Linear algebra and geometry a.y. 2023-2024 Worksheet 6: exercises on chapters 12–15 from the lecture notes

(Some of these exercises come from the books by [Schlesinger], [Baldovino-Lanza], [Sernesi], [Leon])

1. Let $V = \{(a, b) \in \mathbb{R}^2 \mid a > 0, b > 0\}$ the set of ordered pairs of strictly positive real numbers, and define the following operations of addition and scalar multiplication:

addition : $(a, b) \boxplus (c, d) := (ac, bd)$ scalar multiplication : $\alpha \boxdot (a, b) := (a^{\alpha}, b^{\alpha})$

Verify that:

- (a) V is not a vector space with the usual addition and scalar multiplication in \mathbb{R}^2 .
- (b) V is a vector space over \mathbb{R} if endowed with the operations (addition and scalar multiplication) defined above; find the zero vector and the opposit of the pair (a, b).
- Define the following operations of addition and scalar multiplication on ℝ²:
 addition: (x, y) ⊕ (x', y') := (x + x', y + y') scalar multiplication : α ⊗ (x, y) := (x|α|, y|α|)
 Prove that ℝ² endowed with these two operations is **not** a vector space.
- 3. Determine which of the following subsets of $\mathbb{R}^{3,3}$ are vector subspaces:
 - (a) diagonal matrices;
 - (b) upper triangular matrices;
 - (c) triangular matrices (upper or lower);
 - (d) matrices with $a_{11} = 0$;
 - (e) matrices with $a_{12} = 1$;
 - (f) skew-symmetric matrices;
 - (g) matrices with det = 0.
- 4. Let A be a fixed matrix in $\mathbb{R}^{n,n}$, and let W be the set of all matrices that commute with A:

$$W = \{ M \in \mathbb{R}^{n,n} \, | \, AM = MA \}.$$

Show that W is a vector subspace of $\mathbb{R}^{n,n}$.

5. Decide whether the following sets of vectors are linearly independent or not, and whether they are generators of \mathbb{R}^2 or not:

(a)
$$\left\{ \begin{pmatrix} 2\\1 \end{pmatrix}, \begin{pmatrix} 3\\2 \end{pmatrix} \right\};$$

(b) $\left\{ \begin{pmatrix} 2\\3 \end{pmatrix}, \begin{pmatrix} 4\\6 \end{pmatrix} \right\};$
(c) $\left\{ \begin{pmatrix} -2\\1 \end{pmatrix}, \begin{pmatrix} 1\\3 \end{pmatrix}, \begin{pmatrix} 2\\4 \end{pmatrix} \right\};$
(d) $\left\{ \begin{pmatrix} -1\\2 \end{pmatrix}, \begin{pmatrix} 1\\-2 \end{pmatrix}, \begin{pmatrix} 1\\-2 \end{pmatrix}, \begin{pmatrix} 2\\-4 \end{pmatrix} \right\};$
(e) $\left\{ \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} -1\\1 \end{pmatrix} \right\}.$

6. Consider the following vectors:

$$x_1 = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \qquad x_2 = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix} \qquad x = \begin{pmatrix} 2 \\ 6 \\ 6 \end{pmatrix} \qquad y = \begin{pmatrix} -9 \\ -2 \\ 5 \end{pmatrix}$$

- (a) Is it true that $x \in \mathcal{L}(x_1, x_2)$?
- (b) Is it true that $y \in \mathcal{L}(x_1, x_2)$?
- 7. Let $\vec{v}_1 = 3\vec{j} 2\vec{k}$ and $\vec{v}_2 = -\vec{i} + 2\vec{j} + 5\vec{k}$ be two vectors in S_3 . For which value(s) of the parameter $\alpha \in \mathbb{R}$ does the vector $\vec{v} = -2\vec{i} + \vec{j} + \alpha\vec{k}$ belong to the subspace $\mathcal{L}(\vec{v}_1, \vec{v}_2)$?
- 8. The vectors $x_1 = \vec{\imath} + 2\vec{\jmath} + 2\vec{k}$, $x_2 = 2\vec{\imath} + 5\vec{\jmath} + 4\vec{k}$, $x_3 = \vec{\imath} + 3\vec{\jmath} + 2\vec{k}$, $x_4 = 2\vec{\imath} + 7\vec{\jmath} + 4\vec{k}$, $x_5 = \vec{\imath} + \vec{\jmath}$ generate \mathbb{R}^3 . Use the **discarding algorithm** to extract 3 linearly independent vectors from the set $\{x_1, x_2, x_3, x_4, x_5\}$ (these three linearly independent generators will thus form a basis of \mathbb{R}^3).
- 9. Which of the following sets of vectors generate the vector space $\mathbb{R}[x]_2$? Which ones are formed by linearly independent vectors? ($\mathbb{R}[x]_n$ = vector space of polynomial in the unknown x with real coefficients and degree $\leq n$)
 - (a) $\{1, x^2, x^2 2\};$
 - (b) $\{2, x^2, x, 2x + 3\};$
 - (c) $\{x+2, x+1, x^2-1\};$
 - (d) $\{x+2, x^2-1\}.$

- 10. Find a basis and compute the dimension of the following vector subspaces:
 - (a) $W = \{(a, a + b, b a, b) | a, b \in \mathbb{R}\} \subseteq \mathbb{R}^4;$ (b) $U = \{(a + c, b - a, b + c) | a, b, c \in \mathbb{R}\} \subseteq \mathbb{R}^3.$
- 11. Verify that the following subsets of \mathbb{R}^4 are vector subspaces, and compute their sum and intersection:

$$V_1 = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 + 2x_2 + x_3 = x_3 - x_4 = 0 \}$$

and $V_2 = \{ (y_1, y_2, y_3, y_4) \in \mathbb{R}^4 \mid y_1 + y_2 + y_4 = y_3 + y_4 = 0 \}.$

12. Consider the matrix

$$A = \begin{pmatrix} -1 & 0 & 2 & 1 & 0 \\ -6 & 5 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \in \mathbb{R}^{3,5},$$

and compute the dimension of its row space, of its column space, and find bases for both.

13. Find a basis of the subspace $S = \mathcal{L}(w_1, w_2, w_3, w_4) \subseteq \mathbb{R}^4$, where:

$$w_1 = \begin{pmatrix} 1\\0\\1\\1 \end{pmatrix}, \qquad w_2 = \begin{pmatrix} 0\\1\\-1\\2 \end{pmatrix}, \qquad w_3 = \begin{pmatrix} 2\\1\\1\\4 \end{pmatrix}, \qquad w_4 = \begin{pmatrix} 1\\2\\-1\\5 \end{pmatrix}.$$

14. Given the vectors

$$v_1 = \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -1\\1\\1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0\\3\\k \end{pmatrix}, \quad v_4 = \begin{pmatrix} -1\\k\\5 \end{pmatrix}, \quad v_5 = \begin{pmatrix} -1\\10\\13 \end{pmatrix},$$

in \mathbb{R}^3 , find a basis of the vector subspace $\mathcal{L}(v_1, v_2, v_3, v_4, v_5)$ as the parameter $k \in \mathbb{R}$ varies.

15. Do the matrices

$$A_1 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 0 & 0 \\ 2 & -2 \end{pmatrix}, \quad A_4 = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$

form a basis of $\mathbb{R}^{2,2}$? And what about

$$B_1 = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \quad B_2 = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, \quad B_3 = \begin{pmatrix} 2 & -1 \\ -2 & 0 \end{pmatrix}, \quad B_4 = \begin{pmatrix} 0 & 3 \\ 6 & 1 \end{pmatrix}?$$

- 16. Let V be a vector space over \mathbb{R} of dimension 3, and let $\mathcal{B} = (v_1, v_2, v_3)$ be a basis of V. Let $U = \mathcal{L}(v_1 + v_2, v_1 v_2)$ and $W = \mathcal{L}(v_2 + v_3, v_2 v_3)$. Prove that V = U + W.
- 17. Let $A = (a_{ij}) \in \mathbb{R}^{n,n}$ be a square matrix. The *trace* of A is the sum of the diagonal elements. In particular, when n = 3:

$$\operatorname{tr}(A) = a_{11} + a_{22} + a_{33}$$

Prove that the subset in $\mathbb{R}^{3,3}$ of matrices with zero trace is a vector subspace, and compute its dimension.

- 18. Let $\mathcal{C} = (e_1, e_2, e_3)$ be the canonical basis in \mathbb{R}^3 , and consider the following vector subspaces:
 - (a) $W_1 = \mathcal{L}(e_1 + 2e_3, e_3, e_1 + e_3)$
 - (b) $W_2 = \mathcal{L}(e_1, e_1 e_2, e_1 + e_3)$
 - (c) $W_3 = \mathcal{L}(e_1, 2e_2, e_1 e_3, e_1 + 2e_2 e_3)$

Compute a basis for each of them, and find their dimension.

- 19. Is it possible to find a pair of 2-dimensional subspaces U and V of \mathbb{R}^3 such that $U \cap V = \{0_{\mathbb{R}^3}\}$?
- 20. Consider the following subspaces of $\mathbb{R}[x]_2$:

$$S = \{ p(x) \in \mathbb{R}[x]_2 \, | \, p(0) = 0 \} \text{ and } T = \{ q(x) \in \mathbb{R}[x]_2 \, | \, q(1) = 0 \}$$

Find a basis and the dimension for:

- (a) S;
- (b) *T*;
- (c) $S \cap T$.

Solutions.

- 1. (a) V is not a vector space for several reasons: there is no zero vector, there is no opposite...
 - (b) All 8 axioms of vector space are satisfied; $0_V = (1, 1)$ and -(a, b) = (1/a, 1/b).
- 2. The reason is that $(\alpha + \beta)x \neq \alpha x + \beta x$.
- 3. (a) Yes;
 - (b) yes;
 - (c) no, it is not closed with respect to the addition;
 - (d) yes;
 - (e) no, there is no 0 element, and it is neither closed with respect to the addition nor the scalar multiplication;
 - (f) yes;
 - (g) no, it is not closed with respect to the addition.
- 4. Clearly, the zero matrix $0_{n,n} \in W$, because $A0_{n,n} = 0_{n,n}A = 0_{n,n}$; if $M_1, M_2 \in W$, then:

$$A(M_1 + M_2) = AM_1 + AM_2 = M_1A + M_2A = (M_1 + M_2)A$$

so $M_1 + M_2 \in W$ and W is closed with respect to the addition. Finally, if $\lambda \in \mathbb{R}$ and $M \in W$, then:

$$A(\lambda M) = \lambda(AM) = \lambda(MA) = (\lambda M)A,$$

so $\lambda M \in W$ and W is closed with respect to scalar multiplication.

- 5. (a) Independent & generate;
 - (b) dependent & do not generate;
 - (c) dependent & generate;
 - (d) dependent & do not generate;
 - (e) independent & generate.

6. (a) No;

(b) yes.

```
7. \alpha = 12
```

8. Starting from the first vector, one finds $\{x_1, x_2, x_5\}$, but any subset of 3 linearly independent vectors in the set $\{x_1, x_2, x_3, x_4, x_5\}$ is ok.

- 9. (a) Dependent & do not generate;
 - (b) dependent & generate;
 - (c) independent & generate;
 - (d) independent & do not generate.
- 10. (a) A basis of W is ((1, 1, -1, 0), (0, 1, 1, 1)), hence dim(W) = 2; (b) a basis of U is ((1, -1, 0), (0, 1, 1)), hence dim(U) = 2.
- 11. $V_1 \cap V_2 = \{0_{\mathbb{R}^4}\}$, and $V_1 + V_2 = \{(-2x_2 x_3 y_2 + y_3, x_2 + y_2, x_3 + y_3, x_3 y_3) \mid x_2, x_3, y_2, y_3 \in \mathbb{R}\}$.
- 12. The row space is a subspace of dimension 3 in \mathbb{R}^5 , with basis

$$((-1, 0, 2, 1, 0), (-6, 5, 2, 0, 1), (0, 0, 1, 0, 0));$$

the column space is a subspace of dimension 3 in \mathbb{R}^3 , with basis

((1, 6, 0), (0, 1, 0), (2, 2, 1)).

Otherwise we can also remark that a dimension 3 subspace in \mathbb{R}^3 coincides with the whole \mathbb{R}^3 , and take the canonical basis.

- 13. A basis of S is $\mathcal{B} = (w_1, w_2)$.
- 14. If $k \neq 4$ the first 3 vectors are linearly independent, so they form a basis and $\mathcal{L}(v_1, v_2, v_3, v_4, v_5) = \mathcal{L}(v_1, v_2, v_3) = \mathbb{R}^3$. If k = 4 only the first 2 vectors are linearly independent.
- 15. (A_1, A_2, A_3, S_4) is a basis of $\mathbb{R}^{2,2}$: they are linearly independent and they generate. On the other hand, the 4 matrices B_1, B_2, B_3, B_4 are not linearly independent, and they generate a subspace of dimension 3, namely

$$\mathcal{L}(B_1, B_2, B_3, B_4) = \mathcal{L}(B_1, B_2, B_3) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | c = 2b \right\}.$$

16. The inclusion \supseteq is trivial, because U + W is a vector subspace of V. For the inclusion \subseteq , let $v \in V$. We know that there exist $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ such that $v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$; if we want to write v as an element of U + W, we need to find 4 coefficients a, b, c, d such that:

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = v = a (v_1 + v_2) + b (v_1 - v_2) + c (v_2 + v_3) + d (v_2 - v_3).$$

We get the following linear system of 3 equations in the 4 unknowns a, b, c, d:

$$\begin{cases} a+b=\alpha_1\\ a-b+c+d=\alpha_2\\ c-d=\alpha_3 \end{cases}$$

The system has ∞^1 solutions, therefore we can always write v as the sum of an element of U and an element of W, so $V \subseteq U + W$.

17. Let $T = \{A \in \mathbb{R}^{3,3} \mid tr(A) = 0\}$. One can verify that the following properties hold:

(*i*)
$$tr(0_{3,3}) = 0$$
, (*ii*) $tr(A + B) = tr(A) + tr(B)$, (*iii*) $tr(\lambda A) = \lambda tr(A)$,

therefore T is a vector subspace. To compute its dimension, remark that for all $A \in T$:

$$a_{33} = -(a_{11} + a_{22})_{3}$$

so, if $(E_{ij})_{i,j=1,\ldots,3}$ is the standard basis of $\mathbb{R}^{3,3}$, we can write

$$A = a_{11}E_{11} + a_{22}E_{22} + a_{33}E_{33} + \sum_{\substack{i,j=1\\i\neq j}}^{3} a_{ij}E_{ij}$$
$$= a_{11}(E_{11} - E_{33}) + a_{22}(E_{22} - E_{33}) + \sum_{\substack{i,j=1\\i\neq j}}^{3} a_{ij}E_{ij}.$$

Therefore the matrices of the set $\mathcal{B} = (E_{11} - E_{33}, E_{22} - E_{33}) \cup (E_{ij})_{\substack{i,j=1,\ldots,3\\i\neq j}}$ generate T, and one can prove (try!) that they are linearly independent. All in all, $\dim_{\mathbb{R}}(T) = 9 - 1 = 8$.

You can also try to generalize this result to any size n: the subset of $\mathbb{R}^{n,n}$ of matrices with zero trace is a vector subspace of dimension $n^2 - 1$.

- 18. (a) Basis of $W_1 = ((1, 0, 2), (0, 0, 1))$, so dim $W_1 = 2$
 - (b) Basis of $W_2 = ((1, 0, 0), (1, -1, 0), (1, 0, 1))$, so dim $W_2 = 3$
 - (c) Basis of $W_3 = ((1, 0, 0), (0, 2, 0), (0, 0, -1))$, so dim $W_3 = 3$
- 19. The answer is NO, and it can be proven in different ways: geometrically, 2 non-parallel planes through the origin in S_3 intersect in at least a line, not in a point. Algebraically, one can use the Grassmann formula:

 $3 = \dim(\mathbb{R}^3) \ge \dim(U+V) = \dim(U) + \dim(V) - \dim(U \cap V) = 4 - \dim(U \cap V),$

so $\dim(U \cap V) \ge 1$.

- 20. (a) Basis for S: (x, x^2) , dim S = 2;
 - (b) basis for T: $(1 x, 1 x^2)$, dim T = 2;
 - (c) basis for $S \cap T$: $(x^2 x)$, dim $(S \cap T) = 1$.

Please note. Remember that in general there might be more than one technique to solve the same exercise. If you find a typo, or something that you do not understand, let me know!