Linear algebra and geometry a.y. 2023-2024

Worksheet 6: exercises on chapters 12-15 from the lecture notes

(Some of these exercises come from the books by [Schlesinger], [Baldovino-Lanza], [Sernesi], [Leon])

1. Let $V=\left\{(a, b) \in \mathbb{R}^{2} \mid a>0, b>0\right\}$ the set of ordered pairs of strictly positive real numbers, and define the following operations of addition and scalar multiplication:

$$
\text { addition : }(a, b) \boxplus(c, d):=(a c, b d) \quad \text { scalar multiplication : } \alpha \square(a, b):=\left(a^{\alpha}, b^{\alpha}\right)
$$

Verify that:
(a) V is not a vector space with the usual addition and scalar multiplication in \mathbb{R}^{2}.
(b) V is a vector space over \mathbb{R} if endowed with the operations (addition and scalar multiplication) defined above; find the zero vector and the opposit of the pair (a, b).
2. Define the following operations of addition and scalar multiplication on \mathbb{R}^{2} : addition : $(x, y) \oplus\left(x^{\prime}, y^{\prime}\right):=\left(x+x^{\prime}, y+y^{\prime}\right) \quad$ scalar multiplication : $\alpha \otimes(x, y):=(x|\alpha|, y|\alpha|)$ Prove that \mathbb{R}^{2} endowed with these two operations is not a vector space.
3. Determine which of the following subsets of $\mathbb{R}^{3,3}$ are vector subspaces:
(a) diagonal matrices;
(b) upper triangular matrices;
(c) triangular matrices (upper or lower);
(d) matrices with $a_{11}=0$;
(e) matrices with $a_{12}=1$;
(f) skew-symmetric matrices;
(g) matrices with det $=0$.
4. Let A be a fixed matrix in $\mathbb{R}^{n, n}$, and let W be the set of all matrices that commute with A :

$$
W=\left\{M \in \mathbb{R}^{n, n} \mid A M=M A\right\} .
$$

Show that W is a vector subspace of $\mathbb{R}^{n, n}$.
5. Decide whether the following sets of vectors are linearly independent or not, and whether they are generators of \mathbb{R}^{2} or not:
(a) $\left\{\binom{2}{1},\binom{3}{2}\right\}$;
(b) $\left\{\binom{2}{3},\binom{4}{6}\right\}$;
(c) $\left\{\binom{-2}{1},\binom{1}{3},\binom{2}{4}\right\}$;
(d) $\left\{\binom{-1}{2},\binom{1}{-2},\binom{2}{-4}\right\}$;
(e) $\left\{\binom{1}{2},\binom{-1}{1}\right\}$.
6. Consider the following vectors:

$$
x_{1}=\left(\begin{array}{c}
-1 \\
2 \\
3
\end{array}\right) \quad x_{2}=\left(\begin{array}{l}
3 \\
4 \\
2
\end{array}\right) \quad x=\left(\begin{array}{l}
2 \\
6 \\
6
\end{array}\right) \quad y=\left(\begin{array}{c}
-9 \\
-2 \\
5
\end{array}\right)
$$

(a) Is it true that $x \in \mathcal{L}\left(x_{1}, x_{2}\right)$?
(b) Is it true that $y \in \mathcal{L}\left(x_{1}, x_{2}\right)$?
7. Let $\vec{v}_{1}=3 \vec{\jmath}-2 \vec{k}$ and $\vec{v}_{2}=-\vec{\imath}+2 \vec{\jmath}+5 \vec{k}$ be two vectors in S_{3}. For which value(s) of the parameter $\alpha \in \mathbb{R}$ does the vector $\vec{v}=-2 \vec{\imath}+\vec{\jmath}+\alpha \vec{k}$ belong to the subspace $\mathcal{L}\left(\vec{v}_{1}, \vec{v}_{2}\right)$?
8. The vectors $x_{1}=\vec{\imath}+2 \vec{\jmath}+2 \vec{k}, x_{2}=2 \vec{\imath}+5 \vec{\jmath}+4 \vec{k}, x_{3}=\vec{\imath}+3 \vec{\jmath}+2 \vec{k}, x_{4}=2 \vec{\imath}+7 \vec{\jmath}+4 \vec{k}, x_{5}=\vec{\imath}+\vec{\jmath}$ generate \mathbb{R}^{3}. Use the discarding algorithm to extract 3 linearly independent vectors from the set $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ (these three linearly independent generators will thus form a basis of \mathbb{R}^{3}).
9. Which of the following sets of vectors generate the vector space $\mathbb{R}[x]_{2}$? Which ones are formed by linearly independent vectors? $\left(\mathbb{R}[x]_{n}=\right.$ vector space of polynomial in the unknown x with real coefficients and degree $\leq n$)
(a) $\left\{1, x^{2}, x^{2}-2\right\}$;
(b) $\left\{2, x^{2}, x, 2 x+3\right\}$;
(c) $\left\{x+2, x+1, x^{2}-1\right\}$;
(d) $\left\{x+2, x^{2}-1\right\}$.
10. Find a basis and compute the dimension of the following vector subspaces:
(a) $W=\{(a, a+b, b-a, b) \mid a, b \in \mathbb{R}\} \subseteq \mathbb{R}^{4}$;
(b) $U=\{(a+c, b-a, b+c) \mid a, b, c \in \mathbb{R}\} \subseteq \mathbb{R}^{3}$.
11. Verify that the following subsets of \mathbb{R}^{4} are vector subspaces, and compute their sum and intersection:

$$
\begin{aligned}
& V_{1}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1}+2 x_{2}+x_{3}=x_{3}-x_{4}=0\right\} \\
& \text { and } V_{2}=\left\{\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in \mathbb{R}^{4} \mid y_{1}+y_{2}+y_{4}=y_{3}+y_{4}=0\right\} .
\end{aligned}
$$

12. Consider the matrix

$$
A=\left(\begin{array}{ccccc}
-1 & 0 & 2 & 1 & 0 \\
-6 & 5 & 2 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right) \in \mathbb{R}^{3,5},
$$

and compute the dimension of its row space, of its column space, and find bases for both.
13. Find a basis of the subspace $S=\mathcal{L}\left(w_{1}, w_{2}, w_{3}, w_{4}\right) \subseteq \mathbb{R}^{4}$, where:

$$
w_{1}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right), \quad w_{2}=\left(\begin{array}{c}
0 \\
1 \\
-1 \\
2
\end{array}\right), \quad w_{3}=\left(\begin{array}{l}
2 \\
1 \\
1 \\
4
\end{array}\right), \quad w_{4}=\left(\begin{array}{c}
1 \\
2 \\
-1 \\
5
\end{array}\right)
$$

14. Given the vectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right), \quad v_{3}=\left(\begin{array}{l}
0 \\
3 \\
k
\end{array}\right), \quad v_{4}=\left(\begin{array}{c}
-1 \\
k \\
5
\end{array}\right), \quad v_{5}=\left(\begin{array}{c}
-1 \\
10 \\
13
\end{array}\right),
$$

in \mathbb{R}^{3}, find a basis of the vector subspace $\mathcal{L}\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ as the parameter $k \in \mathbb{R}$ varies.
15. Do the matrices

$$
A_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad A_{3}=\left(\begin{array}{cc}
0 & 0 \\
2 & -2
\end{array}\right), \quad A_{4}=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)
$$

form a basis of $\mathbb{R}^{2,2}$? And what about

$$
B_{1}=\left(\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right), \quad B_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right), \quad B_{3}=\left(\begin{array}{cc}
2 & -1 \\
-2 & 0
\end{array}\right), \quad B_{4}=\left(\begin{array}{ll}
0 & 3 \\
6 & 1
\end{array}\right) ?
$$

16. Let V be a vector space over \mathbb{R} of dimension 3 , and let $\mathcal{B}=\left(v_{1}, v_{2}, v_{3}\right)$ be a basis of V. Let $U=\mathcal{L}\left(v_{1}+v_{2}, v_{1}-v_{2}\right)$ and $W=\mathcal{L}\left(v_{2}+v_{3}, v_{2}-v_{3}\right)$. Prove that $V=U+W$.
17. Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n, n}$ be a square matrix. The trace of A is the sum of the diagonal elements. In particolar, when $n=3$:

$$
\operatorname{tr}(A)=a_{11}+a_{22}+a_{33} .
$$

Prove that the subset in $\mathbb{R}^{3,3}$ of matrices with zero trace is a vector subspace, and compute its dimension.
18. Let $\mathcal{C}=\left(e_{1}, e_{2}, e_{3}\right)$ be the canonical basis in \mathbb{R}^{3}, and consider the following vector subspaces:
(a) $W_{1}=\mathcal{L}\left(e_{1}+2 e_{3}, e_{3}, e_{1}+e_{3}\right)$
(b) $W_{2}=\mathcal{L}\left(e_{1}, e_{1}-e_{2}, e_{1}+e_{3}\right)$
(c) $W_{3}=\mathcal{L}\left(e_{1}, 2 e_{2}, e_{1}-e_{3}, e_{1}+2 e_{2}-e_{3}\right)$

Compute a basis for each of them, and find their dimension.
19. Is it possible to find a pair of 2-dimensional subspaces U and V of \mathbb{R}^{3} such that $U \cap V=\left\{0_{\mathbb{R}^{3}}\right\}$?
20. Consider the following subspaces of $\mathbb{R}[x]_{2}$:

$$
S=\left\{p(x) \in \mathbb{R}[x]_{2} \mid p(0)=0\right\} \quad \text { and } \quad T=\left\{q(x) \in \mathbb{R}[x]_{2} \mid q(1)=0\right\}
$$

Find a basis and the dimension for:
(a) S;
(b) T;
(c) $S \cap T$.

Solutions.

1. (a) V is not a vector space for several reasons: there is no zero vector, there is no opposite...
(b) All 8 axioms of vector space are satisfied; $0_{V}=(1,1)$ and $-(a, b)=(1 / a, 1 / b)$.
2. The reason is that $(\alpha+\beta) x \neq \alpha x+\beta x$.
3. (a) Yes;
(b) yes;
(c) no, it is not closed with respect to the addition;
(d) yes;
(e) no, there is no 0 element, and it is neither closed with respect to the addition nor the scalar multiplication;
(f) yes;
(g) no, it is not closed with respect to the addition.
4. Clearly, the zero matrix $0_{n, n} \in W$, because $A 0_{n, n}=0_{n, n} A=0_{n, n}$; if $M_{1}, M_{2} \in W$, then:

$$
A\left(M_{1}+M_{2}\right)=A M_{1}+A M_{2}=M_{1} A+M_{2} A=\left(M_{1}+M_{2}\right) A
$$

so $M_{1}+M_{2} \in W$ and W is closed with respect to the addition. Finally, if $\lambda \in \mathbb{R}$ and $M \in W$, then:

$$
A(\lambda M)=\lambda(A M)=\lambda(M A)=(\lambda M) A
$$

so $\lambda M \in W$ and W is closed with respect to scalar multiplication.
5. (a) Independent \& generate;
(b) dependent \& do not generate;
(c) dependent \& generate;
(d) dependent \& do not generate;
(e) independent \& generate.
6. (a) No;
(b) yes.
7. $\alpha=12$
8. Starting from the first vector, one finds $\left\{x_{1}, x_{2}, x_{5}\right\}$, but any subset of 3 linearly independent vectors in the set $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ is ok.
9. (a) Dependent \& do not generate;
(b) dependent \& generate;
(c) independent \& generate;
(d) independent \& do not generate.
10. (a) A basis of W is $((1,1,-1,0),(0,1,1,1))$, hence $\operatorname{dim}(W)=2$;
(b) a basis of U is $((1,-1,0),(0,1,1))$, hence $\operatorname{dim}(U)=2$.
11. $V_{1} \cap V_{2}=\left\{0_{\mathbb{R}^{4}}\right\}$, and $V_{1}+V_{2}=\left\{\left(-2 x_{2}-x_{3}-y_{2}+y_{3}, x_{2}+y_{2}, x_{3}+y_{3}, x_{3}-y_{3}\right) \mid x_{2}, x_{3}, y_{2}, y_{3} \in \mathbb{R}\right\}$.
12. The row space is a subspace of dimension 3 in \mathbb{R}^{5}, with basis

$$
((-1,0,2,1,0),(-6,5,2,0,1),(0,0,1,0,0)) ;
$$

the column space is a subspace of dimension 3 in \mathbb{R}^{3}, with basis

$$
((1,6,0),(0,1,0),(2,2,1)) .
$$

Otherwise we can also remark that a dimension 3 subspace in \mathbb{R}^{3} coincides with the whole \mathbb{R}^{3}, and take the canonical basis.
13. A basis of S is $\mathcal{B}=\left(w_{1}, w_{2}\right)$.
14. If $k \neq 4$ the first 3 vectors are linearly independent, so they form a basis and $\mathcal{L}\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)=$ $\mathcal{L}\left(v_{1}, v_{2}, v_{3}\right)=\mathbb{R}^{3}$. If $k=4$ only the first 2 vectors are linearly independent.
15. $\left(A_{1}, A_{2}, A_{3}, S_{4}\right)$ is a basis of $\mathbb{R}^{2,2}$: they are linearly independent and they generate. On the other hand, the 4 matrices $B_{1}, B_{2}, B_{3}, B_{4}$ are not linearly independent, and they generate a subspace of dimension 3, namely

$$
\mathcal{L}\left(B_{1}, B_{2}, B_{3}, B_{4}\right)=\mathcal{L}\left(B_{1}, B_{2}, B_{3}\right)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, c=2 b\right\} .
$$

16. The inclusion \supseteq is trivial, because $U+W$ is a vector subspace of V. For the inclusion \subseteq, let $v \in V$. We know that there exist $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{R}$ such that $v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}$; if we want to write v as an element of $U+W$, we need to find 4 coefficients a, b, c, d such that:

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}=v=a\left(v_{1}+v_{2}\right)+b\left(v_{1}-v_{2}\right)+c\left(v_{2}+v_{3}\right)+d\left(v_{2}-v_{3}\right) .
$$

We get the following linear system of 3 equations in the 4 unknowns a, b, c, d :

$$
\left\{\begin{array}{l}
a+b=\alpha_{1} \\
a-b+c+d=\alpha_{2} \\
c-d=\alpha_{3}
\end{array}\right.
$$

The system has ∞^{1} solutions, therefore we can always write v as the sum of an element of U and an element of W, so $V \subseteq U+W$.
17. Let $T=\left\{A \in \mathbb{R}^{3,3} \mid \operatorname{tr}(A)=0\right\}$. One can verify that the following properties hold:

$$
\text { (i) } \operatorname{tr}\left(0_{3,3}\right)=0, \quad \text { (ii) } \operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B), \quad \text { (iii) } \operatorname{tr}(\lambda A)=\lambda \operatorname{tr}(A) \text {, }
$$

therefore T is a vector subspace. To compute its dimension, remark that for all $A \in T$:

$$
a_{33}=-\left(a_{11}+a_{22}\right),
$$

so, if $\left(E_{i j}\right)_{i, j=1, \ldots, 3}$ is the standard basis of $\mathbb{R}^{3,3}$, we can write

$$
\begin{aligned}
A & =a_{11} E_{11}+a_{22} E_{22}+a_{33} E_{33}+\sum_{\substack{i, j=1 \\
i \neq j}}^{3} a_{i j} E_{i j} \\
& =a_{11}\left(E_{11}-E_{33}\right)+a_{22}\left(E_{22}-E_{33}\right)+\sum_{\substack{i, j=1 \\
i \neq j}}^{3} a_{i j} E_{i j} .
\end{aligned}
$$

Therefore the matrices of the set $\mathcal{B}=\left(E_{11}-E_{33}, E_{22}-E_{33}\right) \cup\left(E_{i j}\right)_{\substack{i, j=1, \ldots, 3 \\ i \neq j}}$ generate T, and one can prove (try!) that they are linearly independent. All in all, $\operatorname{dim}_{\mathbb{R}}(T)=9-1=8$.
You can also try to generalize this result to any size n : the subset of $\mathbb{R}^{n, n}$ of matrices with zero trace is a vector subspace of dimension $n^{2}-1$.
18. (a) Basis of $W_{1}=((1,0,2),(0,0,1))$, so $\operatorname{dim} W_{1}=2$
(b) Basis of $W_{2}=((1,0,0),(1,-1,0),(1,0,1))$, so $\operatorname{dim} W_{2}=3$
(c) Basis of $W_{3}=((1,0,0),(0,2,0),(0,0,-1))$, so $\operatorname{dim} W_{3}=3$
19. The answer is NO, and it can be proven in different ways: geometrically, 2 non-parallel planes through the origin in S_{3} intersect in at least a line, not in a point. Algebraically, one can use the Grassmann formula:

$$
3=\operatorname{dim}\left(\mathbb{R}^{3}\right) \geq \operatorname{dim}(U+V)=\operatorname{dim}(U)+\operatorname{dim}(V)-\operatorname{dim}(U \cap V)=4-\operatorname{dim}(U \cap V),
$$

so $\operatorname{dim}(U \cap V) \geq 1$.
20. (a) Basis for $S:\left(x, x^{2}\right), \operatorname{dim} S=2$;
(b) basis for T : $\left(1-x, 1-x^{2}\right), \operatorname{dim} T=2$;
(c) basis for $S \cap T$: $\left(x^{2}-x\right), \operatorname{dim}(S \cap T)=1$.

Please note. Remember that in general there might be more than one technique to solve the same exercise. If you find a typo, or something that you do not understand, let me know!

