Linear algebra and geometry a.y. 2023-2024

Worksheet 7: exercises on chapters 16-17 from the lecture notes

(Some of these exercises come from the books by [Schlesinger], [Baldovino-Lanza], [Sernesi], [Leon])

1. Verify that the following are linear maps $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
(a) $f(x, y)=(y, x)$
(b) $f(x, y)=(-y, x)$
(c) $f(x, y)=(2 x, 2 y)$
(d) $f(x, y)=(0, y)$
2. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear map defined by

$$
f(x, y, z)=(x+y, x+y, z) .
$$

(a) Write down the associated matrix $A=M(f)$.
(b) Determine $\operatorname{Ker}(f)$ and $\operatorname{Im}(f)$ (finding a basis and computing dimension).
3. Let $g: \mathbb{R}[x]_{3} \rightarrow \mathbb{R}^{2,2}$ be the linear map sending a degree ≤ 3 polynomial of the form $p(x)=$ $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ to the following 2×2 matrix:

$$
g(p(x))=\left(\begin{array}{cc}
a_{3} & 2 a_{2} \\
3 a_{1} & 4 a_{0}
\end{array}\right) .
$$

Prove that the map g is both surjective and injective, hence it is an isomorphism.
4. Let $h: \mathbb{R}[x]_{3} \rightarrow \mathbb{R}^{2,2}$ be the linear map sending a degree ≤ 3 polynomial of the form $p(x)=$ $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ to the following 2×2 matrix:

$$
h(p(x))=\left(\begin{array}{cc}
a_{0}+a_{1} & a_{0}+a_{2} \\
0 & a_{0}+a_{3}
\end{array}\right) .
$$

Prove that the map h is neither surjective nor injective. (In particular, not all maps between vector spaces of the same dimension are isomorphisms!)
5. Given the matrix

$$
A=\left(\begin{array}{ccccc}
-1 & 0 & 2 & 1 & 0 \\
-6 & 5 & 2 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right) \in \mathbb{R}^{3,5}
$$

Compute the dimension and find a basis of the subspaces $\operatorname{Ker}\left(\mu_{A}\right)$ and $\operatorname{Im}\left(\mu_{A}\right)$.
6. Which pairs among the following vector spaces are isomorphic pairs?

$$
\mathbb{R}^{7}, \quad \mathbb{R}^{12}, \quad \mathbb{R}^{3,3}, \quad \mathbb{R}^{3,4}, \quad \mathbb{R}^{4,3}, \quad \mathbb{R}[x]_{6}, \quad \mathbb{R}[x]_{8}, \quad \mathbb{R}[x]_{11}
$$

7. Let $v_{1}=(1,0,0,0), v_{2}=(1,3,5,0), v_{3}=(3,2,-1,1), v_{4}=(1,1,0,0)$ be vectors in \mathbb{R}^{4}, and $w_{1}=(1,0,1), w_{2}=(1,1,0), w_{3}=(1,0,0)$ vectors in \mathbb{R}^{3}.
(a) Check that the set $\mathcal{B}=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ is a basis of \mathbb{R}^{4}.
(b) Check that the set $\mathcal{D}=\left(w_{1}, w_{2}, w_{3}\right)$ is a basis of \mathbb{R}^{3}.
(c) We know that there exists a unique linear map $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ such that:

$$
\begin{aligned}
& f\left(v_{1}\right)=w_{1}+w_{3} \\
& f\left(v_{2}\right)=-w_{1}+w_{2} \\
& f\left(v_{3}\right)=w_{3} \\
& f\left(v_{4}\right)=3 w_{1}+2 w_{2}-w_{3}
\end{aligned}
$$

Find the matrix $M_{\mathcal{D}}^{\mathcal{B}}(f)$ associated to f with respect to the bases \mathcal{B} and \mathcal{D}.
(d) Then find the matrix $M_{\mathcal{C}^{\prime}}^{\mathcal{C}}(f)$, where $\mathcal{C}=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ and $\mathcal{C}^{\prime}=\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right)$ are the canonical bases of \mathbb{R}^{4} and \mathbb{R}^{3} respectively.
8. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear maps defined by

$$
\varphi(x, y)=(y, x+y, x-y) .
$$

Find the matrix associated to φ with respect to the bases $\mathcal{B}=\left(u_{1}, u_{2}\right)$ of \mathbb{R}^{2} and $\mathcal{D}=$ $\left(v_{1}, v_{2}, v_{3}\right)$ of \mathbb{R}^{3}, where:

$$
u_{1}=(1,2), \quad u_{2}=(3,1), \quad v_{1}=(1,0,0), \quad v_{2}=(1,1,0), \quad v_{3}=(1,1,1) .
$$

9. The linear map f defined by

$$
f(p(x))=p^{\prime}(x)+p(0)
$$

send the space of polynomials $\mathbb{R}[x]_{2}$ to $\mathbb{R}[x]_{1}$. Write down the matrix $M_{\mathcal{B}}^{\mathcal{C}}(f)$ with respect to the bases $\mathcal{C}=\left(1, x, x^{2}\right)$ and $\mathcal{B}=(2,1-x)$. Find the components of the polynomial $f\left(x^{2}+1\right)$ in the basis \mathcal{B}.
10. Let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map defined by

$$
g(x, y, z)=(x+y, x+y, z)
$$

(a) Write down the matrix $M_{\mathcal{C}}^{\mathcal{C}}(g)$ associated to g with respect to the canonical basis \mathcal{C} of \mathbb{R}^{3}.
(b) Find a basis and compute the dimension of $\operatorname{Ker}(g)$ and $\operatorname{Im}(g)$.
(c) Prove that the set

$$
\mathcal{B}=\left(b_{1}=(1,1,-1), b_{2}=(1,1,0), b_{3}=(1,-1,0)\right)
$$

is a basis of \mathbb{R}^{3}, then write down the matrix $M_{\mathcal{B}}^{\mathcal{C}}(g)$ associated to g with respect to the canonical basis in the domain and the basis \mathcal{B} in the codomain.
(d) Find the matrices of change of basis from \mathcal{B} to the canonical basis \mathcal{C} and from \mathcal{C} to \mathcal{B}.
11. In the vector space $\mathbb{R}[x]_{2}$, consider the polynomials

$$
\begin{gathered}
p_{1}(x)=x^{2}-2 x, \quad p_{2}(x)=1+2 x, \quad p_{3}(x)=2-x^{2}, \\
q_{1}(x)=-1+x, \quad q_{2}(x)=-1+x-x^{2}, \quad q_{3}(x)=2 x+2 x^{2} .
\end{gathered}
$$

Show that $\mathcal{B}=\left(p_{1}, p_{2}, p_{3}\right)$ and $\mathcal{D}=\left(q_{1}, q_{2}, q_{3}\right)$ are two bases of $\mathbb{R}[x]_{2}$. Find the matrix of change of basis from \mathcal{B} to \mathcal{D}.
12. Let V and W be two vector spaces over $\mathbb{R} ; V$ has $\operatorname{dim}_{\mathbb{R}}=4$ and $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$, while W has $\operatorname{dim}_{\mathbb{R}}=3$ and $\left(w_{1}, w_{2}, w_{3}\right)$. Find kernel and image of the linear map $\varphi: V \rightarrow W$ defined by:

$$
\begin{aligned}
\varphi\left(v_{1}\right) & =w_{1}+w_{2}, \\
\varphi\left(v_{2}\right) & =w_{1}-w_{2}+w_{3}, \\
\varphi\left(v_{3}\right) & =w_{2}, \\
\varphi\left(v_{4}\right) & =w_{1}+w_{3} .
\end{aligned}
$$

Solutions.

1. Here is the solution for the first one, the other ones are similar. Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be two elements in \mathbb{R}^{2} and let $\lambda \in \mathbb{R}$; we show that f respects both the addition and the scalar multiplication:

$$
\begin{aligned}
f\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right) & =f\left(x_{1}+x_{2}, y_{1}+y_{2}\right)=\left(y_{1}+y_{2}, x_{1}+x_{2}\right)=\left(y_{1}, x_{1}\right)+\left(y_{2}, x_{2}\right) \\
& =f\left(x_{1}, y_{1}\right)+f\left(x_{2}, y_{2}\right) \quad \checkmark \\
f\left(\lambda\left(x_{1}, y_{1}\right)\right)= & f\left(\lambda x_{1}, \lambda y_{1}\right)=\left(\lambda y_{1}, \lambda x_{1}\right)=\lambda\left(y_{1}, x_{1}\right)=\lambda f\left(x_{1}, y_{1}\right) \quad \checkmark
\end{aligned}
$$

2. (a) $A=M(f)=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
(b) $\operatorname{Ker}(f)=\mathcal{L}((-1,1,0))$, hence $\operatorname{dim}(\operatorname{Ker}(f))=1 ; \operatorname{Im}(f)=\mathcal{L}((1,1,0),(0,0,1))$, hence $\operatorname{dim}(\operatorname{Im}(f))=2$
3. g is injective, because

$$
\begin{aligned}
\operatorname{Ker}(g) & =\left\{p(x) \in \mathbb{R}[x]_{3} \mid g(p(x))=0_{\mathbb{R}^{2}, 2}\right\} \\
& =\left\{p(x) \in \mathbb{R}[x]_{3} \left\lvert\, g(p(x))=\left(\begin{array}{cc}
a_{3} & 2 a_{2} \\
3 a_{1} & 4 a_{0}
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right)\right.\right\} \\
& =\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \in \mathbb{R}[x]_{3} \mid a_{3}=0,2 a_{2}=0,3 a_{1}=0,4 a_{0}=0\right\} \\
& =\{p(x)=0\} .
\end{aligned}
$$

Moreover, g is surjective: it is immediate to check that any matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is the image through g of the polynomial $\frac{d}{4}+\frac{c}{3} x+\frac{b}{2} x^{2}+a x^{3}$.
4. We compute

$$
\begin{aligned}
\operatorname{Ker}(h) & =\left\{p(x) \in \mathbb{R}[x]_{3} \mid h(p(x))=0_{\mathbb{R}^{2}, 2}\right\} \\
& =\left\{p(x) \in \mathbb{R}[x]_{3} \left\lvert\, h(p(x))=\left(\begin{array}{cc}
a_{0}+a_{1} & a_{0}+a_{2} \\
0 & a_{0}+a_{3}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right.\right\} \\
& =\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \in \mathbb{R}[x]_{3} \left\lvert\,\left\{\begin{array}{l}
a_{0}+a_{1}=0 \\
a_{0}+a_{2}=0 \\
a_{0}+a_{3}=0
\end{array}\right\}\right.\right. \\
& =\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \in \mathbb{R}[x]_{3} \mid a_{0}=-a_{1}=-a_{2}=-a_{3}\right\},
\end{aligned}
$$

so $\operatorname{Ker}(h) \neq\{0\}, h$ is not injective.
The map h is not surjective, either: just notice that any matrix whose entry $(2,1)$ is nonzero will never belong to the image of h.
5. $\operatorname{Im}\left(\mu_{A}\right)=\mathcal{L}((1,6,0),(0,1,0),(2,2,1))$ is of dimension 3 ;
$\operatorname{Ker}\left(\mu_{A}\right)=\mathcal{L}((1,6 / 5,0,1,0),(0,-1 / 5,0,0,1))$ is of dimension 2.
6. $\left(\mathbb{R}^{7}, \mathbb{R}[x]_{6}\right)$,
$\left(\mathbb{R}^{9}, \mathbb{R}^{3,3}\right)$,
$\left(\mathbb{R}^{12}, \mathbb{R}^{3,4}\right),\left(\mathbb{R}^{12}, \mathbb{R}[x]_{11}\right),\left(\mathbb{R}^{3,4}, \mathbb{R}[x]_{11}\right),\left(\mathbb{R}^{12}, \mathbb{R}^{4,3}\right),\left(\mathbb{R}^{4,3}, \mathbb{R}^{3,4}\right),\left(\mathbb{R}^{4,3}, \mathbb{R}[x]_{11}\right)$.
7. (a) $\operatorname{det}\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1 & 3 & 5 & 0 \\ 3 & 2 & -1 & 1 \\ 1 & 1 & 0 & 0\end{array}\right)=5 \neq 0$, hence the v_{i} s are linearly independent, and since they are 4 , they are also generators;
(b) $\operatorname{det}\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)=-1 \neq 0$, hence the w_{i} s are linearly independent, and since they are 3 , they are also generators;
(c) $M_{\mathcal{D}}^{\mathcal{B}}(f)=\left(\begin{array}{cccc}1 & -1 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 1 & 0 & 1 & -1\end{array}\right)$;
(d) $M_{\mathcal{C}^{\prime}}^{\mathcal{C}}(f)=\left(\begin{array}{llll}2 & 2 & -\frac{8}{5} & -\frac{53}{5} \\ 0 & 2 & -1 & -5 \\ 1 & 2 & -\frac{8}{5} & -\frac{43}{5}\end{array}\right)$.
8. $M_{\mathcal{D}}^{\mathcal{B}}(\varphi)=\left(\begin{array}{rr}-1 & -3 \\ 4 & 2 \\ -1 & 2\end{array}\right)$
9. $M_{\mathcal{B}}^{\mathcal{C}}(f)=\left(\begin{array}{rrr}1 / 2 & 1 / 2 & 1 \\ 0 & 0 & -2\end{array}\right)$; $\left[f\left(x^{2}+1\right)\right]_{\mathcal{B}}=(3 / 2,-2)$, indeed $f\left(x^{2}+1\right)=2 x+1=(3 / 2)(2)-2(1-x)$.
10. (a) $M_{\mathcal{C}}^{\mathcal{C}}(g)=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$;
(b) $\operatorname{Ker}(g)=\mathcal{L}((-1,1,0))$, so $\operatorname{dim}(\operatorname{Ker}(g))=1 ; \operatorname{Im}(g)=\mathcal{L}((1,1,0),(0,0,1))$, so $\operatorname{dim}(\operatorname{Im}(g))=$ 2;
(c) $\operatorname{det}\left(\begin{array}{ccc}1 & 1 & -1 \\ 1 & 1 & 0 \\ 1 & -1 & 0\end{array}\right)=2 \neq 0$: the b_{i} s are 3 linearly independent vectors in \mathbb{R}^{3}, hence they are a basis;

$$
M_{\mathcal{B}}^{\mathcal{C}}(g)=\left(\begin{array}{ccc}
0 & 0 & -1 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

(d) $M_{\mathcal{C}}^{\mathcal{B}}\left(i d_{\mathbb{R}^{3}}\right)=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & -1 \\ -1 & 0 & 0\end{array}\right), M_{\mathcal{B}}^{\mathcal{C}}\left(i d_{\mathbb{R}^{3}}\right)=\left(M_{\mathcal{C}}^{\mathcal{B}}\left(i d_{\mathbb{R}^{3}}\right)\right)^{-1}=\left(\begin{array}{ccc}0 & 0 & -1 \\ 1 / 2 & 1 / 2 & 1 \\ 1 / 2 & -1 / 2 & 0\end{array}\right)$.
11. Since

$$
\operatorname{det}\left(\begin{array}{ccc}
0 & -2 & 1 \\
1 & 2 & 0 \\
2 & 0 & -1
\end{array}\right)=-6 \neq 0, \quad \operatorname{det}\left(\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 1 & -1 \\
0 & 2 & 2
\end{array}\right)=-6 \neq 0
$$

both the polynomials $p_{i} \mathrm{~S}$ and the $q_{j} \mathrm{~s}$ are 4 linearly independent vectors in $\mathbb{R}[x]_{3}$, hence they are two bases;
$M_{\mathcal{D}}^{\mathcal{B}}\left(i d_{\mathbb{R}[x]_{3}}\right)=\left(\begin{array}{ccc}3 & -4 & -5 \\ -3 & 3 & 3 \\ -1 & 3 / 2 & 1\end{array}\right)$.
12. $\operatorname{Ker}(\varphi)=\mathcal{L}\left(v_{2}+v_{3}-v_{4}\right)$ has $\operatorname{dim}=1 ; \operatorname{Im}(\varphi)=W$, that is, φ is surjective.

Please note. Remember that in general there might be more than one technique to solve the same exercise. If you find a typo, or something that you do not understand, let me know!

