Linear algebra and geometry a.y. 2023-2024

Worksheet 8: exercises on chapters 20-21 from the lecture notes

(Some of these exercises come from the books by [Schlesinger], [Baldovino-Lanza], [Sernesi], [Leon])

1. On the vector space \mathbb{R}^{3}, let us define the following map:

$$
\begin{aligned}
\mathbb{R}^{3} \times \mathbb{R}^{3} & \rightarrow \mathbb{R} \\
(x, y) & \mapsto \frac{x_{1} y_{1}}{4}+\frac{x_{2} y_{2}}{2}+\frac{x_{3} y_{3}}{4}=x \star y
\end{aligned}
$$

(a) Verify that $x \star y$ defines an inner product on \mathbb{R}^{3}.
(b) Show that $v=(1,1,1)$ and $w=(-5,1,3)$ are orthogonal with respect to \star.
(c) Compute the lengths of v and w with respect to \star.
2. Which of the following applications are inner products on \mathbb{R}^{3} ?
(a) $\alpha: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad \alpha(x, y)=x_{1} y_{2}+x_{2} y_{1}+x_{3} y_{3} ;$
(b) $\beta: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad \beta(x, y)=x_{1} y_{1}+x_{2} y_{2}$;
(c) $\gamma: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad \gamma(x, y)=x_{1} y_{1}+x_{2} y_{2}+3 x_{3} y_{3}$;
(d) $\delta: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad \delta(x, y)=2 x_{1} y_{1}-x_{2} y_{2}+x_{3} y_{3}$.
3. Use the Gram-Schmidt algorithm to find an orthonormal (with respect to the standard inner product) basis of the plane $\pi:\{x+y-z=0\}$ in \mathbb{R}^{3}.
4. Use the Gram-Schmidt algorithm to find an orthonormal (with respect to the standard inner product) basis in \mathbb{R}^{4} of the row space of the matrix

$$
A=\left(\begin{array}{rrrr}
2 & 2 & 4 & 1 \\
-1 & 1 & 0 & 0 \\
1 & 0 & 2 & 0
\end{array}\right)
$$

5. Diagonalize the symmetric matrix

$$
A=\left(\begin{array}{rrr}
-2 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & -2
\end{array}\right)
$$

finding an orthonormal diagonalizing basis.
6. Let $A \in \mathbb{R}^{n, n}$ be a symmetric matrix, and let $\lambda_{1} \neq \lambda_{2}$ two of its eigenvalues. Let v_{1} and v_{2} be eigenvectors relative to the eigenvalues λ_{1} and λ_{2} respectively. Try to prove that $v_{1} \perp v_{2}$ with respect to the standard inner product in \mathbb{R}^{n}.
7. Write down the symmetric matrix associated to each of the following real quadratic forms:
(a) $q(x, y)=3 x^{2}-5 x y+y^{2}$;
(b) $q(x, y, z)=2 x^{2}+3 y^{2}+z^{2}+x y-2 x z+3 y z$;
(c) $q(x, y, z)=33 x^{2}+10 y^{2}+z^{2}+x y+8 x z+3 y z$.
8. Find the character of definition of each of the quadratic forms in the previous exercise.
9. Discuss the character of definition of the quadratic form associated to the symnmetric matrix

$$
\left(\begin{array}{cc}
3 & -\alpha \\
-\alpha & 1
\end{array}\right)
$$

as the parameter $\alpha \in \mathbb{R}$ varies.
10. Let $q(x, y, z)$ be the quadratic form associated to the symmetric matrix

$$
\left(\begin{array}{rrr}
4 & 0 & -2 \\
0 & -1 & 0 \\
-2 & 0 & 7
\end{array}\right) .
$$

(a) What is the character of definition of q ?
(b) Find triples $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ with the property that $q\left(x_{1}, y_{1}, z_{1}\right) q\left(x_{2}, y_{2}, z_{2}\right)<0$.

Solutions.

1. (a) Let $x=\left(x_{1}, x_{2}, x_{3}\right), y=\left(y_{1}, y_{2}, y_{3}\right), z=\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{3}, \alpha \in \mathbb{R}$. The product \star satisfies the following properties:

- it is commutative, because

$$
x \star y=\frac{x_{1} y_{1}}{4}+\frac{x_{2} y_{2}}{2}+\frac{x_{3} y_{3}}{4}=\frac{y_{1} x_{1}}{4}+\frac{y_{2} x_{2}}{2}+\frac{y_{3} x_{3}}{4}=y \star x
$$

- it is distributive, because

$$
\begin{aligned}
(x+y) \star z & =\frac{\left(x_{1}+y_{1}\right) z_{1}}{4}+\frac{\left(x_{2}+y_{2}\right) z_{2}}{2}+\frac{\left(x_{3}+y_{3}\right) z_{3}}{4} \\
& =\frac{x_{1} z_{1}+y_{1} z_{1}}{4}+\frac{x_{2} z_{2}+y_{2} z_{2}}{2}+\frac{x_{3} z_{3}+y_{3} z_{3}}{4} \\
& =\frac{x_{1} z_{1}}{4}+\frac{x_{2} z_{2}}{2}+\frac{x_{3} z_{3}}{4}+\frac{y_{1} z_{1}}{4}+\frac{y_{2} z_{2}}{2}+\frac{y_{3} z_{3}}{4} \\
& =(x \star z)+(y \star z)
\end{aligned}
$$

- it is compatible with the scalar multiplication, because

$$
\alpha(x \star y)=\alpha\left(\frac{x_{1} y_{1}}{4}+\frac{x_{2} y_{2}}{2}+\frac{x_{3} y_{3}}{4}\right)=\frac{\alpha x_{1} y_{1}}{4}+\frac{\alpha x_{2} y_{2}}{2}+\frac{\alpha x_{3} y_{3}}{4}=(\alpha x) \star y ;
$$

- it is positive definite, because

$$
x \star x=\frac{x_{1}^{2}}{4}+\frac{x_{2}^{2}}{2}+\frac{x_{3}^{2}}{4}>0 \text { per ogni } x \neq 0_{\mathbb{R}^{3}} .
$$

All in all, \star is an inner product on \mathbb{R}^{3}.
(b) $v \star w=-\frac{5}{4}+\frac{1}{2}+\frac{3}{4}=0$.
(c) $|v|_{\star}=1,|w|_{\star}=3$.
2. (a) No;
(b) no;
(c) yes;
(d) no.
3. An orthonormal basis of π is $\left(u_{1}=\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), u_{2}=\left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)\right)$.
4. An orthonormal basis is $\left(v_{1}=\left(\frac{2}{5}, \frac{2}{5}, \frac{4}{5}, \frac{1}{5}\right), v_{2}=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0,0\right), v_{3}=\left(-\frac{3}{5 \sqrt{2}},-\frac{3}{5 \sqrt{2}}, \frac{4}{5 \sqrt{2}},-\frac{4}{5 \sqrt{2}}\right)\right)$.
5. ${ }^{t} P A P=\left(\begin{array}{rrr}-3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$, where $P=\left(\begin{array}{rrr}-1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\ 0 & 1 & 0 \\ 1 / \sqrt{2} & 0 & 1 / \sqrt{2}\end{array}\right)$.
6. By definition, we know that $A v_{1}=\lambda_{1} v_{1}$ and $A \lambda_{2}=\lambda_{2} v_{2}$, and that ${ }^{t} A=A$. Moreover, once we identify the elements of \mathbb{R}^{n} with column matrices, the standard inner (dot) product is $v \cdot w=^{t} v w$, that is, row-column multiplication. Then

$$
\lambda_{1}\left(v_{1} \cdot v_{2}\right)=\left(\lambda_{1} v_{1}\right) \cdot v_{2}=A v_{1} \cdot v_{2}={ }^{t}\left(A v_{1}\right) v_{2}={ }^{t} v_{1}{ }^{t} A v_{2}={ }^{t} v_{1}\left(A v_{2}\right)={ }^{t} v_{1}\left(\lambda_{2} v_{2}\right)=\lambda_{2}\left(v_{1} \cdot v_{2}\right)
$$

and thus $\left(\lambda_{1}-\lambda_{2}\right)\left(v_{1} \cdot v_{2}\right)=0$. Since we know that $\lambda_{1} \neq \lambda_{2}$, the only possibility is $v_{1} \cdot v_{2}=0$, which is exactly what we wanted to prove.
7. (a) $\left(\begin{array}{cc}3 & -5 / 2 \\ -5 / 2 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 1 / 2 & -1 \\ 1 / 2 & 3 & 3 / 2 \\ -1 & 3 / 2 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}33 & 1 / 2 & 4 \\ 1 / 2 & 10 & 3 / 2 \\ 4 & 3 / 2 & 1\end{array}\right)$
8. (a) indefinite
(b) indefinite
(c) positive definite
9. Positive definite for $\alpha \in(-\sqrt{3}, \sqrt{3})$, indefinite for $\alpha<-\sqrt{3}$ and $\alpha>\sqrt{3}$, positive semidefinite for $\alpha= \pm \sqrt{3}$.
10. (a) Indefinite;
(b) there are many such triples, for example $(1,0,0)$ and $(0,1,0)$.

Please note. Remember that in general there might be more than one technique to solve the same exercise. If you find a typo, or something that you do not understand, let me know!

