Linear algebra and geometry a.y. 2023-2024

Worksheet 10: exercises on chapters 22-23 from the lecture notes

(Some of these exercises come from the books by [Schlesinger], [Baldovino-Lanza], [Sernesi], [Leon])

1. Consider the following pencil of conics:

$$
\mathcal{C}_{t}: \quad x^{2}+(1-t) y^{2}+2 t x-2(1-t) y+2-t=0
$$

and find the values of the parameter t such that \mathcal{C}_{t} is a
(a) parabola;
(b) hyperbola;
(c) ellipse;
(d) circle;
(e) degenerate conic.
2. Classify the following conics:
(a) $2 x^{2}+2 x y+x+5 y-10=0$;
(b) $3 x^{2}-8 x y-3 y^{2}+10=0$;
(c) $9 x^{2}+16 y^{2}+24 x y-40 x+30 y=0$;
(d) $3 x^{2}+2 x y+3 y^{2}+2 \sqrt{2} x-2 \sqrt{2} y=0$.
3. Find all degenerate conics in the family

$$
\mathcal{F}: 2 \alpha x^{2}+2 y^{2}+4 \alpha x+2 y+2 \alpha=0,
$$

where $\alpha \in \mathbb{R}$ is a real parameter.
4. Describe the conics in the family

$$
x^{2}-4 x y+y^{2}+7 h^{2}+1=0
$$

as the parameter $h \in \mathbb{R}$ varies.
5. Verify that the equation $x y-2 x+y-3=0$ represents an equilateral hyperbola in the plane, finding its canonical form and the rototranslation one should apply to get it.

Solutions.

1. (a) Never;
(b) $t>1$;
(c) $t<1, t \neq-1$;
(d) $t=0$ (imaginary circle);
(e) $t= \pm 1$.
2. (a) Two non parallel lines meeting in a point;
(b) (equilateral) hyperbola;
(c) parabola;
(d) ellipse.
3. $y^{2}+y=0$ and $x^{2}-3 y^{2}+2 x-3 y+1=0$.
4. The conic is a hyperbola for all values of $h \in \mathbb{R}$.
5. The canonical equation of the conic is $\frac{x^{\prime 2}}{2}-\frac{y^{\prime 2}}{2}=2$ which is precisely the canonical form of the equilateral hyperbola. This can be found by applying the rototranslation

$$
\binom{x}{y}=\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)\binom{x^{\prime}}{y^{\prime}}+\binom{1 / \sqrt{2}}{3 / \sqrt{2}} .
$$

Please note. Remember that in general there might be more than one technique to solve the same exercise. If you find a typo, or something that you do not understand, let me know!

