Linear algebra and geometry a.y. 2023-2024

Worksheet 8: exercises on chapters 18-19 from the lecture notes

(Some of these exercises come from the books by [Schlesinger], [Baldovino-Lanza], [Sernesi], [Leon])

1. Write down the matrix $M(f)$ associated to the endomorphism f with respect to the canonical basis, knowing that $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is defined by the following properties:

- $f\left(e_{1}\right)=2 e_{1}-e_{2}+5 e_{3} ;$
- e_{2} is an eigenvector for f, relative to the eigenvalue $\lambda=-2$;
- $f\left(e_{2}+e_{3}\right)=-2 e_{1}+e_{3}$.

2. Write down the matrix $M(g)$ associated to the endomorphism g with respect to the canonical basis, knowing that $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is defined by the following properties:

- $v_{1}=e_{1}+e_{2}+e_{3}$ is an eigenvector for g, relative to the eigenvalue $\lambda_{1}=-1$;
- $v_{2}=2 e_{1}+3 e_{2}$ is an eigenvector for g, relative to the eigenvalue $\lambda_{2}=3$;
- $\operatorname{Ker}(g)=\{(x, y, z) \mid x=t, y=2 t, z=t, t \in \mathbb{R}\}$.

3. Find all eigenvalues and eigenvectors of the following matrices, and compute the algebraic and geometric multiplicities of the eigenvalues.
(a) $A=\left(\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right)$;
(b) $B=\left(\begin{array}{rr}6 & -4 \\ 3 & -1\end{array}\right)$;
(c) $C=\left(\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right)$;
(d) $D=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$;
(e) $E=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1\end{array}\right)$;
(f) $F=\left(\begin{array}{ccc}1 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & 5 & -1\end{array}\right)$.
4. Diagonalize, when possible, the following matrices over \mathbb{R}
(g) $G=\left(\begin{array}{rr}2 & -8 \\ 1 & -4\end{array}\right)$;
(h) $H=\left(\begin{array}{ccc}0 & 1 & -2 \\ -1 & 0 & -3 \\ 2 & 3 & 0\end{array}\right)$.
5. Diagonalize, if possible, matrices L and M over \mathbb{R} :

$$
L=\left(\begin{array}{ccc}
3 & -1 & -2 \\
2 & 0 & -2 \\
2 & -1 & -1
\end{array}\right), \quad M=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 3 \\
1 & 1 & -1
\end{array}\right)
$$

Then use the diagonalization to compute L^{6}, M^{4}, L^{-1} and M^{-1}.
6. Try to prove that eigenvectors relative to distinct eigenvalues are linearly independent.
7. Let $A, B \in \mathbb{R}^{n, n}$ two matrices with the same diagonalizing matrix P. Try to prove that A and B commute, that is, $A B=B A$.
8. For which values of a and b in \mathbb{R} is the following matrix $A_{a, b} \in \mathbb{R}^{4,4}$ diagonalizable?

$$
A_{a, b}=\left(\begin{array}{cccc}
a & b & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Solutions.

1. $M_{\mathcal{C}}^{\mathcal{C}}(f)=\left(\begin{array}{ccc}2 & 0 & -2 \\ -1 & -2 & 2 \\ 5 & 0 & 1\end{array}\right)$.
2. If we call v_{3} the vector $v_{3}=e_{1}+2 e_{2}+e_{3}$, then the three (lin. indep.) vectors v_{1}, v_{2}, v_{3} form a basis for \mathbb{R}^{3} made up by eigenvectors of g, let's call it \mathcal{B}. In other words:

$$
M_{\mathcal{B}}^{\mathcal{B}}(g)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then

$$
M_{\mathcal{C}}^{\mathcal{C}}(g)=M_{\mathcal{C}}^{\mathcal{B}}(i d) M_{\mathcal{B}}^{\mathcal{B}}(g) M_{\mathcal{B}}^{\mathcal{C}}(i d)=\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & 3 & 2 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 3 & 2 \\
1 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
3 / 2 & 1 & -7 / 2 \\
3 & 1 & -5 \\
-3 / 2 & 1 & -1 / 2
\end{array}\right) .
$$

Notice how the matrix written using the canonical basis is much more complicated than the one written using the basis of eigenvectors!
3. (a) $\lambda_{1}=5, E_{A}(5)=\mathcal{L}((1,1)), \lambda_{2}=-1, E_{A}(-1)=\mathcal{L}((1,-2))$; all multiplicities are 1 ;
(b) $\lambda_{1}=3, E_{B}(3)=\mathcal{L}((4,3)), \lambda_{2}=2, E_{B}(2)=\mathcal{L}((1,1))$; all multiplicities are 1;
(c) $\lambda_{1}=2$, with $m_{a}(2)=2, E_{C}(2)=\mathcal{L}((1,-1))$, thus $m_{g}(2)=1$;
(d) $\lambda_{1}=0, E_{D}(0)=\mathcal{L}((1,0,0)) ; m_{a}(0)=3, m_{g}(0)=1 ;$
(e) $\lambda_{1}=2, E_{E}(2)=\mathcal{L}((1,1,0)), \lambda_{2}=1, E_{E}((1))=\mathcal{L}((1,0,0),(0,1,-1)) ; m_{a}(2)=1=$ $m_{g}(2), m_{a}(1)=2=m_{g}(1) ;$
(f) $\lambda_{1}=1, E_{F}(1)=\mathcal{L}((1,0,0)), \lambda_{2}=4, E_{F}(4)=\mathcal{L}((1,1,1)), \lambda_{3}=-2, E_{F}(-2)=$ $\mathcal{L}((-1,-1,5))$; all multiplicities are 1 .
4. (g) G has two distinct eigenvalues $\lambda_{1}=0$ and $\lambda_{2}=-2$, so it is diagonalizable.
$E_{G}(0)=\mathcal{L}((4,1))$ and $E_{G}(-2)=\mathcal{L}((2,1))$, all multiplicities are 1 .
The diagonalizing matrix is $P=\left(\begin{array}{cc}4 & 2 \\ 1 & 1\end{array}\right)$ and indeed

$$
P^{-1} G P=\left(\begin{array}{cc}
1 / 2 & -1 \\
-1 / 2 & 2
\end{array}\right)\left(\begin{array}{cc}
2 & -8 \\
1 & -4
\end{array}\right)\left(\begin{array}{ll}
4 & 2 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & -2
\end{array}\right) .
$$

(h) H only has one real eigenvalue $\lambda=0$, therefore it is not diagonalizable over \mathbb{R}.
5. $P^{-1} L P=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ where $P=\left(\begin{array}{rrr}1 & 1 & 0 \\ 1 & 2 & -2 \\ 1 & 0 & 1\end{array}\right)$.
$Q^{-1} M Q=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2\end{array}\right)$ where $Q=\left(\begin{array}{ccc}3 & 0 & 0 \\ 1 & 3 & -1 \\ 2 & 1 & 1\end{array}\right)$.
$L^{6}=L, \quad M^{4}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 10 & 16 & 0 \\ -10 & 0 & 16\end{array}\right), \quad L^{-1}$ does not exist $(\operatorname{det}(L)=0), \quad M^{-1}=\frac{1}{4}\left(\begin{array}{ccc}4 & 0 & 0 \\ -1 & 1 & 3 \\ 3 & 1 & -1\end{array}\right)$.
6. We can do it for 2 vectors, the general case is almost the same: let $\lambda \neq \mu$ be two distinct eigenvalues of an endomorphism $f: V \rightarrow V$, and let v and w two corresponding eigenvectors, that is, $f(v)=\lambda v$ and $f(w)=\mu w$. Suppose by contradiction that the two vectors are linearly dependent: then we would have $w=\alpha v$, where $\alpha \in K, \alpha \neq 0$. But then:
$w=\alpha v \Rightarrow f(w)=f(\alpha v) \Rightarrow \mu w=\alpha f(v)=\alpha \lambda v \Rightarrow \mu(\alpha v)=\lambda(\alpha v) \Rightarrow(\mu-\lambda)(\alpha v)=0_{V}$.
By the zero product law, since $\mu-\lambda \neq 0$, and $v \neq 0_{V}$, necessarily $\alpha v=0_{V}$, which is a contradiction.
7. As a first remark, notice that diagonal matrices commute: if $D_{1}=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $D_{2}=\operatorname{Diag}\left(\mu_{1}, \ldots, \mu_{n}\right)$ are two diagonal matrices, one has that:

$$
D_{1} D_{2}=\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right)\left(\begin{array}{ccc}
\mu_{1} & & \\
& \ddots & \\
& & \mu_{n}
\end{array}\right)=\left(\begin{array}{ccc}
\lambda_{1} \mu_{1} & & \\
& \ddots & \\
& & \lambda_{n} \mu_{n}
\end{array}\right)=D_{2} D_{1} .
$$

Let now $D_{1}=P^{-1} A P$ and $D_{2}=P^{-1} B P$ be the two diagonal matrices similar to A and B respectively. The we can compute

$$
A B=\left(P D_{1} P^{-1}\right)\left(P D_{2} P^{-1}\right)=P D_{1} D_{2} P^{-1}=P D_{2} D_{1} P^{-1}=\left(P D_{2} P^{-1}\right)\left(P D_{1} P^{-1}\right)=B A .
$$

8. Since the eigenvalues of the matrix $A_{a, b}$ are $\lambda_{1}=1$ with $m_{a}(1)=3$ and $\lambda_{2}=a$, with $m_{a}(a)=1$, the matrix is diagonalizable if and only if $a=1$ and $b=0$, or if $a \neq 1$, every b.

Please note. Remember that in general there might be more than one technique to solve the same exercise. If you find a typo, or something that you do not understand, let me know!

