0$, then the linear system $A X=B$ has infinitely many solutions for some $B \in \mathbb{R}^{3,1}$
(c) If $\operatorname{det}(A) \neq 0$, then the linear system $A X=B$ always has infinitely many solutions
(d) If $(1,1,1)$ and $(1,2,3)$ are solutions of the linear system $A X=B,(0,1,2)$ is also a solution of the system $A X=B$, with $B \neq 0_{3,1}$

