
Istituzioni di Algebra e Geometria — Algebra, a.a. 2025-2026
Soluzioni foglio 10

1. Se α =
√

3 +
√

7 allora

α2 = 10 + 2
√

21 ⇒ α4 − 20α2 + 100 = 84.

Deduciamo che p(x) = x4 − 20x2 + 16 ha α come radice. Inoltre tale polinomio si scompone su
R come

p(x) = (x−
√

10− 2
√

21)(x−
√

10 + 2
√

21)(x+

√
10− 2

√
21)(x+

√
10 + 2

√
21),

quindi ha ±
√

10± 2
√

21 come sue radici in R.

Si noti che x2 − 21 ha
√

21 come radice; per il criterio di Eisenstein è irriducibile in Z, dunque
in Q, essendo primitivo. Concludiamo che il polinomio minimo di

√
21 su Q è x2 − 21, quindi√

21 6∈ Q. Allora 10 ± 2
√

21 6∈ Q, dunque ±
√

10± 2
√

21 6∈ Q. Quindi se p(x) fosse riducibile
su Q, si dovrebbe scomporre in un prodotto di due polinomi di grado 2 a coefficienti in Q: si
verifica con un conto diretto che questo non è possibile. Concludiamo che p(x) = x4− 20x2 + 16
è il polinomio minimo di α su Q.

Se β =
√

1 +
√

3 allora
β2 = 1 +

√
3 ⇒ β4 − 2β2 + 1 = 3,

da cui deduciamo che il polinomio q(x) = x4 − 2x2 − 2 ha β come radice. Se mostriamo che
è irriducibile su Q, esso è il polinomio minimo cercato. Di nuovo, avendo a che fare con un
polinomio primitivo, possiamo guardare la sua irriducibilità su Z, e in particolare usare il primo
criterio con p = 5. Mostriamo quindi che la riduzione di q(x) modulo 5 è irriducibile su Z5, e
quindi q(x) è irriducibile su Z, e quindi su Q. Osserviamo che q(x) = x4 − 2x2 − 2 non ha radici
in Z5, quindi l’unico modo possibile di spezzarsi è quello di essere il prodotto di due polinomi di
grado 2, che possono essere supposti monici. L’uguaglianza

(x2 + ax+ b)(x2 + cx+ d)) = x4 − 2x2 − 2

implica il seguente sistema di equazioni in Z5:
a+ c = 0

d+ b+ ac = −2

ad+ bc = 0

bd = −2

Quindi c = −a e a(d− b) = 0. Siamo in un dominio di integrità , quindi o a = 0, e allora c = 0 e

d+ b = −2, e quindi d(d+ 2) = 2, che però non ha soluzioni in Z5, oppure d− b = 0 e d
2

= −2,
che di nuovo non ha soluzioni in Z5. Concludiamo che q(x) = x4− 2x2− 2 è il polinomio minimo
di β su Q.
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Infine, se γ = 1− 3
√

5 allora

γ − 1 = − 3
√

5 ⇒ γ3 − 3γ2 + 3γ − 1 = −5,

da cui deduciamo che il polinomio r(x) = x3−3x2 +3x+4 ha γ come radice. Possiamo applicare
il criterio 1 con primo p = 7 a r(x): la sua riduzione r(x) ∈ Z7[x] è irriducibile perché non ha
radici, e quindi r(x) è un polinomio irriducibile su Z, ed essendo primitivo, è irriducibile anche
su Q. Concludiamo che r(x) = x3 − 3x2 + 3x+ 4 è il polinomio minimo di γ su Q.

2. (a) Poiché per ipotesi α ∈ C è algebrico su Q, Kα = Q[α] ⊆ C è un campo. Inoltre [Kα : Q]
coincide con il grado del polinomio minimo di α su Q, che è 2 per ipotesi.

(b) L’elemento β è algebrico su Q: poiché il suo polinomio minimo ha coefficienti in Q ⊆ Kα,
segue che β è anche algebrico su Kα con polinomio minimo di grado al più 2: come prima,
deduciamo allora che Kα,β = Kα[β] ⊆ C è un sottocampo.

Abbiamo che [Kα : Q] = 2 e [Kα,β : Kα] ≤ 2. Allora

[Kα,β : Q] = [Kα,β : Kα][Kα : Q]

può essere o 2 o 4.

(c) Sappiamo che Kα,β = Kα[β] è un campo tale che [Kα,β : Q] ≤ 4. Dal contenimento

Q ⊆ Kα+β,Kαβ ⊆ Kα,β

Kα+β e Kαβ sono estensioni finite di Q, quindi α+ β e αβ sono algebrici su Q. Osserviamo

che Kα+β e Kαβ sono sottospazi di Kα,β. Inoltre

[Kα,β : Q] = [Kα,β : Kα+β][Kα+β : Q] = [Kα,β : Kαβ][Kαβ : Q],

quindi [Kα+β : Q] e [Kαβ : Q] devono dividere [Kα,β : Q].

3. (a) Cominciamo a dimostrare che α ∈ A, α 6= 0, implica α−1 ∈ A. Supponiamo che α sia radice
del polinomio

a(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n ∈ Q[x];

è immediato verificare che allora α−1 è radice di

a0x
n + a1x

n−1 + a2x
n−2 + · · ·+ an ∈ Q[x],

dunque α−1 ∈ A. Sia ora β ∈ A un altro elemento algebrico; per dimostrare che la somma
α+ β e il prodotto αβ sono algebrici, osserviamo che la catena di inclusioni

Q ⊆ Kα+β,Kαβ ⊆ Kα,β

che appare nella soluzione della parte (c) dell’esercizio 2 è vera a prescindere dal grado dei
polinomi minimi di α e β. Quindi Kα+β e Kαβ sono estensioni finite, e quindi algebriche.

Esistono anche costruzioni esplicite che, a partire dai due polinomi che hanno come radici
α e β, forniscono polinomi che hanno come radice la somma α + β e il prodotto αβ, ma
vanno oltre le cose che impariamo in questo corso.
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(b) Si noti che α ∈ A se e solo se esiste f(x) ∈ Z[x] tale che f(α) = 0. Infatti sappiamo che α è
radice di un g(x) ∈ Q[x]: moltiplicando g(x) per un comune multiplo dei denominatori dei
suoi coefficienti otteniamo il polinomio f(x).

Per ogni N ∈ N si consideri l’insieme finito di polinomi

XN =
{ n∑
i=0

aix
i ∈ Z[x]

∣∣∣ n+

n∑
i=0

|ai| = N
}
,

e sia YN l’insieme di tutti gli α ∈ A che sono radici di un qualche elemento di XN : anche
l’insieme YN è finito perché nessun polinomio in XN è identicamente nullo. Poniamo infine

AN = YN \
N−1⋃
i=1

Yi.

Gli insiemi AN sono finiti, disgiunti a coppie e
⋃
N∈NAN = A. Poiché dunque l’insieme A

è un’unione numerabile di insiemi finiti, esso è numerabile.

4. (a) Osserviamo che x2−2 ∈ Z[x] ⊆ Q[x] è monico, irriducibile su Z per il criterio di Eisenstein,
dunque su Q, e ha

√
2 come radice: quindi coincide con il polinomio minimo di

√
2 su Q.

In particolare questo implica che
√

2 6∈ Q.

(b) Usiamo la notazione dell’esercizio 2 e chiamiamo Q[
√

2] = K√2; poiché
√

2 è un elemento

algebrico su Q, K√2 è un campo i cui elementi si scrivono in modo unico nella forma a+b
√

2

con a, b ∈ Q. Osserviamo che (
√

2)−1 = a + b
√

2, se e solo se 1 = a
√

2 + 2b: concludiamo
che deve essere a = 0, b = 1/2.

(c) Se
√

3 fosse un elemento di K√2, esisterebbero a, b ∈ Q tali che
√

3 = a+ b
√

2, dunque

3− a2 − 2b2 = 2ab
√

2.

Ora, se ab 6= 0 allora
√

2 =
3− a2 − 2b2

2ab
∈ Q,

in contraddizione con il fatto che
√

2 6∈ Q. Quindi necessariamente ab = 0. Poiché il
polinomio minimo di

√
3 su Q è x2 − 3, di grado 2,

√
3 6∈ Q. Quindi b 6= 0, e quindi ab = 0

implica a = 0, cioè
√

3 = b
√

2 per qualche b ∈ Q. Il polinomio primitivo 2x2 − 3 ∈ Z[x] ⊆
Q[x] è irriducibile su Z per il criterio di Eisenstein, dunque su Q, e ha b =

√
3/
√

2 come
radice: quindi coincide con il polinomio minimo di b su Q, che implica che b 6∈ Q, assurdo.

(d) Nell’esercizio 2 abbiamo verificato che la somma di elementi algebrici con polinomio minimo
di grado 2 su Q è ancora un elemento algebrico: inoltre, nelle parti (a) e (c) di questo
esercizio abbiamo visto che sia

√
2 che

√
3 sono di questo tipo, dunque

√
2 +
√

3 è algebrico
su Q. Sempre dall’esercizio 2 sappiamo che [K√2+

√
3 : Q] deve dividere [K√2,

√
3 : Q],

e che quest’ultimo può essere 2 o 4 a seconda che [K√2,
√
3 : K√2] sia 1 o 2. Avendo

dimostrato che
√

3 /∈ K√2, segue che [K√2,
√
3 : K√2] = 2 e [K√2,

√
3 : Q] = 4. Quindi anche

[K√2+
√
3 : Q] può essere 2 o 4. Se dimostriamo che il polinomio monico f(x) = x4−6x2+1 ∈
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Z[x] ⊆ Q[x] è irriducibile, avendo
√

2 +
√

3 come radice esso coinciderà con il suo polinomio
minimo, e quindi [K√2+

√
3 : Q] = deg f(x) = 4. Per dimostrare l’irriducibilità osserviamo

che è sufficiente dimostrarla su Z, in quanto f(x) è primitivo. Usiamo il primo criterio e
consideriamo la riduzione modulo 5 f(x) = x4 − x2 + 1 ∈ Z5[x]. Intanto, poiché f(x) non
si annulla in nessuno dei 5 elementi di Z5, segue che f(x) non ha fattori lineari in Z5[x]. Se
f(x) fosse riducibile, dovrebbe fattorizzarsi come

(x2 + ax+ c)(x2 + bx+ d), a, b, c, d ∈ Z5,

con cd = 1, quindi c = d = ±1. Sviluppando e confrontando i coefficienti con x4 − x2 + 1,
si ottiene il sistema {

a+ b = 0,

ab+ 2c = −1.

Da b = −a segue
−a2 + 2c = −1 ⇒ a2 = 2c+ 1,

che però non è mai verificata. Infatti se c = 1, allora a2 = 3, che non è un quadrato in
Z5, quindi non può accadere. Se invece c = −1, allora a2 = 4, ma ciò porta a coefficienti
incompatibili con il termine in x2. Concludiamo che f(x) è irriducibile su Z5, e quindi f(x)
lo è su Q.

5. Abbiamo che γ = 1 + α2 = 1 +
√

2 6∈ Q (abbiamo dimostrato che
√

2 6∈ Q nell’esercizio 4 qui
sopra), quindi il suo polinomio minimo su Q ha grado almeno 2. Poiché

γ − 1 =
√

2,

elevando al quadrato entrambi i membri dell’equazione segue che

γ2 − 2γ + 1 = 2,

e quindi il polinomio p(x) = x2 − 2x − 1 ∈ Q[x] e si annulla in 1 + α2. L’altra radice (in R) di
p(x) è 1−

√
2, e nemmeno questa radice appartiene a Q. Quindi p(x) è un polinomio di grado 2

che non ha radici in Q, e quindi irriducibile su Q: in conclusione, è il polinomio minimo cercato.

6. (a) Chiaramente 1 + i
√

5 6∈ Q, quindi il suo polinomio minimo ha grado ≥ 2. Osserviamo che

(x− 1− i
√

5)(x− 1 + i
√

5) = x2 − 2x+ 6 ∈ Q[x] :

concludiamo che α è algebrico su Q, con polinomio minimo x2−2x+6 di grado 2 (x2−2x+6
è irriducibile per il criterio di Eisenstein con primo p = 2), quindi K = Q[α] è un campo,
estensione algebrica di Q di grado 2.

(b) Poiché K è contenuto nell’insieme degli elementi algebrici su Q, che abbiamo dimostrato
nell’esercizio 3 essere numerabile, è numerabile esso stesso e quindi non può contenere R
che è più che numerabile.
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7. (a) Si noti che −1 è radice di p(x), quindi per Ruffini x+1 divide p(x) e il quoziente è x2−x+2
che è irriducibile in R, dunque anche in Q.

(b) L’elemento α 6∈ Q è una radice di p(x) se e solo se α è radice di x2 − x + 2 che è monico
e irriducibile su Q. In particolare x2 − x + 2 è il polinomio minimo di α su Q, dunque
[Kα : Q] = 2.

(c) Poiché [Kα : Q] = 2, segue che una base di Kα come spazio vettoriale su K è {1, α}. Se
u = a+ bα ∈ Kα con a, b ∈ Q è tale che u2 + 1 = 0 allora

a2 + 2abα+ b2α2 + 1 = 0.

Tenendo conto che α2 = α− 2 in Kα segue che

a2 − 2b2 + 1 + (2a+ b)bα = 0

Se fosse (2a+ b)b 6= 0 si dedurrebbe che

α = −a
2 − 2b2 + 1

(2a+ b)b
∈ Q.

Dalla contraddizione deduciamo che o b = 0 o b = −2a. Nel primo caso avremmo a2+1 = 0,
in contraddizione con la condizione a ∈ Q. Nel secondo caso 7b2 = 1, in contraddizione con
la condizione b ∈ Q. Concludiamo che un elemento u con le proprietà indicate non esiste.

8. (a) Il criterio di Eisenstein garantisce che il polinomio p(x) è irriducibile, dunque in Q[x] l’ideale
I è massimale e K è un campo.

(b) Sappiamo che ogni elemento di K ha un unico rappresentante della forma di un polinomio
di grado al più 3 in x. Se u = ax3 + bx2 + cx+ d+ I con a, b, c, d ∈ Q, allora

u2 = a2x6 + 2abx5 + (b2 + 2ac)x4 + (2bc+ 2ad)x3 + (c2 + 2bd)x2 + 2cdx+ d2 + I.

In K vale la relazione x4 + I = 2 + I (perché la classe di x4 − 2 è zero), quindi la relazione
u2 + 1 = 0 diviene

(2bc+ 2ad)x3 + (c2 + 2a2 + 2bd)x2 + (2cd+ 4ab)x+ d2 + 2b2 + 4ac+ 1 + I = 0,

e quindi deve valere 
bc+ ad = 0

c2 + 2a2 + 2bd = 0

2cd+ 4ab = 0

d2 + 2b2 + 4ac+ 1 = 0,

perché (1, x, x2, x3) è una base di K come spazio vettoriale su Q (dove con la barra sopra
denoto la classe laterale nel quoziente K). Dall’ultima equazione deduciamo che necessari-
amente ac < 0, cioè a e c hanno segno opposto. Poiché dalla prima equazione ricaviamo
che d = −bc/a, deduciamo che bd ≥ 0. La seconda equazione implica allora a = c = 0, in
contraddizione con quanto osservato. Quindi non esiste u ∈ K tale che u2 + 1 = 0.
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9. (a) Consideriamo il polinomio

p(x) =
N∏
i=1

(x− ai) :

per costruzione p(ai) = 0K per i = 1, . . . , N e deg(p) = N (il coefficiente di xN è 1), dunque
p(x) 6= 0K .

(b) Chiaramente se ai = 0K si ha pi(aj) = p(aj) + 0K = 0K : quindi se ai = 0K le radici di pi(x)
sono tutti gli elementi di K. Se, invece, ai 6= 0K , si ha pi(aj) = p(aj) + ai 6= 0K per ogni
j = 1, . . . , N : quindi se ai 6= 0K il polinomio pi(x) non ha radici in K.

(c) Poiché 1K 6= 0K , segue che il polinomio q(x) = p(x) + 1K non ha radici in K che, quindi,
non è algebricamente chiuso.

10. (a) Poiché p(x) ha grado 3, per Ruffini esso è irriducibile se e solo se non ha radici in Z3, e si
calcola facilmente che

p(0) = p(1) = p(2) = 2 6= 0.

Essendo Z3 un campo, gli ideali principali in Z3[x] generati dai polinomi irriducibili sono
massimali.

(b) Poiché deg(p(x)) = [K : Z3] = 3, il campo Z3[x]/I si può identificare con uno spazio
vettoriale di dimensione 3 su Z3; la sua cardinalità quindi è 33 = 27. Segue che |K∗| = 26.

(c) Osserviamo preliminarmente che l’ordine di un qualsiasi elemento in K \ {0, 1} divide 26,
dunque è o 2, o 13. Chiamiamo s la classe di x in K (evitiamo la notazione x per non far
confusione con le classi di resto in Z3): ogni elemento in K si scrive in maniera unica come
polinomio in s di grado al più 2, a coefficienti in Z3. In particolare s2 è diverso da 1 ∈ Z3,
e l’ordine di s non è 2. Invece si ha s3 + 2s+ 2, cioè s3 = s+ 1. In particolare s4 = s2 + s e
s5 = s3 + s2 = s2 + s+ 1. Calcoliamo allora che

s13 = (s3)4 · s = (s+ 1)4s = s5 + s4 + s2 + s = s2 + s+ 1 + s2 + s+ s2 + s = 1,

quindi l’ordine di s è 13. A voi verificare che anche s+ 1 e s+ 2 hanno ordine 13.

(d) Abbiamo già trovato ben 3 elementi di ordine 13. Per trovare un elemento di ordine 2 invece
basta considerare 2 ∈ Z3 ⊆ K.

N.B. Ricordate che in generale il metodo per risolvere un esercizio non è unico. Se qualche cosa
non vi è chiara, e/o se pensate di aver trovato un errore di stampa, fatemi sapere!
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