Linear algebra and geometry a.y. 2023-2024

Worksheet 5: exercises on chapters 9-11 from the lecture notes

(Some of these exercises come from the books by [Schlesinger], [Baldovino-Lanza], [Sernesi].)

1. Find cartesian equations for all lines and planes described in the exercises from worksheet 4.
2. Given the line $r:\{2 x+y+z-1=y+2 z=0\}$, find equations for the plane through r and:
(a) passing through the point $A=(2,1,0)$;
(b) parallel to the line $s:\{x-y-z-2=x+y+2 z-1=0\}$;
(c) orthogonal to the plane σ : $\{x+3 y-2 z=0\}$.
3. Find equations for the plane passing through the point $P=(0,1,2)$ and orthogonal to the line $r:\{x+y+z=x-2 y+3 z=0\}$.
4. In each of the following cases, find the relative position of the line r and the plane π. When they meet, find the intersection.
(a) $r:\left\{\begin{array}{l}x=1+t \\ y=2-2 t \\ z=1-4 t\end{array} \quad \pi: 2 x-y+z=1\right.$
(b) $r:\left\{\begin{array}{l}x=2-t \\ y=1+2 t \\ z=-1+3 t\end{array} \quad \pi: 2 x+2 y-z=-1\right.$
(c) $r:\left\{\begin{array}{l}x+z=-1 \\ x-z=0\end{array} \quad \pi: x+z=1\right.$
5. Verify that the lines $r:\{x+1=z-2=0\}$ and $s:\{2 x+y-2 z+6=y+z-2=0\}$ are coplanar, and find an equation for the plane containing them.
6. Find the relative position of the plane $\pi:\{x+5 y-3 z+5=0\}$ and the line $r:\{x-y-1=2 y-z+2=0\}$.
7. Compute the distance of the point $A=(1,2,-3)$ from the plane $\pi:\{x-3 y+2 z=3\}$.
8. Compute the distance of the point $B=(2,-1,0)$ from the line $r:\{x-2 z+1=y-z+1=0\}$.
9. Compute the distance between the plane $\pi:\{2 x-3 y+6 z=14\}$ and:
(a) the plane $\alpha:\{4 x-6 y+12 z+21=0\}$;
(b) the plane $\beta:\{x-y+12 z+1=0\}$;
(c) the line r : $\{z+1=2 x-3 y-8=0\}$.
10. Find the value(s) of the real parameter k such that the planes $\alpha_{k}:\{2 x+k y+4 z=4\}$, $\beta_{k}:\{3 x+y+k z=k\}$ and $\gamma_{k}:\{x-k y-4 z=k-6\}$ meet in a line.
11. Find the equation of the plane π containing the points $P=(1,3,1), Q=(0,4,1)$ and perpendicular to the plane $\pi^{\prime}:\{x+y+z=37\}$.
12. Find cartesian and parametric equations of the line r passing through the point $P=(1,2,3)$ and orthogonal to the plane $\pi:\{x+y+2 z=352\}$.
Let $s:\{x+y-3=x-y+z-6=0\}$ be another line; compute the distance between r and s and decide whether they are skew, or they meet in a point, or they are parallel or orthogonal.
13. Compute the distance between the lines

$$
r:\left\{\begin{array}{l}
x=3+2 t \\
y=-2+t \\
z=4+5 t
\end{array} \quad \text { and } \quad s:\left\{\begin{array}{l}
x=-3+2 u \\
y=2-u \\
z=7-3 u
\end{array}\right.\right.
$$

and find their relative position.

Solutions.

1.ex 1: $r:\left\{\begin{array}{l}3 x+z=1 \\ y=2\end{array}\right.$
ex 2: $r:\left\{\begin{array}{l}2 x+z=4 \\ 2 y+z=6\end{array}\right.$
ex 3: $\gamma:\{x-2 y+z=0\}$
ex 4: $\pi:\{z=1\}$
ex $5: \ell:\left\{\begin{array}{l}x+y=3 \\ -x+z=2\end{array}\right.$
2. (a) $2 x-3 y-7 z=1$
(b) $2 x+4 y+7 z=1$
(c) $2 x+4 y+7 z=1$
3. $5 x-2 y-3 z+8=0$
4. (a) $r \subset \pi$
(b) $r \cap \pi=(-6,17,23)$
(c) $r \| \pi$
5. $\pi:\{2 x-3 z+8=0\}$
6. $r \subseteq \pi$
7. $d(A, \pi)=\sqrt{14}$
8. $d(B, r)=\sqrt{3}$
9. (a) $d(\pi, \alpha)=7 / 2$
(b) $d(\pi, \beta)=0$
(c) $d(\pi, r)=12 / 7$
10. $k=2$
11. $\pi:\left\{\begin{array}{l}x=1+s-t \\ y=3+s+t \\ z=1+s\end{array}\right.$
12. Parametric equations: $\left\{\begin{array}{l}x=1+t \\ y=2+t \\ z=3+2 t,\end{array}\right.$ cartesian: $\left\{\begin{array}{l}x-y+1=0 \\ 2 x-z+1=0\end{array}\right.$
r and s are skew and $d(r, s)=4 / \sqrt{5}$.
13. r and s are skew and $d(r, s)=20 / \sqrt{69}$

Please note. Remember that in general there might be more than one technique to solve the same exercise. If you find a typo, or something that you do not understand, let me know!

