Linear algebra and geometry a.y. 2023-2024

Worksheet 3: exercises on chapters 6-8 from the lecture notes

1. Consider the vectors $\vec{v}=8 \vec{\imath}+6 \vec{\jmath}$ and $\vec{w}=4 \vec{\imath}-\vec{\jmath}$ in $V_{2}(O)$: compute their length $|\vec{v}|$ and $|\vec{w}|$, the sum $\vec{v}+\vec{w}$, the normalized vector of the sum.
2. Repeat exercise 4 using the vectors $\vec{v}=\vec{\imath}-3 \vec{\jmath}-1 \vec{k}$ and $\vec{w}=3 \vec{\imath}+\vec{k}$ in $V_{3}(O)$.
3. Find the value of the parameter $\alpha \in \mathbb{R}$ such that \vec{u} and \vec{v} are parallel, where

$$
\vec{u}=\alpha \vec{\imath}-2 \vec{\jmath}-\alpha \vec{k} \quad \text { and } \quad \vec{v}=3 \vec{\imath}-2 \alpha \vec{\jmath}-3 \vec{k} .
$$

4. Decide which of the following triples of vectors are coplanar:
(a) $\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right),\left(\begin{array}{c}0 \\ -5 \\ 3\end{array}\right),\left(\begin{array}{c}-1 \\ 9 \\ -4\end{array}\right)$;
(b) $\left(\begin{array}{l}5 \\ 6 \\ 3\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$;
(c) $\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{l}0 \\ 6 \\ 1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$.

Exercises 5-6-7-8 are from [Baldovino-Lanza, Algebra lineare e geometria]:
5. Consider the vectors $\vec{v}=2 \vec{\imath}-\vec{\jmath}+3 \vec{k}$ and $\vec{u}=\vec{\imath}-\vec{\jmath}+\vec{k}$, and compute:
(a) $2 \vec{v}+3 \vec{u}$;
(b) the angle between \vec{u} and \vec{v};
(c) the vector orthogonal projection of \vec{u} along the direction \vec{v}, and its length;
(d) all vectors parallel to \vec{v} whose orthogonal projection along the direction \vec{u} has length 2 .
6. Consider the vectors $\vec{u}=\vec{\jmath}-\vec{k}$ and $\vec{v}=\vec{\imath}-\vec{\jmath}+2 \vec{k}$ and compute the angle between them. Find the vector \vec{x} orthogonal to \vec{u} and such that $\vec{u} \times \vec{x}=\vec{u} \times \vec{v}$.
7. Which condition should two vectors \vec{u} and \vec{v} satisfy for the sum $\vec{u}+\vec{v}$ to be orthogonal to the difference $\vec{u}-\vec{v}$?
8. Given the vectors $\vec{v}=\vec{\imath}-\vec{\jmath}-\vec{k}$ and $\vec{u}=\vec{\imath}-2 \vec{\jmath}+\vec{k}$, decompose \vec{v} into the sum of a vector $\vec{v}_{\|}$ parallel to \vec{u} and a vector \vec{v}_{\perp} orthogonal to \vec{u}.
9. Consider the vectors $\vec{v}=3 \vec{\imath}+5 \vec{\jmath}-3 \vec{k}$ and $\vec{w}_{a}=4 \vec{\imath}-2 \vec{\jmath}+a \vec{k}$ in $V_{3}(O)$, find the values of the parameter $a \in \mathbb{R}$ such that $\vec{v} \perp \vec{w}_{a}$.
10. Given the points $A=(3,2,1), B=(2,2,5), C=(1,2,7)$ in S_{3}, write down the orthogonal projection of $\overrightarrow{A B}$ along the direction $\overrightarrow{A C}$; then compute the area of the triangle $A \triangle B C$.
11. In S_{3}, consider the points $P=(1,1,1), Q=(2,1,0), R=(1-h, 1, h), S=(-h+2,-h+2,0)$, where $h \in \mathbb{R}$ is a real parameter. Find the values of h such that the volume of the tetrahedron with vertices P, Q, R, S equals $\frac{1}{3}$.

Solutions.

1. $|\vec{v}|=10,|\vec{w}|=\sqrt{17}, \vec{v}+\vec{w}=12 \vec{\imath}+5 \vec{\jmath}$, the normalization of $\vec{v}+\vec{w}$ is $\frac{12}{13} \vec{\imath}+\frac{5}{13} \vec{\jmath}$.
2. $|\vec{v}|=\sqrt{11},|\vec{w}|=\sqrt{10}, \vec{v}+\vec{w}=4 \vec{\imath}-3 \vec{\jmath}$, the normalization of $\vec{v}+\vec{w}$ is $\frac{4}{5} \vec{\imath}-\frac{3}{5} \vec{\jmath}$.
3. $\alpha= \pm \sqrt{3}$
4. (a) yes;
(b) no;
(c) no.
5. (a) $2 \vec{v}+3 \vec{u}=7 \vec{\imath}-5 \vec{\jmath}+9 \vec{k}$
(b) α such that $\cos (\alpha)=\frac{\sqrt{42}}{7}$
(c) $\overrightarrow{u_{\|}}=\frac{1}{7}(6 \vec{\imath}+-3 \vec{\jmath}+9 \vec{k}) ;\left|\overrightarrow{u_{\|}}\right|=\frac{3}{7} \sqrt{14}$
(d) $\overrightarrow{w_{1}}=\frac{\sqrt{3}}{3} \vec{v}$ e $\overrightarrow{w_{2}}=-\frac{\sqrt{3}}{3} \vec{v}$
6. $\frac{\pi}{3}+\frac{\pi}{2} ; \vec{x}=\vec{\imath}+\frac{1}{2} \vec{\jmath}+\frac{1}{2} \vec{k}$
7. $|\vec{u}|=|\vec{v}|$
8. $\vec{v}_{\|}=\frac{1}{3} \vec{\imath}-\frac{2}{3} \vec{\jmath}+\frac{1}{3} \vec{k}, \vec{v}_{\perp}=\frac{2}{3} \vec{\imath}-\frac{1}{3} \vec{\jmath}-\frac{4}{3} \vec{k}$
9. $a=\frac{2}{3}$
10. $A \vec{B}_{\|}=\frac{13}{10}(-\vec{\imath}+3 \vec{k})$, area $(A \stackrel{\triangle}{B} C)=1$
11. $h=-1$ and $h=3$.

Please note. Remember that in general there might be more than one technique to solve the same exercise. If you find a typo, or something that you do not understand, let me know!

