Worksheet 1: exercises on chapters $1-3$ from the lecture notes

1. Consider the matrices

$$
A=\left(\begin{array}{rr}
3 & -2 \\
2 & 4 \\
1 & -3
\end{array}\right) \in \mathbb{R}^{3,2} \quad \text { and } \quad B=\left(\begin{array}{rrr}
-2 & 1 & 3 \\
4 & 1 & 6
\end{array}\right) \in \mathbb{R}^{2,3}
$$

and compute the products $A B$ and $B A$. Is it possible to compute A^{2} and B^{2} ? Then compute the transposes ${ }^{t} A,{ }^{t} B,{ }^{t}(A B)$ and ${ }^{t}(B A)$.
2. Compute $A^{2}-{ }^{t} A+I_{3}$, where

$$
A=\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 2 & \frac{1}{2} \\
0 & -2 & -1
\end{array}\right) \in \mathbb{R}^{3,3}
$$

3. For which value of $a \in \mathbb{R}$ is the matrix $M=\left(\begin{array}{ll}0 & 2 \\ a & 1\end{array}\right)$ symmetric? And skew-symmetric?
4. Let $A \in \mathbb{R}^{n, n}$ be a symmetric matrix, and suppose that A is invertible; is it true that the inverse A^{-1} is also symmetric? And what about the same statement for skew-symmetric matrices?
5. Consider the matrices

$$
A=\left(\begin{array}{cc}
\alpha & \alpha-1 \\
\beta & \beta-1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
\alpha-1 & \alpha-1 \\
\beta & \beta-2
\end{array}\right)
$$

in $\mathbb{R}^{2,2}$: find the values of the parameters α and β such that the relation $A B=0_{2,2}$ holds.
6. Let

$$
A=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right) \in \mathbb{R}^{2,2}
$$

compute A^{2} and A^{3}. Can you guess what will A^{n} turn out to be for n any positive integer?
7. Write down the matrix of coefficients, the matrix of constant terms, and the augmented matrix associated to the following linear systems:
(a) $\left\{\begin{array}{l}x_{1}-x_{2}+3 x_{3}+x_{4}=5 \\ 6 x_{1}-x_{3}=2\end{array}\right.$
(b) $\left\{\begin{array}{l}3 x_{1}+2 x_{2}-x_{3}=-2 \\ -3 x_{1}-x_{2}+x_{3}=5 \\ 3 x_{1}+2 x_{2}+x_{3}=2\end{array}\right.$
(c) $\left\{\begin{array}{l}x+\sqrt{3} y=z+2 \\ -y+x=0 \\ x+y-z+4=0\end{array}\right.$
8. Write down the linear systems whose associated augmented matrices are:
(d) $\left(A_{d} \mid B_{d}\right)=\left(\begin{array}{rrrr|r}1 & \sqrt{3} & -1 & -2 & 3 \\ 0 & 0 & 1 & 1 / 2 & 7 \\ 2 & 0 & 0 & 2 & 0\end{array}\right)$
(e) $\left(A_{e} \mid B_{e}\right)=\left(\begin{array}{rr|r}5 & -1 & 0 \\ 5 & 1 & 3 \\ 0 & 1 / 3 & 1 / 2\end{array}\right)$
(f) $\left(A_{f} \mid B_{f}\right)=\left(\begin{array}{rrrrr|r}0 & 2 & -1 & 1 & 7 & 1 / 5 \\ 1 & 2 & 1 & 1 / 2 & 0 & -5\end{array}\right)$

Solutions.

1.

$$
A B=\left(\begin{array}{rrr}
-14 & 1 & -3 \\
12 & 6 & 30 \\
-14 & -2 & -15
\end{array}\right) \in \mathbb{R}^{3,3}, \quad \quad B A=\left(\begin{array}{rr}
-1 & -1 \\
20 & -22
\end{array}\right) \in \mathbb{R}^{2,2}
$$

the matrices A^{2} and B^{2} do not exist.

$$
\begin{gathered}
{ }^{t} A=\left(\begin{array}{rrr}
3 & 2 & 1 \\
-2 & 4 & -3
\end{array}\right) \in \mathbb{R}^{2,3} \quad{ }^{t} B=\left(\begin{array}{rr}
-2 & 4 \\
1 & 1 \\
3 & 6
\end{array}\right) \in \mathbb{R}^{3,2} \\
{ }^{t}(A B)=\left(\begin{array}{rrr}
-14 & 12 & -14 \\
1 & 6 & -2 \\
-3 & 30 & -15
\end{array}\right)={ }^{t} B^{t} A \in \mathbb{R}^{3,3},
\end{gathered}
$$

2. $A^{2}-{ }^{t} A+I_{3}=\left(\begin{array}{rrr}1 & 5 & 1 / 2 \\ -1 & 2 & 5 / 2 \\ 1 & -5 / 2 & 2\end{array}\right)$.
3. The only value for which $M={ }^{t} M$ is $a=2$. On the other hand, a skew-symmetric $\left(M=-{ }^{t} M\right)$ has all diagonal entries equal to 0 , so there is no value of a such that M is skew-symmetric.
4. Both statements are true, because ${ }^{t}\left(A^{-1}\right)=\left({ }^{t} A\right)^{-1}$; so if $A={ }^{t} A$ then ${ }^{t}\left(A^{-1}\right)=\left({ }^{t} A\right)^{-1}=A^{-1}$, and if $A=-{ }^{t} A$ then ${ }^{t}\left(A^{-1}\right)=\left({ }^{t} A\right)^{-1}=(-A)^{-1}=-\left(A^{-1}\right)$.
5. $\alpha=\beta=1$.
6. $A=A^{2}=A^{3}=A^{n}$ for all $n \in \mathbb{Z}, n \geq 1$.
7. (a) $A_{a}=\left(\begin{array}{rrrr}1 & -1 & 3 & 1 \\ 6 & 0 & -1 & 0\end{array}\right), \quad B_{a}=\binom{5}{2}, \quad\left(A_{a} \mid B_{a}\right)=\left(\begin{array}{rrrr|r}1 & -1 & 3 & 1 & 5 \\ 6 & 0 & -1 & 0 & 2\end{array}\right)$;
(b) $A_{b}=\left(\begin{array}{rrr}3 & 2 & -1 \\ -3 & -1 & 1 \\ 3 & 2 & 1\end{array}\right), \quad B_{b}=\left(\begin{array}{r}-2 \\ 5 \\ 2\end{array}\right), \quad\left(A_{b} \mid B_{b}\right)=\left(\begin{array}{rrr|r}3 & 2 & -1 & -2 \\ -3 & -1 & 1 & 5 \\ 3 & 2 & 1 & 2\end{array}\right)$;
(c) $A_{c}=\left(\begin{array}{rrr}1 & \sqrt{3} & -1 \\ 1 & -1 & 0 \\ 1 & 1 & -1\end{array}\right), \quad B_{c}=\left(\begin{array}{r}2 \\ 0 \\ -4\end{array}\right)$,
$\left(A_{c} \mid B_{c}\right)=\left(\begin{array}{rrr|r}1 & \sqrt{3} & -1 & 2 \\ 1 & -1 & 0 & 0 \\ 1 & 1 & -1 & -4\end{array}\right) ;$
8. (d) $\left\{\begin{array}{l}x_{1}+\sqrt{3} x_{2}-x_{3}-2 x_{4}=3 \\ x_{3}+1 / 2 x_{4}=7 \\ 2 x_{1}+2 x_{4}=0\end{array}\right.$
(e) $\left\{\begin{array}{l}5 x_{1}-x_{2}=0 \\ 5 x_{1}+x_{2}=3 \\ 1 / 3 x_{2}=1 / 2\end{array}\right.$
(f) $\left\{\begin{array}{l}2_{2}-x_{3}+x_{4}+7 x_{5}=1 / 5 \\ x_{1}+2 x_{2}+x_{3}+1 / 2 x_{4}=-5\end{array}\right.$

Please note. Remember that in general there might be more than one technique to solve the same exercise. If you find a typo, or something that you do not understand, let me know!

